
Solvability in a polarized calculus1

Author: Please provide author information2

Abstract3

We investigate the existence of operational characterizations of solvability, i.e. reductions that are4

normalizing exactly on solvable terms, in calculi with mixed evaluation order (i.e. call-by-name5

and call-by-value) and pattern-matches. We start by introducing focused call-by-name and call-6

by-value λ-calculi isomorphic to the intuitionistic fragments of call-by-value and call-by-name λµµ̃,7

relating them to λ-calculi in which solvability has been operationally characterized, and operationally8

characterizing solvability in them. We then merge both calculi into a polarized one, explain its9

relation to the previous calculi, describe how the presence of clashes (i.e. pattern-matching failures)10

affects solvability, and show how the operational characterization can be adapted the a dynamically11

typed / bi-typed variant of the calculus that eliminates clashes.12

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro13

Keywords and phrases Author: Please fill in \keywords macro14

Digital Object Identifier 10.4230/LIPIcs... Xavier Montillet15

Introduction16

The λ-calculus is a well-known abstraction used to study programming languages. It has two17

main evaluation strategies: call-by-name (CBN) evaluates subprograms only when they are18

observed / used, while call-by-value (CBV) evaluates subprograms when they are constructed.19

Each strategy has its own advantage: CBN ensures that no unnecessary computations are20

done, while CBV ensures that no computations are duplicated. Somewhat surprisingly, the21

study of CBV turned out to be more involved than that of CBN, for example requiring22

computation monads [18, 19] to build models. Some properties of CBN given by Barendregt23

in 1984 [6] have yet to be adapted to CBV. Levy’s call-by-push-value (CBPV) [16, 17]24

decomposes Moggi’s computation monad as an adjunction, subsumes both CBV and CBN25

and sheds some light on the interactions and differences of both strategies.26

Another direction the λ-calculus has evolved in is the computational interpretation of27

classical logic, with the continuation-passing style translation and Parigot’s λµ-calculus [23].28

This eventually led to Curien and Herbelin’s λµµ̃-calculus [10]. An interesting property of29

λµµ̃ is that it resembles both the λ-calculus and the Krivine abstract machine [15], allowing30

to speak of both the equational theory and the operational semantics. It also sheds more31

light on the relationship between CBN and CBV: the full calculus is not confluent because of32

the Lafont critical pair [12], which, when restricted to the intuitionistic fragment becomes33

U[T /x] ⊲ letx = T inU ⊳ letx = T inU34

where the underlined subterm is the one that the machine is currently trying to evaluate.35

This is exactly the distinction between CBN (where we substitute T for x immediately), and36

CBV (where we want to evaluate T before substituting it, and hence move the focus to T).37

Since CBV is syntactically dual to CBN in λµµ̃, the additional difficulty in the study of CBV38

can be understood as coming from the restriction to the intuitionistic fragment.39

Surprisingly, those two lines of work (CBPV and λµµ̃) lead to very similar calculi, and40

both can be combined into Curien, Fiore, and Munch-Maccagnoni’s polarized sequent calculus41

LJηp [9], an intuitionistic variant of (a syntax for) Danos, Joinet and Schellinx’s LKηp [11].42

The main difference between (the abstract machine of) CBPV and LJηp is the same as43

that of the Krivine abstract machine and the CBN fragment of λµµ̃: Subcomputations are44

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Solvability in a polarized calculus

also represented by subcommands / subconfigurations, so that the “abstract machine style”45

evaluation is no longer restricted to the top-level. The difference between λµµ̃ and LJηp is46

that instead of begin restricted to a single evaluation strategy (which is necessary in λµµ̃ to47

preserve confluence), both are available, and commands are annotated by a polarity + (for48

CBV) or − (for CBN) to denote the current evaluation strategy, which removes the Lafont49

critical pair. The type system also changes from classical logic to intuitionistic logic with50

explicitly-polarised connectives.51

In this article, we introduce an alternative concrete syntax for the untyped but well-52

polarized intuitionistic fragment of LJηp. This new syntax, λp , is more or less a normal53

λ-calculus where focus is represented by underlinement. This allows us to widen the audience54

of this paper by not requiring knowledge of λµµ̃.55

Solvability56

In this article, we use λp to study one of the basic blocks of the theory of the λ-calculus:57

solvability. A term is solvable if there is some way to “use” it that leads to a “result”.58

Solvability plays a central role in the study of the λ-calculus because while it could be59

tempting to consider λ-terms without a normal form as meaningless, doing so leads to an60

inconsistent theory. Quoting from [3] (itself quoting from [25]):61

[...] only those terms without normal forms which are in fact unsolvable can be62

regarded as being ”undefined” (or better now: ”totally undefined”); by contrast, all63

other terms without normal forms are at least partially defined. Essentially the reason64

is that unsolvability is preserved by application and composition [...] which [...] is not65

true in general for the property of failing to have a normal form.66

One of the nice properties of the CBN λ-calculus is that solvability can be operationally67

characterized: There exists a decidable restriction of the reduction (the head reduction)68

that is normalizing exactly on solvable terms. This operational characterization is one of69

the first steps in the study of Böhm trees and observational equivalence. The operational70

characterization has been extended to CBV [21, 3].71

In this article, we replay the proof of [3] in λpure
n and λpure

v , the pure call-by-name and72

call-by-value fragments of λpure
p , and then generalize it to λPNp , the dynamically typed /73

bi-typed variant of λpure
p .74

Goals75

The goals of this article are:76

To give an alternative concrete syntax λp for the well-polarized intuitionistic fragment of77

LJηp, that remains readable without any knowledge of λµµ̃;78

To convince the reader of the usefulness of λp to study solvability and associated notions,79

and perhaps get some readers to read this draft1 that relates λp (in its abstract-machine-80

like syntax) to CBN and CBV λ-calculi and CBPV;81

To pave the way for the study of Böhm tree and observational equivalence in λp ,82

introducing and motivating several notions that will be useful for that purpose;83

To summarize the structure of the proof of operational characterization given in [3].84

1 https://xavier.montillet.ac/drafts/PPDP-2020-submission/

https://xavier.montillet.ac/drafts/PPDP-2020-submission/

Author: Please use the \authorrunning macro XX:3

Outline85

In Section 1, we recall a few standard definitions, and give a generic theorem that will be86

used for all proofs of operational characterizations of solvability. In Section 2, we introduce87

call-by-name and call-by-value focused calculi, and prove that they have an operational88

characterization of solvability. In Section 3, introduce a polarized focused calculus, and89

discuss the effect of the presence of clashes on solvability, modify the calculus to remove90

clashes, and finally operationally characterize solvability in it.91

Conventions and notations92

In this article, we will describe several calculi, and will use the same conventions for all of93

them.94

Calculi95

We write T [V /x] for the capture-avoiding substitution of the free occurrences of x by V in96

T . We also use contexts KKKKKKKKKKKKKKKKK, i.e. expressions (terms, values, ...) with a hole �. We write KKKKKKKKKKKKKKKKKT97

for the result of plugging T in KKKKKKKKKKKKKKKKK, i.e. the result of the non-capture-avoiding substitution98

of the unique occurrence of � by T in KKKKKKKKKKKKKKKKK. Similar constructions in different calculi will be99

differentiated by adding a symbol: N or n for call-by-name, V or v for call-by-value, p for100

polarized (or + and − when the polarized calculus contains two variants).101

Reductions102

We use three reductions: The top-level reduction ≻ is used to factor the definitions of the103

two other reductions. The operational reduction ⊳ is the one that defines the operational104

semantics of the calculus, and can be defined as the closure or the top-level reduction ≻105

under a chosen set of contexts, called evaluation contexts and denoted by EEEEEEEEEEEEEEEEE. For all the106

calculi in this paper, the operational reduction ⊳ is deterministic (i.e. T 1 ⊲ T ⊳ T 2 implies107

T 1 = T 2). The strong reduction _ defines the (oriented) equational theory, and is defined as108

the closure of the top-level reduction ≻ under all contexts (i.e. it can reduce anywhere).109

We write for an arbitrary reduction (i.e. an arbitrary binary relation whose domain110

and codomain are equal). Given a reduction , we write + for its transitive closure and111

 ∗ for its reflexive transitive closure. We say that T -reduces to T ′, written T T ′,112

when (T ,T ′) ∈ . Relations will sometimes be used as predicate in which case the second113

argument is to be understood as existentially quantified (e.g. T means that there exists114

T ′ such that T T ′) unless the relation is striked in which case it should be understood as115

universally quantified (e.g. T��HH means that for all T ′, T��HH T ′, in other words there exists116

no T ′ such that T T ′). We will say that T is -reducible if T and -normal otherwise.117

We will say that T ′ is a -normal form of T if T ∗ T ′��HH , and that T has an -normal118

form if such a T ′ exists. If is deterministic, we will say that T -converges if it has a119

normal form, and that it diverges otherwise.120

1 Solvability121

In this section, we recall a few standard definitions in the pure call-by-name λ-calculus,122

we which we will call λpure
N : TN , UN , VN ,WN ∶∶= xN ∣ λxN . TN ∣ TNUN . We added N (for123

call-by-name) subscripts / superscripts everywhere to differentiate it from other calculi124

that will be introduced. Note that we use VN and WN to denote arbitrary terms. As125

XX:4 Solvability in a polarized calculus

is often done, we write TNVNWN for (TNVN)WN . We use several types of contexts (i.e.126

terms with a hole �): stacks / weak-head contextsSSSSSSSSSSSSSSSSSN ∶∶= �V 1
N . . .V

k

N , head contexts HHHHHHHHHHHHHHHHHN ∶∶=127

(λx1
Nλxk

N .�)V 1
N . . .V

l

N , ahead context AAAAAAAAAAAAAAAAAN ∶∶= � ∣ AAAAAAAAAAAAAAAAANVN ∣ λxN .AAAAAAAAAAAAAAAAAN and (strong)128

contexts KKKKKKKKKKKKKKKKKN ∶∶= � ∣ λxN .KKKKKKKKKKKKKKKKKN ∣ TTTTTTTTTTTTTTTTTNUN ∣ TNUUUUUUUUUUUUUUUUUN . We write ≻ for the top-level β-reduction129

(λxn. TN)UN ≻ TN [UN /xN]. To each type of context, we associate a reduction which is the130

closure of ≻ under those contexts: The operational / weak-head reduction is ⊳, the head131

reduction ⋅⋅−⊳hd, the ahead reduction ⋅⋅−⊳ and the strong reduction _. We write IN for132

λxN . xN , δN for λxN . xNxN and ΩN for δNδN . We use the following definition of solvability,133

which is easily shown equivalent to the usual one λpure
N (which can be found, e.g. in [4]):134

IDefinition 1. A term TN is said to be solvable when there exists a variable xN , a substitution135

σN and a stack SSSSSSSSSSSSSSSSSN such that SSSSSSSSSSSSSSSSSN TN [σN] _∗ xN .136

A nice property of solvability in the call-by-name λ-calculus is that it can be operationally137

characterized:138

I Definition 2. A reduction is said to operationally characterize a set X of terms when139

it is deterministic and the set of weakly -normalizing terms is X.140

A reduction is said to operationally characterize solvability when it operationally141

characterizes the set of solvable terms.142

One of the properties that proofs of this property often involve is sometimes called uniform143

normalization [14], but we prefer to call it uniqueness of termination behavior2:144

I Definition 3 (Uniqueness of termination behavior). A reduction is said to have uniqueness145

of termination behavior (UTB) when weakly -normalizing implies strongly -normalizing.146

To better understand solvability proofs, it is useful to generalize solvability to an arbitrary147

reduction , with solvability being _-solvability:148

I Definition 4. A term TN is said to be -solvable when there exists a variable xN , a149

substitution σN and a stack SSSSSSSSSSSSSSSSSN such that SSSSSSSSSSSSSSSSSN TN [σN] ∗ xN .150

With this definition in mind, a careful reading of [4], combined with a few obvious general-151

izations and slight reformulations, yields the following properties and theorem (where ⋅⋅−⊳152

corresponds to their stratified weak reduction →sw:153

I Proposition 5. For any reductions ⋅⋅−⊳ and _, if (FactAhead) any reduction T _∗ T ′
154

can be factorized as T ⋅⋅−⊳∗−⋅⋅>∗ T ′ (where −⋅⋅> = _ ∖ ⋅⋅−⊳), (RedToIAhead) T _ I implies155

T ⋅⋅−⊳ I, and (InclAhead) ⋅⋅−⊳∗ ⊆ _∗, then (EqSolAhead) ⋅⋅−⊳-solvability and _-solvability156

coincide.157

I Proposition 6. For any reduction ⋅⋅−⊳, if (NFSol) ⋅⋅−⊳-normal terms are solvable, (Disubst)158

⋅⋅−⊳ is stable under substitution and stacks (i.e. if T ⋅⋅−⊳ T ′ then T [σ] ⋅⋅−⊳ T ′[σ] and159

SSSSSSSSSSSSSSSSST ⋅⋅−⊳ SSSSSSSSSSSSSSSSST ′), and (UTB) ⋅⋅−⊳ has uniqueness of termination behavior, then (OpCharSelf)160

⋅⋅−⊳ operationally characterizes ⋅⋅−⊳-solvability.161

Combining both properties above, one gets the following theorem:162

I Theorem 7. For any reductions ⋅⋅−⊳ and _, if (FactAhead), (RedToVarAhead), (InclAhead),163

(NFSol), (Disubst), and (UTB) then (OpChar) ⋅⋅−⊳ operationally characterizes solvability.164

2 Because the name uniform normalization can easily be misunderstood as implying normalization, which
it does not.

Author: Please use the \authorrunning macro XX:5

The main difficulties when trying to apply this theorem are finding the right ⋅⋅−⊳, proving165

(FactAhead) and proving (NFSol). Proving (UTB) is sometimes also non-trivial. The proof166

of (FactAhead) became unmanageable for some of the calculi we considered, and we therefore167

generalize Proposition 5 as follows:168

I Proposition 8. For any reductions ⊳, ⋅⋅−⊳ and _, if (Fact) any reduction T _∗ T ′ can169

be factorized as T ⊳∗→∗ T ′ (where → = _ ∖ ⊳), (RedToVar) T _ x implies T ⊳ x, and (Incl)170

⊳ ⊆ ⋅⋅−⊳∗ ⊆ _∗, then (EqSol) ⊳-solvability, ⋅⋅−⊳-solvability and _-solvability coincide.171

The proof is basically unchanged. Note that replacing all occurrences of ⊳ by ⋅⋅−⊳ (and x by172

I) in Proposition 8 yields Proposition 5, so that Proposition 8 is indeed a generalization of173

Proposition 5. Combining this with Proposition 6 yields:174

I Theorem 9. For any reductions ⊳, ⋅⋅−⊳ and _, if (Fact), (RedToVar), (Incl), (NFSol),175

(Disubst), and (UTB) then (OpChar) ⋅⋅−⊳ operationally characterizes solvability.176

Our experience is that when moving to more larger calculi, ⋅⋅−⊳ get very complicated very177

fast3, while ⊳ remains relatively simple. Replacing the assumption (FactAhead) by (Fact)178

is therefore a huge gain. Another very useful advantage of using Proposition 8 is that the179

proof of (OpChar) can now be split into two relatively independent parts: (EqSol) is mostly180

independent of the choice of ⋅⋅−⊳ with the only assumption on it being (Incl) ⊳ ⊆ ⋅⋅−⊳∗ ⊆ _∗;181

while (OpCharSelf) only mentions ⋅⋅−⊳. This means that one can prove (EqSol) as soon as182

the calculus is defined, and then search for the right ⋅⋅−⊳ without having to worry about183

breaking (FactAhead). We recommend looking at Figure 9 and Figure 10 in the appendix,184

as they should elucidate the structure of the proof of theorem 9.185

In the call-by-name λ-calculus, it is well-known [5] that the head reduction ⋅⋅−⊳hd opera-186

tionally characterizes solvability. Instead of using ⋅⋅−⊳hd, we prefer using the ahead reduction187

⋅⋅−⊳ which also characterizes solvability. The main advantage of ⋅⋅−⊳ is that the corresponding188

contexts are stable under composition (i.e. the composition AAAAAAAAAAAAAAAAA1AAAAAAAAAAAAAAAAA2 of two ahead contexts is189

always an ahead context, which is not true for head contexts), and its main drawback is that190

it is not deterministic. This leads to proofs using ⋅⋅−⊳ instead of ⋅⋅−⊳hd being easier to adapt191

to other calculi (because they do not rely on determinism, and compositionality becomes192

paramount when the calculus grows in size).193

I Theorem 10. In λpure
N , the ahead reduction ⋅⋅−⊳ operationally characterizes solvability.194

Proof. We use theorem 9. Among its assumptions: (Subst) and (Fact) are well-known195

properties; and (Disubst), (RedToVar) and (Incl) are trivial to prove.196

The proof of (UTB) relies on the diamond property: (DP) If T l ⊲−⋅⋅ T ⋅⋅−⊳ T r then either197

T l = T r or T l ⋅⋅−⊳ T ⊲−⋅⋅ T r. It is well-known that (DP) implies (UTB).198

The standard proof of (DP) is done as follows: If T l ⊲ T ⊳ T r then T l = T r by determinism199

of ⊳. IfT l ⊲ T ⋅⋅−> T r then T l ⋅⋅−⊳ T ⊲ T r by case analysis on the reduction T l ⊲ T and200

(Disubst). The general case is then by induction on the derivation of both reductions201

T l ⊲−⋅⋅ T ⋅⋅−⊳ T r until one of the two reductions is an ⊳ reduction or it becomes apparent202

that the two reductions are applied to disjoint subterms.203

The standard proof of (NFSol), i.e. that ⋅⋅−⊳-normal terms are solvable, is as follows.204

It is easy to prove that ⋅⋅−⊳-normal terms T are of the shape λx1
Nλxk

N . yNV 1
N . . .V

l

N .205

Define ol = λz1
Nλzl

N . zl+1 where zl+1 is a free variable. The idea is to substitute y206

3 Because it has to deal with clashes and reduce several redexes at once in some calculi, as we will see
later.

XX:6 Solvability in a polarized calculus

(a) Syntax

Values / terms
Vn,Wn, Tn, Un ∶∶= xn ∣ C↝n

∣ λxn.C↝n

Commands
C↝n ∶∶= Tn V

1
n . . .V

k

n

∣ letxn = Tn inC↝n

(b) Stacks and evaluation contexts

Stacks
SSSSSSSSSSSSSSSSSn ∶∶= �nV 1

n . . .V
k

n

Evaluation contexts
EEEEEEEEEEEEEEEEEn ∶∶= �nV 1

n . . .V
k

n

∣ letxn = �n inC↝n

(c) Definition of defer (SSSSSSSSSSSSSSSSSn, C↝n)

defer(�nV 1
n . . .V

k

n , letxn = Tn inC↝n) = letxn = Tn in defer (�nV 1
n . . .V

k

n ,C↝n)

defer(�nV 1
n . . .V

k

n , TnW
1
n. . .W

l

n) = TnW
1
n. . .W

l

nV
1
n . . .V

k

n

(d) Operational reduction

C↝n V
1
n . . .V

k

n ⊳µ defer (�nV 1
n . . .V

k

n ,C↝n)

λxn.C↝n VnW
1
n. . .W

k

n ⊳→ defer (�nV 1
n . . .V

k

n ,C↝n[Tn/x
n])

letxn = Tn inC↝n ⊳µ̃ C↝n[Tn/x
n]

(e) Strong reduction

C↝n ⊳ C↝n
′

KKKKKKKKKKKKKKKKKnC↝n _ KKKKKKKKKKKKKKKKKnC↝n
′

Figure 1 The pure focused call-by-name λ-calculus λ→n

by ol so that the arguments V 1
N , . . . , V

l

N are discarded and we get the zl+1. There are207

two subcases depending on whether y is equal to one of the or is free in T . In the first208

case, y = xj for some j, and the stack SSSSSSSSSSSSSSSSSN = �W 1
N . . .W

k

N with W j

N = ol allows to conclude:209

SSSSSSSSSSSSSSSSSN TN ⊳∗ zl+1. In the second case, y is free in T , in which case the stack SSSSSSSSSSSSSSSSSN = �W 1
N . . .W

k

N210

and the substitution σN = yN ↦ ol allow to conclude: SSSSSSSSSSSSSSSSSN TN [σN] ⊳∗ zl+1.211

J212

2 Solvability in focused calculi213

2.1 The pure focused call-by-name λ-calculus: λ→n214

2.1.1 Syntax215

We now introduce the pure focused call-by-name λ-calculus, which we call λpure
n . It is an216

alternative concrete syntax for the intuitionistic call-by-name fragment of λµµ̃. For the pure217

call-by-name case, using λpure
n is overkill and the usual call-by-name λ-calculus λpure

N would218

be enough. We nevertheless use λpure
n to familiarize the reader with focused calculi, because219

they will helpful for the call-by-value case, and very helpful for the polarized case. There220

are two kinds of objects in the syntax given in Figure 1a: Terms and commands. If one221

ignores ⋅ , ⋅ , and the distinction between terms and commands, one gets the usual syntax.222

Note that any command C↝n can be seen as a term, and that any term Tn can be seen as a223

command Tn (which is Tn V 1
n . . .V

k

n with k = 0). The distinction between a command and a224

term is that commands are what we reduce while a term is what we substitute for a variable4.225

Commands are similar to those in abstract machines, where ⟨T ∣KKKKKKKKKKKKKKKKK⟩ represents the term KKKKKKKKKKKKKKKKKT226

where the machine is currently focused on the subterm T . Here, we write KKKKKKKKKKKKKKKKKT for ⟨T ∣KKKKKKKKKKKKKKKKK⟩,227

4 The terms by which we allow to substitute variables are called values, but in call-by-name all terms are
values.

Author: Please use the \authorrunning macro XX:7

i.e. ⋅ represents the ⟨ and ⟩, and ⋅ represents the ∣. Just like in abstract machines, the228

reductions are thought of as interaction between a term and a context, i.e. we do not have229

⟨(λx.T)U ∣�⟩ ⊳ ⟨T [U/x]∣�⟩ but ⟨(λx.T)∣�U⟩ ⊳ ⟨T [U/x]∣�U⟩. In our syntax, this means230

not having (λxn.C↝n)Un ⊳ C↝n[U/x] but instead having (λxn.C↝n)Un ⊳ C↝n[U/x].231

Some contexts will be particularly useful and are therefore given names. Evaluation232

context EEEEEEEEEEEEEEEEEn are contexts that can be combined with terms to form commands. More precisely,233

all commands are of the shape EEEEEEEEEEEEEEEEEnTn , and given any evaluation contextEEEEEEEEEEEEEEEEEn and termTn, EEEEEEEEEEEEEEEEEnTn234

is a command. A stack SSSSSSSSSSSSSSSSSn is an evaluation context that “can be moved”, in much the same235

way as a value is a term that “can be moved” in the call-by-value λ-calculus. Given a stack236

SSSSSSSSSSSSSSSSSn and a command C↝n, defer (SSSSSSSSSSSSSSSSSn,C↝n) can be though of as a smart way of plugging C↝n237

into SSSSSSSSSSSSSSSSSn. The resulting term will have the same meaning C↝nSSSSSSSSSSSSSSSSSn but may not be strictly equal238

to it. The idea is to push the stack so that it appears as late as possible in the computation,239

but before it is needed. For example in defer(�nVn, letxn = Tn inλyn. yn

), we could simply240

plug the command in the stacks and get (letxn = Tn inλyn. yn
)Vn, but the Vn is not needed241

by the let so there is no point in keeping it here, and we might as well move it further242

into the computation, which leads to letxn = Tn inλyn. yn Vn. This is very much related to243

commutative cuts5. Note that moving the stack in such a way makes the λyn. yn Vn redex244

apparent, while simply plugging would have lead to this redex being unavailable until the245

let expression is reduced. In the call-by-name case, this makes the calculus more complex246

than needed, but in the call-by-value case where some sort of commutative cuts (or other247

extension) are needed to fully evaluate open terms [2], this will prove very helpful.248

An alternative description of the syntax, closer to λµµ̃ and more suited for proofs can be249

found in Figure ??. More information on how λpure
n is related to λµµ̃ can be found in this250

draft6, and should help understand why defer (SSSSSSSSSSSSSSSSSn,C↝n) is defined this way (which is that the251

intuitionistic fragment of λµµ̃ has a stack variables ⋆, that defer (SSSSSSSSSSSSSSSSSn,C↝n) corresponds to252

C↝n[SSSSSSSSSSSSSSSSSn/ ⋆]).253

From this point on, all numbered definitions, lemmas, propositions and theorems should254

by default be understood are holding for all subsequent calculi. Proofs will be adapted as255

needed, and properties that do not hold for all calculi will state explicitly in which calculi256

they hold. The following lemmas are easily proven by induction:257

I Lemma 11. The operational reduction ⊳ is disubstitutive: If C ⊳ C ′ then for any disubsti-258

tution ϕ, C[ϕ] ⊳ C ′[ϕ].259

I Lemma 12. The strong reduction _ is disubstitutive: If C _ C ′ then for any disubstitution260

ϕ, C[ϕ] _ C ′[ϕ].261

I Lemma 13. The operational reduction ⊳ is deterministic: If Cl ⊲ C ⊳ Cr then Cl = Cr.262

2.1.2 Solvability263

Since we will often use a substitution σ and a stack SSSSSSSSSSSSSSSSS at the same time, we give this kind of264

pair a name.265

5 But is not exactly the same since it moves the whole stack at once instead of moving arguments one by
one, and it can move through several let expressions at once, while commutative cuts typically swap
two constructors locally.

6 https://xavier.montillet.ac/drafts/PPDP-2020-submission/

https://xavier.montillet.ac/drafts/PPDP-2020-submission/
https://xavier.montillet.ac/drafts/PPDP-2020-submission/
https://xavier.montillet.ac/drafts/PPDP-2020-submission/

XX:8 Solvability in a polarized calculus

C↝n ⊳ C↝n
′

C↝n ⋅⋅−⊳ C↝n
′

C↝n ⋅⋅−⊳ C↝n
′

SSSSSSSSSSSSSSSSSnλx
n.C↝n ⋅⋅−⊳ SSSSSSSSSSSSSSSSSnλx

n.C↝n
′

C↝n ⋅⋅−⊳ C↝n
′

SSSSSSSSSSSSSSSSSnC↝n ⋅⋅−⊳ SSSSSSSSSSSSSSSSSnC↝n
′

Figure 2 The ahead reduction ⋅⋅−⊳ in λpure
n

I Definition 14. A disubstitution is a pair (σ,SSSSSSSSSSSSSSSSS) consisting of a substitution σ and as stack266

SSSSSSSSSSSSSSSSS.267

Given a disubstitution ϕ = (σ,SSSSSSSSSSSSSSSSS), we will write C[ϕ] for defer (SSSSSSSSSSSSSSSSS,C[σ]).268

I Definition 15. A disubstitution ϕ is said to solve a command C, written ϕ ⊧ C, when269

there exists a variable x such that C[ϕ] ⊳∗ x . A command C is said to be solvable, written270

∃ ⊧ C, when there exists a disubstitution ϕ that solves it. A term T is said to be solvable271

when T is. An evaluation context EEEEEEEEEEEEEEEEE is said to be solvable when EEEEEEEEEEEEEEEEEx is for some variable x.272

I Lemma 16. (Fact) A sequence of strong reductions C _∗ C ′ can be factorized as C ⊳∗→∗ C ′
273

(where → = _ ∖ ⊳).274

Proving factorization _∗ ⊆ ∗(_ ∖)
∗ for an arbitrary reduction ⊆ _ is highly non-275

trivial. What makes this factorization easy to prove is that, if we use a well-chosen concrete276

syntax, the redex that ⊳ reduces is always above all other redexes. Indeed, if we use the277

abstract-machine-like syntax ⟨T ∣EEEEEEEEEEEEEEEEE⟩, then ⊳ is exactly the top-level reduction. In this syntax,278

we could use a generic theorem for higher-order rewrite systems proven by Bruggink in [7]:279

I Theorem 17 (Theorem 5.5.1 (Standardization Theorem) of [7]). In any local higher-order280

rewrite system, for every finite reduction, there exists a unique, permutation equivalent,281

standard reduction. This standard reduction is the same for permutation equivalent reductions.282

If we chose to reduce β-redexes to let-redexes instead of directly substituting, i.e. λxn.C↝n VnW
1
n. . .W

k

n ⊳→283

defer(�nV 1
n . . .V

k

n , letxn = Tn inC↝n), which does not change the calculus much, then [1]284

would most likely apply. Since we refrained both from using the abstract-machine-like syntax285

(to make the article more accessible), and from decomposing the ⊳→ reduction7, we need to286

prove factorization by hand. It is nevertheless easily provable using the parallel reduction287

(see [13, 24]). By Proposition 8, we therefore get the following (because (RedToVar) is trivial,288

and (Incl) will be once ⋅⋅−⊳ is defined in Figure 2):289

I Proposition 18. A command C is solvable if and only if it is ⋅⋅−⊳-solvable.290

2.1.3 Operational characterization of solvability291

The ahead reduction ⋅⋅−⊳ is defined in Figure 2. Note that (Incl), i.e. ⊳ ⊆ ⋅⋅−⊳ ⊆ _, holds. We292

now prove the assumptions of theorem ??.293

I Lemma 19. The ahead reduction is disubstitutive: For any disubstitution ϕ, C ⋅⋅−⊳ C ′
294

implies C[ϕ] ⋅⋅−⊳ C ′[ϕ].295

I Lemma 20. In λpure
n , the ahead reduction has the diamond property.296

7 To keep an exact correspondence with the abstract-machine-like calculus, where such a decomposition
would induce an arbitrary choice between ⟨µα.⟨v∣µ̃x.c⟩∣s⟩ and ⟨v∣µ̃x.⟨µα.c∣s⟩⟩.

Author: Please use the \authorrunning macro XX:9

The standard argument for proving that ⋅⋅−⊳-normal forms are solvable in call-by-name is297

simply to look at the normal form and immediately deduce a disubstitution that solves it.298

This would be possible here, but we use a more “small-step” approach that will be easier to299

generalize.300

I Lemma 21. In λpure
n , ⋅⋅−⊳-normal forms are solvable.301

Proof. Define ∣C↝n∣con (resp. ∣C↝n∣des) to be the number of applications (resp. abstractions)302

in C↝n. We show that if C↝n��HH⋅⋅−⊳, then there exists a disubstitution ϕn such that C↝n[ϕn] ⊳303

C↝n
′

��HH⋅⋅−⊳ such that (∣C↝n∣con , ∣C↝n∣des) >lex (∣C↝n
′∣con , ∣C↝n

′∣des) (i.e. either ∣C↝n∣con >304

∣C↝n
′∣con or ∣C↝n∣con = ∣C↝n

′∣con and ∣C↝n∣des > ∣C↝n
′∣des) by case analysis on the shape305

of C↝n = EEEEEEEEEEEEEEEEEnTn . If C↝n = λxn.C↝n
2 then ϕn = (Id,�yn) works. If C↝n = SSSSSSSSSSSSSSSSSnx

nVn then306

ϕn = (x
n ↦ λ_n. yn ,�) works.307

By iterating this property, we get C↝n[ϕn] ⊳ C↝n
′, C↝n

′[ϕ′n] ⊳ C↝n
′′ and so on. Since308

(∣C↝n∣con , ∣C↝n∣des) strictly decreases and the lexicographical ordering is well-founded, this309

sequence is necessarily finite. We can therefore take ψn = ⋅ ⋅ ⋅ ○ ϕ′n ○ ϕn, and by lemma 11,310

we get C↝n[ψn] ⊳
∗ C↝n

⋆ where C↝n
⋆

��HH⋅⋅−⊳ and (∣C↝n
⋆∣con , ∣C↝n

⋆∣des) = (0,0). The command311

C↝n
⋆ is therefore a variable yn and we are done. J312

I Theorem 22. In λpure
n , ⋅⋅−⊳ operationally characterizes solvability.313

2.2 The pure focused call-by-value λ-calculus: λ→v314

The syntax is the same except that letxv = �vV 1
v . . .V

k

v inC↝v is now a stack, and C↝v is315

no longer a value. Defer is extended by defer(letxv = �vV 1
v . . .V

k

v inC↝v, TnW
1
v . . .W

l

v) =316

letxv = TnW
1
v . . .W

l

vV
1
v . . .V

k

v inC↝v and defer(letxv = �vV 1
v . . .V

k

v inC↝v, letxn = TnW
1
v . . .W

l

v inC↝n) =317

letxn = TnW
1
v . . .W

l

v in defer (letxv = �vV 1
v . . .V

k

v inC↝v,C↝n). Reductions ⊳ and _ are re-318

stricted as usual, i.e. if some term is going to be substituted, then it has to be a value. The319

ahead reduction is extended by an additional rule:320

C↝v ⋅⋅−⊳ C↝v
′

letxv
= SSSSSSSSSSSSSSSSSvTv inC↝v ⋅⋅−⊳ letxv

= SSSSSSSSSSSSSSSSSvTv inC↝v
′

321

The commutations rules are handled by the ⊳µ reduction. All the lemma are proved using322

the same techniques except (NFSol), which changes slightly because we have to generalize323

C↝n[ϕn] ⊳ C↝n
′

��HH⋅⋅−⊳ to C↝v[ϕv] ⊳⋅⋅−⊳∗ C↝v
′

��HH⋅⋅−⊳. Indeed, the disubstitution ϕv = (x
v ↦324

λ_v. yv ,�) maybe unblock several redexes, for example in C↝v = let yv = xv Vv in let zv =325

xv Wv in I.326

I Theorem 23. In λpure
v , ⋅⋅−⊳ operationally characterizes solvability.327

3 Pure polarized solvability328

3.1 Calculus329

3.1.1 Definition and properties330

We not introduce a pure focused λ-calculus that subsumes both call-by-name and call-by-331

value. Just like the pure call-by-name and call-by-value focused calculi described earlier, it is332

another syntax for the intuitionistic fragment of an abstract-machine-like calculus: LJηp [8]333

XX:10 Solvability in a polarized calculus

or Lint of [20]. Those calculi avoid the Lafont critical pair [12] C2[C1
/x] ⊲ letx = C1 inC2 ⊳334

defer (letx = � inC2,C1) by adding polarities: + and − . The − polarity corresponds to335

call-by-name and only allows the reduction C↝−2[C↝−
1 /x] ⊲ letx− = C↝−1 inC↝−2, while the +336

polarity corresponds to call-by-value and only allows the right reduction letx+ = C↝+1 inC↝+2 ⊳337

defer (letx+ = �+ inC↝+2,C↝+
1). This ensures that ⊳ remains deterministic.338

The previously-mentionned calculi were build to study well-typed terms in a classical (i.e.339

not intuitionistic) setting, and are therefore not perfectly suited for the study of intuitionistic340

untyped computations. We therefore slightly modify them. We start by taking well-polarized341

terms, i.e. well-typed terms for the type system where all judgements T ∶ Aε are replaced342

by T ∶ ε. We then restrict to the intuitionistic fragment. Finally, we notice that the set of343

well-polarized terms is context-free8, i.e. there exists a context-free grammar that generates344

them, and therefore that they can be taken as syntax. The resulting syntax can be found in345

Figure 4a. We will motivate the restriction to well-polarized terms later.346

V+ V−

T+

⊆

unboxp

freeze
p

Figure 3 Shifts

In this calculus, positive values V+ can be though of as being347

results, negative term T− and negative-returning commands348

C↝− as being computations that will evaluate only if their349

result is needed, and positive terms T+ and positive-returning350

commands C↝+ as computations that will evaluate immediately351

if given the change. Shifts, which allows both polarities to352

interact, are described in Figure 3. In order to remember the353

domain and codomain of each shift, one can notice that both354

shifts inject terms of one polarity into values of the other polarity, and that the freezep shift355

goes from positive to negative just like with temperatures. The first shift, freezep(C↝+),356

represents a frozen / delayed computation. It is very commonly used in call-by-value357

programming languages to simulate call-by-name: freezep(C↝+) can be though of as being358

λ(). T+, and unfreezep(V−) as being V−() (where () is the unique inhabitant of the unit359

type). This amounts to representing a delayed computation of type A as a term of type360

unit→A. The second shift, boxp(T−), represents the term T− “marked” as being a result. The361

corresponding match forces evaluation to a result. By “marking” values and forcing evaluation362

to “marked” terms before substituting, one can simulate call-by-value in call-by-name. This363

is somewhat dual to the first shift: freezep(T+) stops evaluation and unfreezep(V−) resumes364

it, while match↝ε T+ with [boxp(x−).C↝ε] forces evaluation until it is stopped by a boxp(T−).365

Through the lens of abstract machines, where a term and a context interact, the shift from366

T+ to freezep(T+) can be though of as giving more power to the context that can now decide367

when to evaluate T+, while the shift from letx+ = T+ inC↝ε to match↝ε T+ with [boxp(x−).C↝ε]368

can be though of a giving more power to the term that can now decide to return before369

fully evaluating by boxing the remaining computation. For a detailed description of the370

relationship between call-by-name, call-by-value, shift, and call-by-push-value, we refer the371

reader to this draft9.372

An evaluation context is annotated by two polarities, e.g. EEEEEEEEEEEEEEEEEε1↝ε2 , where the first one373

ε1 is the polarity of the input, i.e. of the hole �ε1 , and the second ε2 is the polarity of374

the output, i.e. of EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 . The fact that EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 is always a command C↝ε2 is not375

immediately obvious and needs to be proven. In fact, all commands are of this shape. This376

should not be surprising since we built this calculus as an alternative concrete syntax of an377

8 The reason for this is that instead of having to remember a type, which is an unbounded quantity of
information, one only has to remember a polarity, which is a bounded quantity of information.

9 https://xavier.montillet.ac/drafts/PPDP-2020-submission/

https://xavier.montillet.ac/drafts/PPDP-2020-submission/

Author: Please use the \authorrunning macro XX:11

(a) Syntax

Positive values +-returning command with a stack
V+,W+ ∶∶= x+ D↝+ ∶∶= T+ ∣ let↝+ x+ = T+ inC↝+

∣ boxp(V−) ∣ match↝+ T+ with [boxp(x−).C↝+]

∣ unfreezep(D↝−)

Positive terms +-returning command
T+, U+ ∶∶= V+ ∣ C↝+ C↝+ ∶∶= D↝+ ∣ let↝+ x− = T− inC↝+

Negative values / terms --returning command with a stack
V−,W−, T−, U− ∶∶= x− ∣ C↝− D↝− ∶∶= T−

∣ λx+.C↝− ∣ D↝−V+
∣ freezep(C↝+) ∣ let↝+ x+ = T+ inC↝−

∣ match↝− T+ with [boxp(x+).C↝−]

--returning command
C↝− ∶∶= C↝− ∣ let↝− x− = T− inC↝−

(b) Stacks and evaluation contexts

+-returning positive stacks / evaluation contexts --returning positive stacks / evaluation contexts
SSSSSSSSSSSSSSSSS+↝+,EEEEEEEEEEEEEEEEE+↝+ ∶∶= �+ ∣ let↝+ x+ = �+ inC↝+ SSSSSSSSSSSSSSSSS+↝−,EEEEEEEEEEEEEEEEE+↝− ∶∶= let↝− x+ = �+ inC↝−

∣ match↝+�+ with [boxp(x+).C↝+] ∣ match↝−�+ with [boxp(x+).C↝−]

--returning positive stacks +-returning negative stacks
SSSSSSSSSSSSSSSSS−↝− ∶∶= �− SSSSSSSSSSSSSSSSS−↝+ ∶∶=

∣ SSSSSSSSSSSSSSSSS−↝−�−V+ ∣

∣ SSSSSSSSSSSSSSSSS+↝−unfreezep(�−) ∣ SSSSSSSSSSSSSSSSS+↝+unfreezep(�−)
--returning positive evaluation context --returning positive evaluation context

EEEEEEEEEEEEEEEEE−↝− ∶∶= SSSSSSSSSSSSSSSSS−↝− ∣ let↝− x− = �− inC↝− EEEEEEEEEEEEEEEEE−↝+ ∶∶= SSSSSSSSSSSSSSSSS−↝+ ∣ let↝+ x− = �− inC↝+
(c) Alternative description of commands

D↝+ ∶∶= SSSSSSSSSSSSSSSSS+↝+T+ ∣ SSSSSSSSSSSSSSSSS−↝+T− D↝− ∶∶= SSSSSSSSSSSSSSSSS+↝−T+ ∣ SSSSSSSSSSSSSSSSS−↝−T−

C↝+ ∶∶= EEEEEEEEEEEEEEEEE+↝+T+ ∣ EEEEEEEEEEEEEEEEE−↝+T− C↝− ∶∶= EEEEEEEEEEEEEEEEE+↝−T+ ∣ EEEEEEEEEEEEEEEEE−↝−T−

defer(SSSSSSSSSSSSSSSSSε2 ,SSSSSSSSSSSSSSSSS
′

ε1↝ε2
C↝ε1) = defer(SSSSSSSSSSSSSSSSSε2 ,SSSSSSSSSSSSSSSSS

′

ε1↝ε2)C↝ε1

defer (SSSSSSSSSSSSSSSSSε2 , let↝ε2 xε1 = �ε1 inC↝ε2) = let↝ε2 xε1 = �ε1 in defer (SSSSSSSSSSSSSSSSSε2 ,C↝ε2)

defer (SSSSSSSSSSSSSSSSSε,match↝ε�+ with [boxp
(x−).C↝ε]) = match↝ε�+ with [boxp

(x−).defer (SSSSSSSSSSSSSSSSSε,C↝ε)]

defer (SSSSSSSSSSSSSSSSSε,SSSSSSSSSSSSSSSSS−↝ε�−V+) = defer (SSSSSSSSSSSSSSSSSε,SSSSSSSSSSSSSSSSS−↝ε)�−V+

defer(SSSSSSSSSSSSSSSSSε,SSSSSSSSSSSSSSSSS+↝εunfreezep
(�+)) = defer (SSSSSSSSSSSSSSSSSε,SSSSSSSSSSSSSSSSS+↝ε)unfreezep

(�+)

(d) Operational reduction

SSSSSSSSSSSSSSSSSεC↝ε ⊳µ defer (SSSSSSSSSSSSSSSSSε,C↝ε)
let↝ε1 xε2 = Vε2 inC↝ε1 ⊳µ̃ C↝ε1[Vε2/x

ε2]

match↝ε boxp
(V−) with [boxp(x−).C↝ε] ⊳⇓ C↝+[V−/x

−]

SSSSSSSSSSSSSSSSS−λx+.C↝− V+ ⊳→ defer (SSSSSSSSSSSSSSSSS−,C↝−[V+/x+])
SSSSSSSSSSSSSSSSS+unfreezep

(freezep
(C↝+)) ⊳⇑ defer (SSSSSSSSSSSSSSSSS+,C↝+)

(e) Notations

unboxp
(SSSSSSSSSSSSSSSSSε↝+Tε) = match↝− SSSSSSSSSSSSSSSSSε↝+Tε with [boxp(x−).x−]

SSSSSSSSSSSSSSSSS+,EEEEEEEEEEEEEEEEE+ ∶∶= SSSSSSSSSSSSSSSSS+↝+ ∣ SSSSSSSSSSSSSSSSS+↝− SSSSSSSSSSSSSSSSS− ∶∶= SSSSSSSSSSSSSSSSS−↝+ ∣ SSSSSSSSSSSSSSSSS−↝− EEEEEEEEEEEEEEEEE− ∶∶= EEEEEEEEEEEEEEEEE−↝+ ∣ EEEEEEEEEEEEEEEEE−↝−

Figure 4 The pure focused polarized λ-calculus λpure
p

XX:12 Solvability in a polarized calculus

?xN? = x−

?λxN . TN? = λy+.match↝− y+ with[boxp(x−).?TN?]
?TNUN? = TN boxp(UN)

?xV ?val = x−

?λxV . TN?val = λy+.match↝− y+ with[boxp(x−).unboxp(unfreezep(?TN?))]
?VV ?term = freezep

(boxp
(?VV ?val))

?TV UV ? = unboxp(unfreezep(?TV ?term))boxp(?TN?term)

Figure 5 Encoding call-by-name and call-by-value into λp

abstract-machine-like calculus where commands of the shape ⟨Tε1 ∣EEEEEEEEEEEEEEEEEε1↝ε2⟩ are represented by378

EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 , and this property simply states that our alternative syntax is indeed equivalent.379

We use this decomposition very often in proofs.380

I Lemma 24. For any evaluation context EEEEEEEEEEEEEEEEEε1↝ε2 and term Tε1 , EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 is a command381

C↝ε2 , and any command C↝ε2 has a unique decomposition of the shape EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 .382

3.1.2 Encoding call-by-name and call-by-value383

Translations from the call-by-name and call-by-value λ-calculus are described in Figure 5.384

The encoding of call-by-name corresponds to decomposing the implication call-by-name385

function space A⇒N B as !A⇒p B. We therefore unbox the argument given to the function,386

and box the argument in the application. The encoding of call-by-value is more tricky. There387

is another encoding that sends call-by-value terms to positive terms (which should correspond388

to decomposing A ⇒V B as !(A ⇒p B)), but it fails to preserve unsolvability so we use389

a more complicated one that should correspond to !A⇒p!B. Some intuition on why this390

encoding works is given in this draft10. For both translations (once we take _µ-normal391

forms) we get that both reductions send ⊳ to ⊳+, and preserve both substitutions and stacks,392

and hence solvability. Proving directly that they preserve unsolvability is hard because not393

all disubstitutions in the target are in the image of the translation. Fortunately, we have394

operational characterizations, so it suffices to show that ⋅⋅−⊳ is sent to ⋅⋅−⊳+ through the395

translation.396

I Proposition 25. Both translations preserve solvability and unsolvability.397

3.1.3 Normal forms and clashes398

Looking at ⊳-normal commands, and using the decomposition EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 , one gets the399

following:400

I Lemma 26. In λpure
p , an ⊳-normal command C↝ε is of one of the following shapes:Vε ,401

SSSSSSSSSSSSSSSSSεxε , SSSSSSSSSSSSSSSSS− freezep
(C↝+)V+ or SSSSSSSSSSSSSSSSS+unfreezep

(λx
+.C↝−) .402

In an abstract-machine-like syntax this corresponds to ⟨Vε∣�ε⟩, ⟨xε∣SSSSSSSSSSSSSSSSSε⟩, ⟨freezep(C↝+)∣SSSSSSSSSSSSSSSSS−�−V+ ⟩403

and ⟨λx+.C↝−∣SSSSSSSSSSSSSSSSS+unfreezep(�−)⟩. The first two are expected since we consider Vε to be a404

10 https://xavier.montillet.ac/drafts/PPDP-2020-submission/

https://xavier.montillet.ac/drafts/PPDP-2020-submission/

Author: Please use the \authorrunning macro XX:13

result, and SSSSSSSSSSSSSSSSSεxε is an open term waiting for a substitution to continue evaluating. The last405

two are interaction between two constructors that were not meant to interact. We will call406

such terms clashes. We give a more general definition of clash:407

I Definition 27. A command C↝ε is said to be a clash when for all disubstitution ϕε, C↝ε[ϕε]408

is ⊳-normal.409

I Lemma 28. In λpure
p , clashes are exactly commands of the shapeSSSSSSSSSSSSSSSSS− freezep

(C↝+)V+ or410

SSSSSSSSSSSSSSSSS+unfreezep
(λx

+.C↝−) .411

While clashes are easily characterized, this is much harder for commands that will clash no412

matter how they are used, for example KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2Tε where KKKKKKKKKKKKKKKKK1 = let↝ε_+ = unfreezep(x−) in�ε413

and KKKKKKKKKKKKKKKKK2 = let↝ε_+ = unfreezep(x− V +) in�ε (where the variable being named _ means that it414

is not used). The intuition is that if x− is send to freezep(U+) then x− V + will clash, and415

if x− is send to λx+.C↝− then unfreezep(x−) will clash. Since both of those terms will be416

evaluated while evaluating KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2Tε , KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2Tε is bound to clash (or diverge). We will call417

such problematic commands implicit clashes. They will make the study of solvability in this418

calculus more complicated.419

3.1.4 The bi-typed variant420

With the intuition that freezep(T+) is λ(). T+, and unfreezep(V−) is V−(), we remove both421

λx+.C↝− and freezep(T+), and instead add λ<x+.C↝−
1∣ freezep .C↝+

2> with the following422

reductions:423

SSSSSSSSSSSSSSSSS−λ<x+.C↝−
1∣ freezep .C↝+

2>V+ ⊳→ defer (SSSSSSSSSSSSSSSSS−,C↝−1[V+/x
+])

SSSSSSSSSSSSSSSSS+unfreezep(λ<x+.C↝−
1∣ freezep .C↝+

2>) ⊳⇑ defer (SSSSSSSSSSSSSSSSS+,C↝+2)
424

We call the resulting calculus λPNp . The intuition for this calculus comes from two things.425

First, models of the untyped λ-calculus correspond to typed models with a unique type, which426

justifies the bi-typed intuition because there are now two types, one per polarity. Secondly,427

in dynamically typed programming languages, it is possible to have a pattern match that428

ranges over values of disjoint types (for example integers and booleans), though this is often429

expressed as a match on the type followed by a match on the value in the type. In this430

calculus, if we had pattern-matchable pairs (V+⊗W+), this would mean having a match431

match↝ε2 SSSSSSSSSSSSSSSSSε1 Tε1 with [boxp(x−).C↝ε
1∣(y+⊗ z+).C↝ε

2] instead of the match for boxp(V−) and432

a separate match for pairs. Although it may not be completely clear in the λ-calculus-like433

syntax we gave, in thecorresponding abstract-machine-like syntax the idea of having a big434

pattern-match that ranges over all possible positive value constructors is dual to what we435

did by introducing λ<x+.C↝−
1∣ freezep .C↝+

2>. Having a big patterm-match means that436

positive stacks can handle any positive value they interact with, and having a “big λ” means437

that negative values can handle any negative stack they interact with.438

I Lemma 29. In λPNp , there are no clashes , and ⊳-normal command are of one of the439

following shapes: Vε or SSSSSSSSSSSSSSSSSεxε .440

3.2 Solvability441

I Example 30. Any variable xε is solvable. The empty stacks �ε are solvable.442

I Lemma 31. All clashes are unsolvable.443

XX:14 Solvability in a polarized calculus

C ⊳ C ′

C ⋅⋅−⊳ C ′

T+ ⋅⋅−⊳ T
′

+

SSSSSSSSSSSSSSSSS+T+ ⋅⋅−⊳ SSSSSSSSSSSSSSSSS+T ′

+

T+
SSSSSSSSSSSSSSSSS+ ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′+

SSSSSSSSSSSSSSSSS+V+ ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′+V+ ′
V− ⋅⋅−⊳ V

′

−

SSSSSSSSSSSSSSSSS−V− ⋅⋅−⊳ SSSSSSSSSSSSSSSSS−V ′

−

EEEEEEEEEEEEEEEEE− ⋅⋅−⊳ EEEEEEEEEEEEEEEEE′−
EEEEEEEEEEEEEEEEE−V− ⋅⋅−⊳ EEEEEEEEEEEEEEEEE′−V−

EEEEEEEEEEEEEEEEE−

C↝ε ⋅⋅−⊳ C↝ε
′

as_term (C↝ε) ⋅⋅−⊳ as_term (C↝ε
′)
µ

C↝−
1
⋅⋅−⊳ C↝−

3 C↝−
2
⋅⋅−⊳ C↝−

4

λ<x+.C↝−
1∣ freezep .C↝−

2> ⋅⋅−⊳ λ<x+.C↝−
3∣ freezep .C↝−

4>
SSSSSSSSSSSSSSSSS− ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′−

SSSSSSSSSSSSSSSSS−�−V+ ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′−�−V+

SSSSSSSSSSSSSSSSS+ ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′+
SSSSSSSSSSSSSSSSS+unfreezep

(�−) ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′+unfreezep
(�−)

C↝ε2 ⋅⋅−⊳ C↝ε2
′

let↝ε2 xε1 = �ε1 inC↝ε2 ⋅⋅−⊳ let↝ε2 xε1 = �ε1 inC↝ε2
′
µ̃

C↝ε ⋅⋅−⊳ C↝ε
′

match↝ε�+ with [boxp
(x−).C↝ε] ⋅⋅−⊳ match↝ε�+ with [boxp

(x−).C↝ε
′]

Figure 6

For positive terms, solvability can be replaced by a simpler notion, potential valuability,444

introduced by Paolini and Rocca in [22]:445

I Definition 32. A command C↝ε is potentially valuable is there exists a substitution σ such446

that C↝ε[σ] ⊳∗ V ε . A term Tε is potentially valuable if Tε is.447

I Lemma 33. Solvable commands are potentially valuable.448

I Lemma 34. Any potentially valuable positive term T+ is solvable.449

In λpure
p , operationally characterizing solvability may be possible but would most likely involve450

proving some kind of separation theorem. Indeed, if we take KKKKKKKKKKKKKKKKK1 = let↝ε_+ = unfreezep(x− V 1
+
) in�451

and KKKKKKKKKKKKKKKKK2 = let↝ε_+ = unfreezep(x− V 2
+
W+) in� then C↝ε = KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2 yε can be _-normal, while it452

being solvable depends on the relationship between V 1
+
and V 2

+
. If they are equal, C↝ε is unsolv-453

able because whatever function we substitute x− by will need to return both a frozen computa-454

tion and a function when given the same input. However, if we take V 1
+
= boxp

(freezep
(V

3
+))455

and V 2
+
= boxp

(λ_
+. freezep

(V
4
+)), then ϕ = (x

− ↦ λz+.unboxp(z+),�ε) solves it. If V 1
+

456

and V 2
+
are separable (i.e. there are disubstitutions that send them to distinct variables),457

then C↝ε is also solvable. We do not operationally characterize solvability in λpure
p in this458

article.459

3.3 Operational characterization of solvability in λPNp460

3.3.1 The ahead reduction461

The ahead reduction is given inFigure 6. Note that all commands are either of the shape462

SSSSSSSSSSSSSSSSS+T+ or EEEEEEEEEEEEEEEEE−V+ . Using this, we define “having the control” as follows:463

Author: Please use the \authorrunning macro XX:15

I Definition 35. In a command SSSSSSSSSSSSSSSSS+T+ , we say that SSSSSSSSSSSSSSSSS+ has the control if T+ is a value, and464

that T+ has it otherwise. In a command EEEEEEEEEEEEEEEEE−V− , we say that V− has the control if EEEEEEEEEEEEEEEEE− is a465

stack, and that V− has it otherwise.466

The intuition of is that all operational reductions are of the shape EEEEEEEEEEEEEEEEEεTε ⊳ C[ϕ], where C is467

a subcommand of either Tε or EEEEEEEEEEEEEEEEEε. In fact, any operational reduction after a disubstitution ψ468

has a similar property: EEEEEEEEEEEEEEEEEεTε [ψ] ⊳ C[ϕ] where C is a subcommand of either Tε or EEEEEEEEEEEEEEEEEε. The469

side of the command (which we call side because we are thinking of ⟨Tε∣EEEEEEEEEEEEEEEEEε⟩) that has the470

control is the one that contains this subcommand C and we can know which one it is before471

knowing ψ! The intuition of where to reduce is then the following:472

“The ahead reduction can always reduce the side that has the control, and can reduce the473

other side only if it can not be discarded.”474

Any reduction that follows this has a good chance of operationally characterizing solvability475

(in the absence of clashes, which need to be handled separately). Note that all V+ are ⋅⋅−⊳Bad-476

normal, and this choice was made because positive values can be discarded. Also note that477

in a command let↝ε x− = T− inC↝ε, you can not reduce the T−, again because it could be478

discarded. In a classical version on this calculus, one would be able to build terms magic (C)479

that discard stacks and then compute some other command C, i.e. SSSSSSSSSSSSSSSSSmagic (C) ⊳ C, and480

negative stacks that do not have the control therefore would be ⋅⋅−⊳Bad-normal11. Here, we481

are in an intuitionistic calculus, so stacks are never discarded, and we can therefore allow482

reducing them even when they do not have the control. In fact, not only can they not be483

discarded, but when moved by defer, they will be moved to somewhere where ⋅⋅−⊳Bad can484

reach them:485

I Lemma 36. If SSSSSSSSSSSSSSSSSε ⋅⋅−⊳ SSSSSSSSSSSSSSSSS′ε then defer (SSSSSSSSSSSSSSSSSε,C↝ε) ⋅⋅−⊳ defer (SSSSSSSSSSSSSSSSS′ε,C↝ε).486

Our syntax does not distinguish between a command C↝ε and the same command seen as487

a term as_term (C↝ε), but we made that coercion explicit in the rules. The intuition of488

why we reduce both commands in parallel in λ<x+.C↝−
1∣ freezep .C↝−

2> is that we want489

to preserver (Disubst) and (UTB). In λ<x+.C↝−
1∣ freezep .C↝−

2> , if ⋅⋅−⊳ only reduced one490

side, by disubstitutivity, we could defer a stack that interacts with the other side, so that491

a ⊳ step could erase the ⋅⋅−⊳ reduction step, and this would break (UTB). We now prove492

that ⋅⋅−⊳ operationally characterizes solvability. The proof of (NFSol) just needs ∣⋅∣con to be493

extended to count applications, unfreeze and matches, and ∣⋅∣des to count both λ-abstractions,494

freeze and box. The idea is that ∣⋅∣con counts value constructors, while ∣⋅∣des counts stack495

contructors. Note that if your disubstitution is a stack, after reduction, there will be one less496

value constructor. If the disubstitutions is a substitution however, it will add an arbitrary497

number of value constructors, while removing only one stack constructor. This is why we498

use (∣⋅∣des , ∣⋅∣con) and not (∣⋅∣con , ∣⋅∣des).499

The proof of (UTB) uses a somewhat unexpected property: ⊲−⋅⋅⋅⋅−⊳ is a bisimulation12500

for ⋅⋅−⊳, i.e. if Cl ⊲−⋅⋅⋅⋅−⊳⋅⋅−⊳ Crr then Cl ⊲−⋅⋅⊲−⋅⋅⋅⋅−⊳ Crr. This property arises naturally501

when trying to prove that the synchronized product13 of two abstract rewriting systems that502

have the (DP) has (UTB).503

11Which is expected because SSSSSSSSSSSSSSSSS− x− would be solved by x− ↦ magic(yε)
12Usually, the definition of bisimulation has two parts, but since ⊲−⋅⋅⋅⋅−⊳ is symmetric, we do not need

the second one.
13The synchronized product of (A1, 1) and (A2, 2) is (A1 ×A2, 3) where (a1, a2) 3 (a′1, a′2) is

defined as a1 1 a′1 and a2 2 a′2.

XX:16 REFERENCES

I Theorem 37. In λPNp , ⋅⋅−⊳ operationally characterizes solvability.504

Conclusion505

While based on calculi geared towards typing and classical logic, the calculus LPNp has shown506

to be useful to study solvability, and given how regular η-conversion rules look in it, we believe507

that it will prove very useful for the study of observational equivalence too. The alternative508

λ-calculus-like syntax λPNp , however has proven hard to work with (for us), because the509

underlinements and defer, while necessary to faithfully represent LPNp , are very easy to forget510

or misplace. We hope that it nevertheless served its purpose: making LPNp more accessible.511

The ideas that we would like the reader to take home from this article are: the notion of512

“having the control”; the use of disubstitutions; the idea of making the calculus dynamically513

typed / bi-typed calculi to remove clashes; and the idea of splitting the proof of the operational514

characterization on solvability into two very distinct parts.515

References516

[1] Beniamino Accattoli. “An Abstract Factorization Theorem for Explicit Substitutions”.517

In: 23rd International Conference on Rewriting Techniques and Applications (RTA’12)518

, RTA 2012, May 28 - June 2, 2012, Nagoya, Japan. 2012, pp. 6–21. doi: 10.4230/519

LIPIcs.RTA.2012.6. url: https://doi.org/10.4230/LIPIcs.RTA.2012.6.520

[2] Beniamino Accattoli and Giulio Guerrieri. “Open Call-by-Value (Extended Version)”.521

In: CoRR abs/1609.00322 (2016). url: http://arxiv.org/abs/1609.00322.522

[3] Beniamino Accattoli and Luca Paolini. “Call-by-Value Solvability, Revisited”. In:523

Functional and Logic Programming - 11th International Symposium, FLOPS 2012,524

Kobe, Japan, May 23-25, 2012. Proceedings. 2012, pp. 4–16. doi: 10.1007/978-3-642-525

29822-6_4. url: http://dx.doi.org/10.1007/978-3-642-29822-6_4.526

[4] Beniamino Accattoli and Luca Paolini. “Call-by-Value Solvability, Revisited”. In:527

Functional and Logic Programming. Ed. by Tom Schrijvers and Peter Thiemann. Berlin,528

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 4–16. isbn: 978-3-642-29822-6.529

[5] H.P. Barendregt. The lambda calculus: its syntax and semantics. Studies in logic and530

the foundations of mathematics. North-Holland, 1984. isbn: 9780444867483. url:531

https://books.google.fr/books?id=eMtTAAAAYAAJ.532

[6] Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics. Vol. 103.533

Studies in logic and the foundations of mathematics. North-Holland, 1985. isbn: 978-0-534

444-86748-3.535

[7] Harrie Jan Sander Bruggink. “Equivalence of Reductions in Higher-Order Rewriting”.536

PhD thesis. Utrecht University, 2008. isbn: 978-90-393-4817-8. url: https://dspace.537

library.uu.nl:8443/bitstream/handle/1874/27575/bruggink.pdf?sequence=1.538

[8] Pierre-Louis Curien, Marcelo P. Fiore, and Guillaume Munch-Maccagnoni. “A theory539

of effects and resources: adjunction models and polarised calculi”. In: Proceedings of540

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming541

Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. Ed. by542

Rastislav Bodik and Rupak Majumdar. ACM, 2016, pp. 44–56. isbn: 978-1-4503-3549-2.543

doi: 10.1145/2837614.2837652. url: http://doi.acm.org/10.1145/2837614.544

2837652.545

https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.4230/LIPIcs.RTA.2012.6
https://doi.org/10.4230/LIPIcs.RTA.2012.6
http://arxiv.org/abs/1609.00322
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1007/978-3-642-29822-6_4
http://dx.doi.org/10.1007/978-3-642-29822-6_4
https://books.google.fr/books?id=eMtTAAAAYAAJ
https://dspace.library.uu.nl:8443/bitstream/handle/1874/27575/bruggink.pdf?sequence=1
https://dspace.library.uu.nl:8443/bitstream/handle/1874/27575/bruggink.pdf?sequence=1
https://dspace.library.uu.nl:8443/bitstream/handle/1874/27575/bruggink.pdf?sequence=1
https://doi.org/10.1145/2837614.2837652
http://doi.acm.org/10.1145/2837614.2837652
http://doi.acm.org/10.1145/2837614.2837652
http://doi.acm.org/10.1145/2837614.2837652

REFERENCES XX:17

[9] Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. “A Theory546

of Effects and Resources: Adjunction Models and Polarised Calculi”. In: Proc. POPL.547

2016. doi: 10.1145/2837614.2837652.548

[10] Pierre-Louis Curien and Hugo Herbelin. “The duality of computation”. In: Proceedings549

of the Fifth ACM SIGPLAN International Conference on Functional Programming550

(ICFP ’00), Montreal, Canada, September 18-21, 2000. SIGPLAN Notices 35(9). ACM,551

2000, pp. 233–243. isbn: 1-58113-202-6. doi: http://doi.acm.org/10.1145/351240.552

351262.553

[11] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. “A new deconstructive554

logic: linear logic”. In: Journal of Symbolic Logic 62.3 (1997), pp. 755–807. doi:555

10.2307/2275572.556

[12] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. USA: Cambridge557

University Press, 1989. isbn: 0521371813.558

[13] Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. “Standardization and559

Conservativity of a Refined Call-by-Value lambda-Calculus”. In: CoRR abs/1611.07255560

(2016). url: http://arxiv.org/abs/1611.07255.561

[14] Zurab Khasidashvili and Mizuhito Ogawa. “Perpetuality and Uniform Normalization”.562

In: Algebraic and Logic Programming, 6th International Joint Conference, ALP ’97563

- HOA ’97, Southampton, U.K., Spetember 3-5, 1997, Proceedings. Ed. by Michael564

Hanus, Jan Heering, and Karl Meinke. Vol. 1298. Lecture Notes in Computer Science.565

Springer, 1997, pp. 240–255. isbn: 3-540-63459-2. doi: 10.1007/BFb0027014. url:566

https://doi.org/10.1007/BFb0027014.567

[15] Jean-Louis Krivine. “A call-by-name lambda-calculus machine”. In: Higher Order Sym-568

bolic Computation 20 (2007), pp. 199–207. url: https://hal.archives-ouvertes.569

fr/hal-00154508.570

[16] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Vol. 2.571

Semantics Structures in Computation. Springer, 2004. isbn: 1-4020-1730-8.572

[17] Paul Blain Levy. “Call-by-push-value: Decomposing call-by-value and call-by-name”. In:573

Higher-Order and Symbolic Computation 19.4 (Dec. 2006), pp. 377–414. issn: 1573-0557.574

url: https://doi.org/10.1007/s10990-006-0480-6.575

[18] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In: Proceedings of576

the Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific577

Grove, California, USA, June 5-8, 1989. IEEE Computer Society, 1989, pp. 14–23. doi:578

10.1109/LICS.1989.39155. url: https://doi.org/10.1109/LICS.1989.39155.579

[19] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1 (1991),580

pp. 55–92. doi: 10.1016/0890-5401(91)90052-4. url: https://doi.org/10.1016/581

0890-5401(91)90052-4.582

[20] Guillaume Munch-Maccagnoni and Gabriel Scherer. “Polarised Intermediate Representa-583

tion of Lambda Calculus with Sums”. In: 30th Annual ACM/IEEE Symposium on Logic584

in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015. 2015, pp. 127–140.585

doi: 10.1109/LICS.2015.22. url: http://dx.doi.org/10.1109/LICS.2015.22.586

[21] Luca Paolini and Simona Ronchi Della Rocca. “Call-by-value Solvability”. In: ITA 33.6587

(1999), pp. 507–534. doi: 10.1051/ita:1999130. url: http://dx.doi.org/10.1051/588

ita:1999130.589

[22] Luca Paolini and Simona Ronchi Della Rocca. “Call-by-value Solvability”. In: RAIRO -590

Theoretical Informatics and Applications 33.6 (1999), pp. 507–534. doi: 10.1051/ita:591

1999130.592

https://doi.org/10.1145/2837614.2837652
https://doi.org/http://doi.acm.org/10.1145/351240.351262
https://doi.org/http://doi.acm.org/10.1145/351240.351262
https://doi.org/http://doi.acm.org/10.1145/351240.351262
https://doi.org/10.2307/2275572
http://arxiv.org/abs/1611.07255
https://doi.org/10.1007/BFb0027014
https://doi.org/10.1007/BFb0027014
https://hal.archives-ouvertes.fr/hal-00154508
https://hal.archives-ouvertes.fr/hal-00154508
https://hal.archives-ouvertes.fr/hal-00154508
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1109/LICS.2015.22
http://dx.doi.org/10.1109/LICS.2015.22
https://doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130

XX:18 REFERENCES

[23] Michel Parigot. “λµ-Calculus: An algorithmic interpretation of classical natural de-593

duction”. In: Logic Programming and Automated Reasoning. Ed. by Andrei Voronkov.594

Berlin, Heidelberg: Springer Berlin Heidelberg, 1992, pp. 190–201. isbn: 978-3-540-595

47279-7.596

[24] Masako Takahashi. “Parallel Reductions in lambda-Calculus”. In: Inf. Comput. 118.1597

(1995), pp. 120–127. doi: 10.1006/inco.1995.1057. url: https://doi.org/10.598

1006/inco.1995.1057.599

[25] Christopher P. Wadsworth. “The Relation Between Computational and Denotational600

Properties for Scott’s Dinfty-Models of the Lambda-Calculus”. In: SIAM J. Comput.601

5.3 (1976), pp. 488–521. doi: 10.1137/0205036. url: https://doi.org/10.1137/602

0205036.603

604

https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036

REFERENCES XX:19

(a) Syntax

Terms / values:
TN , UN , VN ,WN ∶∶= xN ∣ λxN . TN ∣ TNUN

(b) Top-level reduction ≻

(λxn. TN)UN ≻ TN [UN /xN]

(c) Contexts

Stacks / operational contexts:
SSSSSSSSSSSSSSSSSN ∶∶= �V 1

N . . .V
k

N

Head contexts:
HHHHHHHHHHHHHHHHHN ∶∶= (λx1

Nλxk
N .�)V 1

N . . .V
l

N

Ahead contexts:
AAAAAAAAAAAAAAAAAN ∶∶= � ∣ AAAAAAAAAAAAAAAAANVN ∣ λx

N .AAAAAAAAAAAAAAAAAN

(Strong) contexts:
KKKKKKKKKKKKKKKKKN ∶∶= � ∣ λxN .KKKKKKKKKKKKKKKKKN ∣ TTTTTTTTTTTTTTTTTNUN ∣ TNUUUUUUUUUUUUUUUUUN

(d) Reductions

Operational / weak head reduction ⊳:
TN ≻ T ′N

SSSSSSSSSSSSSSSSSN TN ⊳ SSSSSSSSSSSSSSSSSN T ′

N

Head reduction ⋅⋅−⊳hd:
TN ≻ T ′N

HHHHHHHHHHHHHHHHHN TN ⋅⋅−⊳hd HHHHHHHHHHHHHHHHHN T
′

N

Ahead reduction ⋅⋅−⊳:
TN ≻ T ′N

AAAAAAAAAAAAAAAAAN TN ⋅⋅−⊳ AAAAAAAAAAAAAAAAAN T
′

N

Strong reduction _:
TN ≻ T ′N

KKKKKKKKKKKKKKKKKN TN _ KKKKKKKKKKKKKKKKKN T
′

N

Figure 7 The pure call-by-name λ-calculus λpure
n

A Solvability605

I Example 38.

IN
def
= λxN . xN KN

def
= λxN . λyN . xN δN

def
= λxN . xNxN ΩN

def
= δNδN ⊳ ΩN

δTNN
def
= λxn. TN(xNxN) ΩTNN

def
= δTNN δTNN ⊳ TNΩTNN YN

def
= λxN .Ωx

N

N

Proof of theorem 9606

A.0.1 Proving that ⋅⋅−⊳-solvability is equivalent to _-solvability607

Proof of Proposition 8. J608

FactToVar ∶ Suppose that T _∗ x. By (Fact), T ⊳∗ T ′ →n x for some n ∈ N. By609

(RedToVar), there is no T ′′ such that T ′′ → x, so that n = 0 and T ′ = x. We can therefore610

conclude that T ⊳∗ x.611

EqSol ∶ Two of the implications are given by (Incl). The remaining one is (FactToVar).612

XX:20 REFERENCES

FactToVarAhead
T _∗ I ⇒ T ⋅⋅−⊳∗ I

RedToIAhead
T _ I ⇒ T ⋅⋅−⊳ I

FactAhead
Factorization:
T _∗ T ′ ⇒ T ⋅⋅−⊳∗−⋅⋅>∗ T ′

where −⋅⋅> = _ ∖ ⋅⋅−⊳

InclAhead
⋅⋅−⊳∗ ⊆ _∗

EqSolAhead
⋅⋅−⊳-solvability and _-
solvability coincide:

∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ I

∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT _∗ I

Figure 8 Equivalence of solvability definitions (from [AccPao12]) - Proposition 5

FactToVar
T _∗ x⇒ T ⊳∗ x

C _∗ x ⇒ C ⊳∗ x

RedToVar
T _ x⇒ T ⊳ x

C _ x ⇒ C ⊳ x

Fact
Factorization:
T _∗ T ′ ⇒ T ⊳∗→∗ T ′

C _∗ C ′ ⇒ C ⊳∗→∗ C ′

where → = _ ∖ ⊳

Incl
⊳∗ ⊆ ⋅⋅−⊳∗ ⊆ _∗

EqSol
⊳-solvability, ⋅⋅−⊳-solvability and _-
solvability coincide:

∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ x

∃ϕ,C[ϕ] ⋅⋅−⊳∗ x

∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT _∗ x

∃ϕ,C[ϕ] _∗ x

∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT ⊳∗ x

∃ϕ,C[ϕ] ⊳∗ x

Figure 9 Equivalence of solvability definitions - Proposition 8

REFERENCES XX:21

A.1 Proving that ⋅⋅−⊳ operationally characterizes ⋅⋅−⊳-solvability613

SubstSN
⋅⋅−⊳-divergence is stable
under head contexts /
disubstitutions:
HHHHHHHHHHHHHHHHHT ���XXX⋅⋅−⊳ω ⇒ T���XXX⋅⋅−⊳ω

C[ϕ]���XXX⋅⋅−⊳ω ⇒ C���XXX⋅⋅−⊳ω

Subst
The ⋅⋅−⊳ reduction is stable
under head contexts / disub-
stitutions:
T ⋅⋅−⊳ T ′ ⇒ HHHHHHHHHHHHHHHHHT ⋅⋅−⊳ HHHHHHHHHHHHHHHHHT ′

C ⋅⋅−⊳ C ′ ⇒ C[ϕ] ⋅⋅−⊳ C[ϕ]

WNSol
Weakly ⋅⋅−⊳-normalizing implies
⋅⋅−⊳-solvable:
T ⋅⋅−⊳∗��HH⋅⋅−⊳⇒ ∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ x

C ⋅⋅−⊳∗��HH⋅⋅−⊳⇒ ∃ϕ,C[ϕ] ⋅⋅−⊳∗ x

SolSN
⋅⋅−⊳-solvable implies
strongly ⋅⋅−⊳-normalizing:
HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ x⇒ T���XXX⋅⋅−⊳ω

C[ϕ] ⋅⋅−⊳∗ x ⇒ C���XXX⋅⋅−⊳ω

NFSol
⋅⋅−⊳-normal implies ⋅⋅−⊳-
solvable:
T��HH⋅⋅−⊳⇒ ∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ x

C��HH⋅⋅−⊳⇒ ∃ϕ,C[ϕ] ⋅⋅−⊳∗ x

UTB
The ⋅⋅−⊳ reduction has
uniqueness of termina-
tion behaviour:
T ⋅⋅−⊳∗��HH⋅⋅−⊳⇒ T���XXX⋅⋅−⊳ω

C ⋅⋅−⊳∗��HH⋅⋅−⊳⇒ C���XXX⋅⋅−⊳ω

OpCharSelf
The ⋅⋅−⊳ reduction opera-
tionally characterizes ⋅⋅−⊳-
solvability:

∃HHHHHHHHHHHHHHHHH,HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ x

∃ϕ,C[ϕ] ⋅⋅−⊳∗ x

T���XXX⋅⋅−⊳ω

C���XXX⋅⋅−⊳ω
T ⋅⋅−⊳∗��HH⋅⋅−⊳

C ⋅⋅−⊳∗��HH⋅⋅−⊳

Figure 10 Operational characterization of self-solvability - Proposition 6

Proof of Proposition 6. Intermediate lemmas are described in Figure 10. J614

WNSol ∶ Suppose that T ⋅⋅−⊳∗ T ′��HH⋅⋅−⊳. Since T��HH⋅⋅−⊳, by (NFSol), there exists HHHHHHHHHHHHHHHHH such that615

HHHHHHHHHHHHHHHHHT ′ ⋅⋅−⊳∗ I. By (Subst), we have HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ HHHHHHHHHHHHHHHHHT ′ and we can therefore conclude that616

HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ I.617

SubstSN ∶ The contrapositive is a corollary of (Subst).618

SolSN ∶ If HHHHHHHHHHHHHHHHHT ⋅⋅−⊳∗ I, since I��HH⋅⋅−⊳, by (UTB), we have HHHHHHHHHHHHHHHHHT ���XXX⋅⋅−⊳ω. By (SubstSN), we can619

therefore conclude that T���XXX⋅⋅−⊳ω.620

OpCharSelf ∶ (WNSol) and (SolSN) give two of the implications, and the third one (i.e.621

strongly-normalizing implies weakly-normalizing) is easy: Perform arbitrary ⋅⋅−⊳ reduction622

steps until a normal form is reached (and one is eventually reached because the term is623

strongly normalizing).624

A.2 Proving uniqueness of termination behaviour625

A sequence of properties that imply (UTB) are given in Figure 11. For the call-by-name626

λ-calculus, ⋅⋅−⊳hd is deterministic, which immediately implies (UTB). As we progress towards627

more complex calculi, some of those properties will no longer hold, and we will therefore628

have to prove a lower one directly, which is harder. (Det), (DP) and (UTB) are well-known629

XX:22 REFERENCES

Det

 is deterministic:

If
c

cl cr then cl = cr

DP

 has the diamond property:

If
c

cl cr then either cl = cr or
c

cl cr
cb

SDP

 has the synchronized diamond property:

If
c

cl cr then either
c

cl cr or
c

cl cr
cb

Bisim

∼ = (⋅)∗ is a bisimulation
with respect to :
If cl cr

c′l

then cl cr

c′l c′r

UMRL

 has uniqueness of maxi-
mal reduction length:
If c n c′��HH then c���XXX n+1

UTB

 has uniqueness of
termination behaviour:
If ∗ c′��HH then c��HH ω

Figure 11 Properties implying uniqueness of termination behavior

REFERENCES XX:23

properties. (SDP) is what one gets on the synchronized product14 of two abstract rewriting630

systems that have (DP). (Bisim) arises naturally when trying to prove that (SDP) implies631

(UMRL), and our intuition of ∼ is that it respects a very strong notion of observational632

equivalence that has the number of reduction steps as an invariant. (UMRL) states that all633

maximal reduction (whether finite or infinite) have the same length.634

B Solvability in focused calculi635

Proof of lemma 19. By induction on the derivation of C ⋅⋅−⊳ C ′. The base case C ⊳ C ′ is636

lemma 11. J637

Proof of lemma 20. By induction on the derivation of the reductions. The only non-trivial638

cases are defer (SSSSSSSSSSSSSSSSSn,C↝n) ⊲ SSSSSSSSSSSSSSSSSnC↝n ⋅⋅−⊳ SSSSSSSSSSSSSSSSSnC↝n
′ and defer (SSSSSSSSSSSSSSSSSn,C↝n[Vn/x

n]) ⊲ SSSSSSSSSSSSSSSSSn (λx
n.C↝n)Vn ⋅⋅−⊳639

SSSSSSSSSSSSSSSSSn (λx
n.C↝n

′)Vn , both of which are handled via lemma 19. J640

C Pure polarized solvability641

Proof of lemma 24. This lemma is easily proven by proving the same thing for SSSSSSSSSSSSSSSSSε1↝ε2 Tε1642

and D↝ε2 (by case analysis on the polarities and induction), and then noting that it works643

for the only remaining case. The only induction hypothesis that needs to be strengthened is644

to prove that SSSSSSSSSSSSSSSSS−↝−T− is always a D↝−, which needs to be stenghened to SSSSSSSSSSSSSSSSS−↝−D↝−
′ is always645

a D↝−. J646

Proof of lemma 26. We start by using the decomposition of C↝ε1 as EEEEEEEEEEEEEEEEEε1↝ε2 Tε1 .647

We now show that any ⊳-normal command is of the shape SSSSSSSSSSSSSSSSSε1↝ε2 Vε1 by contradiction648

and case analysis on ε1. If ε1 = − , then the term T− is necessarily a value V−, and the649

only way for the evaluation context EEEEEEEEEEEEEEEEE−↝ε2 to not be a stack SSSSSSSSSSSSSSSSS−↝ε2 is to be of the shape650

EEEEEEEEEEEEEEEEE−↝ε2 = let↝ε2 x− = �− inC↝ε2 , so that EEEEEEEEEEEEEEEEE−↝ε2 T− = let↝ε2 x− = V− inC↝ε2 ⊳µ̃ C↝ε1[V−/x
−] and we651

can conclude that C↝ε1 is not ⊳-normal. Dually, if ε1 = +, then the evaluation context EEEEEEEEEEEEEEEEE+↝ε2652

is necessarily a stack SSSSSSSSSSSSSSSSS+↝ε2 , and the only way for the term T+ to not be a value V+ is to be653

of the shape T+ = C↝+, so that EEEEEEEEEEEEEEEEE+↝ε2 T+ = SSSSSSSSSSSSSSSSS+↝ε2 C↝+ ⊳µ defer (SSSSSSSSSSSSSSSSSε,C↝ε) and we can conclude654

that C↝ε1 is not ⊳-normal.655

We now show that amond commands of the shape SSSSSSSSSSSSSSSSSε1↝ε2 Vε1 , the only ⊳-normal ones are656

of the shape SSSSSSSSSSSSSSSSS− freezep
(C↝+)V+ or SSSSSSSSSSSSSSSSS+unfreezep

(λx
+.C↝−) . This is done by case analysis on657

the polarity ε1 and then the syntax of SSSSSSSSSSSSSSSSSε1↝ε2 and Vε1 . J658

Proof. lemma 28It is immediate that commands of this shape are clashes. To show that all659

clashes are of this shape, notice that by taking ϕε to be the identity, we get C↝ε /⊳ so that C↝ε660

is of one of the four shapes given in the previous lemma. It is easy to find a disubstitution661

ϕε such that C↝ε[ϕε] ⊳ if C↝ε is of the shape ⟨Vε∣�ε⟩, ⟨xε∣SSSSSSSSSSSSSSSSSε⟩ which allows to conclude. J662

Proof of lemma 33. We have C↝ε[ϕε] ⊳∗ x with ϕε = (σ,SSSSSSSSSSSSSSSSSε). Since C↝ε[ϕε] is weakly663

⊳-normalizing, and hence strongly ⊳-normalizing by lemma 13, so is C↝ε[σ] by lemma 11.664

We therefore have C ′

↝ε such that C↝ε[σ] ⊳∗ C ′

↝ε /⊳. If C ′

↝ε = x , we are done. Otherwise, we665

14The synchronized product of (A1, 1) and (A2, 2) is (A1 ×A2, 3) where (a1, a2) 3 (a′1, a′2) is
defined as a1 1 a′1 and a2 2 a′2.

XX:24 REFERENCES

necessarily have SSSSSSSSSSSSSSSSSεC ′

↝ε ⊳. This implies that C ′

↝ε can be neither a clash, nor of the shape666

SSSSSSSSSSSSSSSSSεxε . By the characterization of ⊳-normal forms it is therefore of the shape C ′

↝ε = Vε , and667

C↝ε is therefore potentially valuable. J668

Proof of lemma 34. We have T+[σ] ⊳∗ V + . Take ϕ+ = σ, let↝ε x+ = � in yε where x+ /= yε.669

We have T+ [ϕ+] = let↝ε x+ = T+[σ] in yε ⊳∗ let↝ε x+ = V+ in yε ⊳ yε . J670

Regarding the proof above, the reader may wonder if let↝ε x+ = � in yε should be considered671

to be a contexts that “effectively uses its hole”, since it seems to extract no information672

from the term plugged in its hole. To answer this, notice that evaluating let↝ε x+ = T+ in yε ,673

will also evaluate T+ . This means that let↝ε x+ = T+ in yε reduces to yε if and only if the674

evaluation of T+ terminates, so that even though the information is discarded by returning675

yε , the information “T+ terminates” has been extracted from the term that was placed in676

the hole.677

There is another, perhaps more convincing, way to look at this: considering that678

let↝ε x+ = � inC↝ε “effectively uses its hole” is expected to be admissible, i.e. disallow-679

ing such contexts in the definition of solvability should leave the set of solvable com-680

mands unchanged. The idea is that one can replace SSSSSSSSSSSSSSSSS1
+
= let↝ε x+ = �+ inC↝ε by SSSSSSSSSSSSSSSSS2

+
=681

match↝ε�+ with [boxp(y−).C↝ε[boxp(y−)/x+]] in the disubstitution ϕε. We do not prove this682

here as it would involve proving that the η-conversion SSSSSSSSSSSSSSSSS+ =η match↝ε�+ with [boxp(y−).SSSSSSSSSSSSSSSSS+boxp(y−)]683

respects observational equivalence in this pure calculus, which is non-trivial and left as fur-684

ther work. To give some intuition, we nevertheless adapt the proof that all potentially685

valuable term T+ are solvable so as to not use let↝ε x+ = � inC↝ε. If V+ is a variable z+,686

then SSSSSSSSSSSSSSSSS+ = �+ solves it. If V+ is not a variable then it is of the shape boxp(z−), so that687

SSSSSSSSSSSSSSSSS+ = match↝+�with[boxp(x−).y+] solves it. In other words, a potentially valuable term T+688

is solvable, not because its result V+ can be discarded by let↝ε x+ = � in y+ , but because689

variables are solvable, and all other positive values have a constructor at their root, so that690

the corresponding match solves them.691

Proof of lemma 31. Suppose by contradiction that a clash C↝ε is solved by a disubstitution692

ϕε, i.e. C↝ε[ϕε] ⊳∗ xε . Since C↝ε[ϕε] /⊳, we would necessarily have C↝ε[ϕε] = xε . The only693

way for this equality to hold is that C↝ε is of the shape yε , which is absurd because yε is694

not a clash. J695

Proof of lemma 36. By induction on C↝ε. J696

I Lemma 39. (NFSol) If C is ⋅⋅−⊳Unsol-normal then C is solvable.697

Proof of lemma 39. If C were unsolvable, we would have C ∈ Unsol and hence C ⋅⋅−⊳Unsol698

C. J699

I Lemma 40. (Disubst) The ahead reduction ⋅⋅−⊳Bad is disubstitutive: If C ⋅⋅−⊳Bad C
′ then700

C[ϕ] ⋅⋅−⊳Bad C
′[ϕ].701

Proof of lemma 40. By induction on C. The base cases, which correspond to the two first702

rules defining ⋅⋅−⊳Bad, use the disubstitutivity of ⊳ and the fact that Bad is closed under703

disubstitutions. J704

I Lemma 41. (DP) The ahead reduction ⋅⋅−⊳Bad has the diamond property: If Cl ⊲−⋅⋅Bad705

C ⋅⋅−⊳Bad C
r then either Cl = Cr or Cl ⋅⋅−⊳Bad⊲−⋅⋅Bad C

r.706

REFERENCES XX:25

Proof of lemma 41. By case analysis on the reduction Cl ⊲ C and C ⋅⋅−⊳Bad C
r, one gets707

that Cl ⊲ C ⋅⋅−⊳Bad C
r implies Cl ⋅⋅−⊳Bad⊲ C

r:708

If Cl ⊲ C ⋅⋅−⊳Bad C with C ∈ Bad then Cl ∈ Bad so Cl ⋅⋅−⊳Bad C
l ⊲ Cr.709

If Cl ⊲ C ⊳ Cr then Cl = Cr by determinism of ⊳.710

All other cases are handled as follows: We look at what happens to the redex reduced by711

C ⋅⋅−⊳Bad C
r through the Cl ⊲ C reduction. For most case, the redex will not be impacted712

by the reduction Cl ⊲ C and commutation is either trivial, or uses the fact that Bad is713

closed under disubstitutions if the C ⋅⋅−⊳Bad C
r relies on some subcommand being in Bad.714

The only interesting cases arise when the reduction C ⋅⋅−⊳Bad C
r happens in a stack SSSSSSSSSSSSSSSSS715

such that get deferred in Cl, and those cases are handled by lemma 36.716

J717

I Remark 42. ϕ = (x
− ↦ λz+.unboxp(z+),�ε) solves C↝ε = KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2 yε , where KKKKKKKKKKKKKKKKK1 = let↝ε_+ = unfreezep(x− V 1

+
) in�,718

KKKKKKKKKKKKKKKKK2 = let↝ε_+ = unfreezep(x− V 2
+
W+) in�, V 1

+
= boxp

(freezep
(V

3
+)) and V 2

+
= boxp

(λ_
+. freezep

(V
4
+))719

(where we assume that the two occurrences of x− are the only ones because otherwise the720

command would not fit within the page):721

C↝ε[ϕ] = let↝ε_+ = unfreezep
((λz

+.unboxp
(z+))V

1
+) in let↝ε_+ = unfreezep

((λz
+.unboxp

(z+))V
2
+
W+) in yε

⊳ let↝ε_+ = unfreezep
(unboxp

(V
1
+)) in let↝ε_+ = unfreezep

((λz
+.unboxp

(z+))V
2
+
W+) in yε

⊳ let↝ε_+ = unfreezep
(freezep

(V
3
+)) in let↝ε_+ = unfreezep

((λz
+.unboxp

(z+))V
2
+
W+) in yε

⊳ let↝ε_+ = V 3
+

in let↝ε_+ = unfreezep
((λz

+.unboxp
(z+))V

2
+
W+) in yε

⊳ let↝ε_+ = unfreezep
((λz

+.unboxp
(z+))V

2
+
W+) in yε

⊳ let↝ε_+ = unfreezep
(unboxp

(V
2
+)W+) in yε

⊳ let↝ε_+ = unfreezep

((λ_
+. freezep

(V
4
+))W+) in yε

⊳ let↝ε_+ = unfreezep

(freezep
(V

4
+)) in yε

⊳ let↝ε_+ = V 4
+

in yε

⊳ yε

722

723

	Solvability
	Solvability in focused calculi
	The pure focused call-by-name -calculus: 0 g 0 Gpush0 g 0 Gpop[0.5pt][1pt]keepdepthn
	Syntax
	Solvability
	Operational characterization of solvability

	The pure focused call-by-value -calculus: 0 g 0 Gpush0 g 0 Gpop[0.5pt][1pt]keepdepthv

	Pure polarized solvability
	Calculus
	Definition and properties
	Encoding call-by-name and call-by-value
	Normal forms and clashes
	The bi-typed variant

	Solvability
	Operational characterization of solvability in 0 g 0 Gpush0 g 0 Gpop[0.5pt][1pt]keepdepthpPN
	The ahead reduction

	Solvability
	Proving that --solvability is equivalent to -solvability
	Proving that - operationally characterizes --solvability
	Proving uniqueness of termination behaviour

	Solvability in focused calculi
	Pure polarized solvability

