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Abstract5

We investigate operational characterizations of solvability, i.e. reductions that are normalizing6

exactly on solvable terms, in calculi with mixed evaluation order (i.e. call-by-name and call-by-value)7

and pattern-matches. To that end, we generalize a polarized abstract-machine-like calculus. We then8

operationally characterize solvability in several versions of the calculus (classical, pure intuitionistic,9

...). In doing so, we illustrate that our calculus is well suited for the study of solvability, that10

clashes (i.e. pattern-matching failures) are no longer a problem in a polarized calculus, and that11

operationally characterizing solvability in a classical calculus is easier than in an intuitionistic12

one. We also show that the main remaining obstacle to the characterization in the full calculus is13

decidability of separability for “normal-enough” terms.14
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Introduction18

The λ-calculus is a well-known abstraction used to study programming languages. It has19

two distinct evaluation strategies: call-by-name (CBN) evaluates things only when they are20

observed / used, while call-by-value (CBV) evaluates things when they are constructed. Both21

strategies have advantages: CBN ensures that no unnecessary computations are done, while22

CBV ensures that no computations are duplicated. Somewhat surprisingly, the study of23

CBV turned out to be more involved than that of CBN, for example requiring computation24

monads [20, 21] to build models. Some properties of CBN, given in [6] in 1984, have yet to25

be adapted to CBV. Call-by-push-value (CBPV) [19] subsumes both CBV and CBN and26

sheds some light on the interactions and differences of both strategies.27

Another direction the λ-calculus has evolved in is the computational interpretation of28

classical logic, with the continuation-passing style translation and the λµ calculus [27]. This29

eventually led to the λµµ̃ calculus [9], which instead of having natural deduction as type30

system, has the sequent calculus. An interesting property of λµµ̃ is that it resembles both the31

λ calculus and the Krivine abstract machine [17], allowing to speak of both the equational32

theory and the operational semantics. It also sheds more light on the relationship between33

CBN and CBV: the full calculus is not confluent because of the Lafont critical pair [15]34

c1 [µ̃x.c2/α] � 〈µα.c1 || µ̃x.c2〉 � c2 [µα.c1/x]35

where µα.c1 represents “the result of running the computation c1” and and µ̃x.c2 represents36

the context letx = � in c2, so that the critical pair can be reformulated (if we restrict ourselves37

to the intuitionistic fragment) as38

letx = M1 inM2 � letx = M1 inM2 �M2 [M1/x]39

(where the underlined subterm is the one that the machine is currently trying to evaluate).40

This is exactly the distinction between CBV (where we want to evaluateM1 before substituting41

it), and CBN (where we substitute it immediately). Since CBV is syntactically dual to CBN42
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in λµµ̃, the additional difficulty in the study of CBV can be understood as coming from the43

restriction to the intuitionistic fragment (as illustrated in Section 5).44

Surprisingly, those two lines of work (CBPV and λµµ̃) lead to very similar calculi45

(especially if one looks at the abstract machine of CBPV), and both can be combined into a46

polarized sequent calculus LJηp [8], an intuitionistic variant of (a syntax for) Danos, Joinet47

and Schellinx’s LKηp [11]. The difference between (the abstract machine of) CBPV and48

LJηp is the same as that of the Krivine abstract machine and the CBN fragment of λµµ̃:49

Subcomputations are also represented by commands / configurations, so that the “abstract50

machine style” evaluation is no longer restricted to the top-level. The difference between51

λµµ̃ and LJηp is that instead of allowing just one evaluation strategy, both are allowed, and52

commands are annotated by a polarity + (for CBV) or − (for CBN) to denote the current53

evaluation strategy. The type system also changes from classical logic to intuitionistic logic54

with explicitly-polarised connectives.55

In this article, we use a slight variation of LJηp which we will call L here, the main56

difference being that the calculus is untyped but well-polarized. This calculus inherits many57

of the advantages of λµµ̃: it is abstract-machine-like so that weak head evaluation is just58

top-level reduction; commuting conversions are built-in and give rise to a confluent reduction;59

classical logic is built-in but it is easy to restrict to the intuitionistic fragment; CBN and60

CBV are dual; applicative contexts can be represented by stacks and plugging a term in an61

applicative context can therefore be seen a substituting a stack for a stack variable. It also62

inherits many of the advantages of CBPV: It subsumes CBN and CBV and allows mixing63

both evaluation strategies; it has nice models; and nice η-conversion laws. The additional64

restriction to well-polarized terms restricts the possible shapes of clashes (pattern-matching65

failures). It also makes the “dynamically typed” variant (in which pattern matches match66

over all constructors) clashless.67

In order to illustrate the usefulness of the L calculusIn this article, we use L to study one68

of the basic blocks of the theory of the λ-calculus: solvability. A term is solvable if there is69

some way to “use” it that leads to a “result”. Solvability plays a central role in the study of70

the λ-calculus because while it could be tempting to consider λ-terms without a normal form71

as meaningless, doing so leads to an inconsistent theory. Quoting from [5] (itself quoting72

from [28]):73

[...] only those terms without normal forms which are in fact unsolvable can be74

regarded as being ”undefined” (or better now: ”totally undefined”); by contrast, all75

other terms without normal forms are at least partially defined. Essentially the reason76

is that unsolvability is preserved by application and composition [...] which [...] is not77

true in general for the property of failing to have a normal form.78

One of the nice properties of the CBN λ-calculus is that solvability can be operationally79

characterized: There exists a decidable restriction of the reduction (the head reduction)80

that is normalizing exactly on solvable terms. This operational characterization is one of81

the first steps in the study of Böhm trees and observational equivalence. The operational82

characterization has been extended to CBV [26, 5].83

In this article, we extend this proof to L. This allows us to illustrate how having an84

abstract-machine-like calculus simplifies the proof (because the weak head reduction is the85

top-level reduction, plugging in an applicative contexts is substituting a stack, and we can86

often divide by 2 the number of cases by symmetry), that the difficulty of CBV comes from87

the restriction to the intuitionistic fragment, and that in a polarized calculus all problems due88

to clashes also appear in the presence of additives (i.e. types with more than one constructor).89
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Outline90

In Section 1, we introduce our variation of the LJηp calculus: the L calculus. In Section 2,91

we define solvability in L, and reduce proving that a reduction operational characterizes92

solvability to simpler properties (with a proof heavily inspired from [5]). In Section 3, we93

define the ahead reduction, parameterized by a set of bad commands. In Section 4, we prove94

that any solvable command is strongly ahead normalizing, independently of the bad set,95

and for all fragments of the calculus. In Section 5, we prove that in some fragments of the96

calculus, there exists a set of bad commands such that the induced reduction is decidable,97

and any weakly ahead normalizing command is solvable.98

Readers familiar with the λ-calculus, but unfamiliar with λµµ̃ and / or CBPV and hence99

with L, should be able understand most of the intuition and the skeleton of most proofs100

without understanding Section 1. However, it is much more convenient to do actual proofs in101

the L calculus, and understanding details of the proofs will therefore require understanding102

L.103

1 Polarized calculus104

Due to space constraints, the introduction to L will be rather succinct, and hence possibly a105

bit harsh for readers unfamiliar with λµµ̃ and / or CBPV. Other articles that could give some106

intuition are [19, 3, 10, 2, 4, 14, 12, 17, 22, 16, 18, 23, 24]. We would recommend [25, 10, 9]107

to understand the “abstract-machine-like” part of the calculus, [25, 19] to understand CBPV108

part, and [9, 12]to understand the relationship with proof theory. Note to reviewers: An109

unpublished report was sent with this submission (in the file report.pdf). It introduces the110

calculus in a more pedagogical way, and gives explicit translations from / to the λ-calculi,111

and from CBPV (which was announced in the original abstract, but is no longer is the112

current paper for space reasons). Section 3 of that report is not worth reading. A (possibly113

updated) version of this report will eventually be available on the author’s website, and this114

note will be replaced by a link to it.115

We now introduce the L calculus. A computation is represented by a commands c =116

〈tε || eε〉ε, with the polarity ε denoting the current evaluation strategy: + for CBV and −117

for CBN. In a command 〈tε || eε〉ε, the term tε represents the λ-term M that the “abstract118

machine” is currently trying to reduce, and eε is the remainder of the term, represented119

as a context NNNNNNNNNNNNNNNNN, i.e. a λ-term with a hole �. We write NNNNNNNNNNNNNNNNNM for the non-capture-avoiding120

substitution of � by M in NNNNNNNNNNNNNNNNN, and we say that NNNNNNNNNNNNNNNNNM is the result of plugging the term M in121

the hole � of the context NNNNNNNNNNNNNNNNN. The command 〈tε || eε〉ε then represents the term NNNNNNNNNNNNNNNNNM , where122

the underlining represents the focus of the abstract machine. The evaluation context µ̃xε.c123

represents letx = � in c, with an evaluation strategy depending on the polarity ε. The term124

µ ?ε .c represents the result of the computation c. Note that the Lafont critical pair is not125

present in this calculus (because µ ?+ .c1 is not a V+, and µ̃x−.c2 is not an S−):126

c1 [µ̃x+.c2/?+] � 〈µ ?+ .c1 || µ̃x+.c2〉+ �Z� c2 [µ ?+ .c1/x+]
c1 [µ̃x−.c2/?−] �Z� 〈µ ?− .c1 || µ̃x−.c2〉− � c2 [µ ?− .c1/x−]127

Many types can be added to this base calculus: functions, lazy and strict pairs, sums,128

and more. See for example figure 5 of [25], or figure 1 of [23]. For our purposes, the exact129

types often do not matter, so we abstract them away: we have positive types τ+
1 , . . . , τ

+
n and130

negative types τ−1 , . . . , τ
−
n′ , and for each type, a certain number of associated constructors131

and a pattern match that maches all possible constructors of this type. Of course, each132

constructor takes a fixed number of arguments of a fixed shape. For example, the tensor /133
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〈Vε || µ̃xε.c〉ε �µ̃ε c [Vε/xε]
〈µαε.c || Sε〉ε �µε c [Sε/αε]

〈vτk
(

#»

A
)
|| µ̃ [vτ1 ( #»a1) .c1 | . . . | vτn ( # »an) .cn]〉+ �vτ

k
ck

[
#»

A
/

# »ak

]
〈µ〈sτ1 ( #»a1) .c1 | . . . | sτn ( # »an) .cn〉 || sτk

(
#»

A
)
〉− �sτ

k
ck

[
#»

A
/

# »ak

]
Figure 2 Operational / top-level reduction �

Arguments: Variables: Whatsits:
A ::= Vε | Sε a ::= xε | αε w ::= tε | eε | c

Figure 3 Notations

strict pair type ⊗ has a unique constructor that takes two positive values v⊗1 (V+,W+). The134

downshift ⇓ type has a single constructor that takes a negative value v⇓1 (V−). Often, we will135

handle constructors quite uniformly, and will therefore write vτk

(
#»

A
)
for both.136

Positive values:
V+ ::= x+ | v

τ+
1

1

(
#»

A
)
| . . . | v

τ+
1
n1

(
#»

A
)
| . . .

Positive stacks and evaluation contexts:
S+, e+ ::= α+ | µ̃x+.c | µ̃

[
v
τ+

1
1 ( #»a1) .c1 | . . . | v

τ+
1
n1 ( #   »an1) .cn1

]
| . . .

Positive terms:
T+ ::= µα+.c

t+ ::= V+ | T+
Negative values amd terms:
V−, t− ::= x− | µα−.c | µ〈sτ−11 ( #»a1) .c1 | . . . | s

τ−1
n1 ( #   »an1) .cn1

〉 | . . .

Negative stacks:
S− ::= α− | s

τ−1
1

(
#»

A
)
| . . . | s

τ−1
n1

(
#»

A
)

| . . .

Negative evaluation contexts:
E− ::= µ̃x−.c

e− ::= S− | E−
Commands:

c 3 c ::= 〈t+ || S+〉+ | 〈V− || e−〉−

Figure 1 Syntax of L

figure 1 describes the syntax of L, figure 2 describes the top-level reduction � (which137

corresponds to the weak head reduction of the λ-calculus), and figure 3 describes notations138

that we will use to factor statements / proofs. The substitution is defined as expected. We139

work up to α-renaming, always assuming that bound variable are distinct from free variables,140

and that all the substitutions we manipulate are idempotent.141

I Lemma 1.1. The top-level reduction � is deterministic: If cl � c � cr then cl = cr.142

Proof. Immediate. J143
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I Lemma 1.2. The top-level reduction � is substitutive: For all command c and c′, and144

substitution ϕ, if c � c′ then c [ϕ] � c′ [ϕ].145

A multicontext is a whatsit with holes �. A context is a multicontext with a single hole.146

The operation of filling the holes of a context is written wwwwwwwwwwwwwwwwww1, . . . , wn and when writing this147

we always assume that the number of whatsits given correspond exactly to the number of148

hole in the multicontext, and that wwwwwwwwwwwwwwwwww1, . . . , wn is a whatsit (so that we would never write,149

for example (µ̃x+.�) V+ because the hole is at the position of a command, and plugging a150

value is therefore meaningless). The strong reduction → is by: wwwwwwwwwwwwwwwwwc → wwwwwwwwwwwwwwwwwc′ whenever c � c′.151

In other words, → is the closure under contexts of �.152

I Lemma 1.3. The strong reduction → is substitutive: For all command c and c′, and153

substitution ϕ, if c→ c′ then c [ϕ]→ c′ [ϕ].154

Proof. By induction on the syntax. J155

In the intuitionistic calculus, we want to ensure that no stack is ever discarded or duplicated,156

i.e. that all stack variables are used linearly. Note that in the presence of additives, one use157

per branch counts as linear: In µ̃ [true .〈xε || ?ε〉ε | false .〈yε || ?ε〉ε], ?ε is linearly free, but158

neither xε nor yε is. Defining “a is linearly free in w” directly would involve a lot of case159

analysis (for example, being linear in 〈tε || eε〉ε means being linear in either one, and not free160

in the other. We therefore define a more general measure bwca which is the set of all natural161

numbers n such that keeping exactly one branch per pattern match leads to a whatsit with162

n free occurrences of a. The addition used in the definition is the pointwise addition of sets,163

i.e. btεca + beεca = {n1 + n2 : n1 ∈ btεca ∧ n2 ∈ beεca}.164

I Definition 1.4.

b〈tε || eε〉εca = btεca + beεca bµαε.cca = bµ̃xε.cca = bcca

bvτk (A1, . . . , An)ca = bsτk (A1, . . . , An)ca = bA1ca + · · ·+ bAnca

bµ̃ [vτ1 ( #»a1) .c1 | . . . | vτn ( # »an) .cn]ca = bµ〈sτ1 ( #»a1) .c1 | . . . | sτn ( # »an) .cn〉ca = bc1ca ∪ · · · ∪ bcnca

We can then define being linearly free in a very easily: A variable a is said to be linearly165

free in w when bwca ⊆ {1}. A value constructor vτk is said to be intuitionistic if all its166

arguments are values, and a stack constructor sτk is said to be intuitionistic when exactly167

one of its argument is a stack (and without loss of generality, we will assume that the168

stack argument is the last one). We say that a whatsit is said to be intuitionistic when it169

only contains intuitionistic constructor, and all its subwhatsits have at most one free stack170

variable and if it does have one then it is linearly free. From a proof theory perspective,171

this corresponds to the intuitionistic sequent calculus being the restriction of the classical172

sequent calculus to sequents having at most one conclusion. An induction on the syntax173

shows that an intuitionistic term has no free stack variable, and an intuitionistic command174

/ evaluation context has exactly one free stack variable and it is linearly free. This stack175

variable is often named ?ε instead of αε to denote that we are in the intuitionistic fragment.176

Also note that the restriction to the intuitionistic calculus is very syntactical: the syntax of177

the intuitionistic fragment is context-free1.178

1 One just has to split c into c?+ and c?− (and similarly for all syntactic categories of contexts) to keep
track of whether the current stack variable is positive or negative.
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I Definition 1.5. A command c is called normal if c�Z� and reducible otherwise.179

I Definition 1.6. A command c is said to be:180

Diverging when c �ω;181

Converging (to c′) when c �∗ c′�Z�;182

Clashing or a clash when for all ϕ, c′ [ϕ]�Z�;183

Solved when c′ = 〈xε || αε〉ε;184

Waiting otherwise (i.e. there exists ϕ such that c′ [ϕ] �, but c′ 6= 〈xε || αε〉ε).185

Note that a command is either converging or diverging (by 1.1). Furthermore, a converging186

command is eventually clashing, eventually solved or eventually waiting.187

I Definition 1.7. We write Lc for the full classical calculus, Livs for an intuitionistic fragment188

with at most one positive value constructor and at most one negative stack constructor, and189

Li6⇓ for the calculus in which none of the Vi in sτk

(
#»

V , Sε

)
contains a negative value.190

We will operationally characterize solvability in Lc, Livs, and Li6⇓. In the other fragments,191

we will still have a reduction that is weakly-normalizing exactly on solvable commands, but192

it may not be decidable.193

2 Polarized solvability194

2.1 Definitions195

We now define solvability in our calculus. The most common definition in the λ-calculus196

is that there exists a substitution ϕ and an applicative context �N1 . . . Nm such that197

(�N1 . . . Nm) M [σ] = M [σ]N1 . . . Nm →∗ I. In our calculus, the subsitution and the198

applicative context become a single substition (acting on both value variable and stack199

variables). To make things not symmetric, we replace I with x.200

I Definition 2.1. A substitution ϕ is said to solve c, written ϕ |= c, when c [ϕ]→∗ 〈xε || αε〉ε.201

A command c is called solvable, written ∃ |= c,if there exists a substitution that solves it.202

Note that diverging and clashing commands are unsolvable, that solved commands203

are solvable. Waiting commands however can be either solvable or unsolvable. Solvable204

commands are either solved or waiting.205

In our proof that the ahead reduction operationally characterizes solvability, we will206

sometimes need to use other reductions in the definition of solvability, hence the following207

definition.208

I Definition 2.2. A command c is  -solvable if there exists ϕ such that c [ϕ] ∗ 〈xε || αε〉ε.209

The proof that the ahead reduction ⇀ operationally characterizes solvability will be done210

in two steps: The first step, lemma .2, which is described in figure 5, states that ⇀-solvability211

is equivalent to solvability. The second, which is described in section 2.2, states that ⇀212

operationally characterizes ⇀-solvability.213

I Theorem 2.3. For any reduction ⇀ such that � ⊆⇀ ⊆ →, ⇀-solvability is equivalent to214

solvability.215

Proof. In the appendix. J216
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2.2 Operational characterization of solvability217

I Definition 2.4. Given a set X ⊆ c of commands, we say that a reduction  ⊆ →∗:218

Is X-sound when c ∗��HH implies c ∈ X;219

Is X-complete when c ∈ X implies c ∗��HH ;220

Operationally characterizes X when it is X-sound, X-complete and decidable.221

The main theorem of this paper, theorem 6.1, is the existence of ⇀ ⊆ →∗ such that ⇀222

operationally characterizes solvability (i.e. operationally characterizes solvable commands)223

in some of the L calculi. Note that if we required only two of solvability-sound, solvability-224

complete and decidable, then it would be very easy: → is solvability-complete and decidable225

but not solvability-sound, ∅ is solvability-sound and decidable but not solvability-complete,226

and the relation →unsol, defined by c →unsol c
′ if and only c = c′ and c is unsolvable, is227

solvability-sound and solvability-complete but not decidable.228

Note that while in pure call-by-name and call-by-value λ-calculus, we can characterize229

solvability with a reduction ⇀ ⊆ →, this is no longer possible in more general calculi. In230

the presence of clashes, since there are →-normal clashes (for example, ifλx.x then y else z),231

we must as least weaken the inclusion to ⇀ ⊆ →=. In the presence of additives, if we232

want the reduction to be somewhat “regular”, i.e. defined as some sort of closure under233

contexts, we need to reduce in several branches in parallel2 (for example ifx thenM1 elseM2 ⇀234

ifx thenM ′1 elseM ′2 whenever M1 ⇀ M ′1 and M2 ⇀ M ′2) so that we have to weaken the235

inclusion to ⇀ ⊆ →+ (where →+ could be replaced by the parallel reduction).236

In this section we give a generic proof that reduces proving that a reduction⇀ operationally237

characterizes ⇀-solvability to proving 3 simpler properties: substitutivity of ⇀, ⇀-solvability238

of ⇀-normal forms, and ⇀ having uniqueness of termination behavior. The proof is more or239

less a reformulation of the one given for the call-by-value λ-calculus in [5], with the slight240

differences that the diamond property has been weakened to uniqueness of termination241

behavior, and that we decomposed the proof that ⇀ operationally characterizes solvability242

in two parts: The first part, given in section 2.1, shows that ⇀-solvability is equivalent243

to solvability, and the second part, described in this section, shows that ⇀ operationally244

characterizes ⇀-solvability.245

I Definition 2.5 (Uniqueness of termination behavior). A reduction  is said to have246

uniqueness of termination behavior if weakly  -normalizing implies strongly  -normalizing.247

I Lemma 2.6. For any reduction ⇀ ⊆ →∗, if:248

(Subst) ⇀ is substitutive;249

(NFSol) ⇀-normal implies ⇀-solvable;250

(UTB) ⇀ has uniqueness of termination behavior;251

then ⇀ operationally characterizes ⇀-solvability.252

Proof. In the appendix. J253

2.2.0.1 Pure call-by-name λ-calculus254

In the pure call-by-name λ-calculus, there are two possible choices for ⇀. The usual one255

is to take ⇀ equal to the head reduction, i.e. the reduction reducing under contexts256

of the shape λx1. . . . .λxn.�N1 . . . Nm. In this case, (UTB) is trivial because the head257

2 This will be more thoroughly explained in section §3
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reduction is deterministic, and (NFSol) is easy because normal forms are of the shape258

λx1. . . . .λxn.yN1 . . . Nm so that plugging one in the context �z1 . . . zn yields a term reducible259

to a term of the shape y′N ′1 . . . N ′m which is solvable by [λy1. . . . .λym.I/y′]. The other choice,260

closer to our ahead reduction, is to allow reducing under an arbitrary composition of contexts261

of the shape λx.� and �N , which, in addition to the contexts defining the head reduction,262

also allow reducing under redexes, for example (λx.�)N . For this alternative reduction,263

(UTB) is proven by proving the diamond property, and since it has the same normal forms264

as the head reduction, the proof of (NFSol) does not change.265

2.2.0.2 Pure call-by-value λ-calculus266

In the pure call-by-value λ-calculus, things are more complicated because one has to evaluate267

arguments before discarding them. In fact, in the λ-calculus with β-reduction restricted268

to values, (λx.δ) (yz) δ is normal and yet unsolvable (because if yz reduces to a value, the269

whole term reduces to Ω = δδ). Several modifications of the pure call-by-value λ-calculus270

were proposed to fix this problem, some of which are described and shown equivalent in [4].271

Among those calculi, two are of particular interest to us: λvsub which is used to operationally272

characterize solvability in [5] with a proof that we generalize in this paper, and λvseq which273

is very similar to our calculus (because both are related to the λµµ̃ of [9]). The idea of the274

λvsub calculus is to introduce let expressions, and to make them commute with applications.275

For example:276

(λx.δ) (yz) δ →β (letx = yz in δ) δ →com letx = yz in δδ → letx = yz in δδ277

The thing that makes λvseq work is that instead of only having a syntax of terms, it has a278

syntax of terms (which are represented by commands) and a syntax of values. The importance279

of this distinction between terms that represent computations and values is explained in280

[19], where a fine-grained call-by-value λ-calculus (“partially based on [21]”) is introduced.281

Very roughly, the idea is that in applications, both the function and the argument have282

to be values, and to represent MN , we therefore either use letx = M in let y = N inxy or283

let y = N in letx = M inxy, so that the arbitrary choice in evaluation order is made explicit284

in the syntax. Through this transformation, (λx.δ) (yz) δ is compiled to let f = λx.δ in let a =285

yz in let g = fa in gδ which diverges as expected:286

let f = λx.δ in let a = yz in let g = fa in gδ
→ let a = yz in let g = (λx.δ) a in gδ
→ let a = yz in δδ
→ let a = yz in δδ

287

3 The ahead reduction288

3.1 Intuition289

Our intuition for defining the ahead reduction in the general case is the following: Since we290

want the reduction to be substitutive, we want our reduction to handle x+ and an arbitrary291

value V+ in the same way. The two other properties that we need that but are hard to292

obtain are (UTB) uniqueness of termination behaviour and (NFSol) solvability of ⇀-normal293

commands. The next few paragraphs give intuition on how to avoid breaking those two294

properties.295
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Reducing the side that “has the control”296

Redexes are due to the interaction of a context with a term, with one of them “having the297

control” and deciding what happens next, which the other one being somewhat “passive”298

and gets moved around with no control over its fate. For example, in (λx.t)u is the299

term λx.t “has the control” and the context �u is “passive”: λx.t moves the u around,300

and what happens depends heavily on what t is but not at all on what V is. Similarly,301

in if t thenu1 elseu2, the context if� thenu1 elseu2 “has the control”, while the term t is302

“passive”. Another example is letx = t inu where letx = � inu “has the control” and t303

is passive. In other to ensure uniqueness of termination behavior, we restrict the ahead304

reduction so that it only reduces whoever “has the control”, because otherwise, reducing305

the “passive” part could lead to divergence, while the part that “has the control” could306

discard the “passive” part when activated, leading to convergence. An example of this is:307

I � (λx.I) Ω ⇀ (λx.I) Ω ⇀ . . . . Because we are in the intuitionistic case, reducing the t in308

if t thenu1 elseu2 does not break UTB, even though the t does not “have the control”. This309

is because t can not discard if� thenu1 elseu2. In the classical setting, t could be a µα.c310

and we would have ifµα.c thenu1 elseu2 → c [if� thenu1 elseu2/α], potentially discarding311

if� thenu1 elseu2, and breaking UTB: I � ifµα.I then Ω else Ω ⇀ ifµα.I then Ω else Ω ⇀ . . . .312

In the L calculus, in any command, just by looking at the syntactic category of each313

side of a command, it is possible to know which side “has the control”, i.e. contains the314

subcommand that could get to the top-level after a � reduction step. It is T+ in 〈T+ || S+〉+315

(because the only possible reduction is �µ+), E− in 〈V− || E−〉− (because the only possible316

reduction is �µ̃−), S+ in 〈V+ || S+〉+ (because the only possible reductions are �µ̃+ and317

�vτ
k
), and V− in 〈V− || S−〉− (because the only possible reductions are �µ− and �sτ

k
). This318

corresponds to 〈TTTTTTTTTTTTTTTTT+ || S+〉+, 〈V+ || SSSSSSSSSSSSSSSSS+〉+, 〈V− || EEEEEEEEEEEEEEEEE−〉− and 〈VVVVVVVVVVVVVVVVV− || S−〉− being ahead contexts.319

In the intuitionistic calculus, since stack variables are always used linearly, the synchronized320

diamond property will not be broken by reducing the S+ in 〈T+ || S+〉+, or the S− in321

〈V− || S−〉−. This corresponds to 〈T+ || SSSSSSSSSSSSSSSSS+〉+ and 〈V− || SSSSSSSSSSSSSSSSS−〉− being ahead contexts.322

Reducing in parallel323

In the presence of additives (e.g. booleans or negative / lazy pairs), the ahead reduction has324

to reduce in each branch in parallel. There are two reasons for this. The first reason is that325

an if-then-else ifx then t1 else t2(where x is free neither in t1 nor in t2) is solvable whenever t1326

is (because we can take [true/x]) or t2 is (because we can take [false/x]), and only in those327

two cases (because if we pick any other value for x, the result is a clash, which is not solvable).328

Ensuring that ifx then t1 else t2 ⇀ ifx then t′1 else t′2 whenever t1 ⇀ t′1 and t2 ⇀ t′2 ensures329

this. The second reason is that always allowing to reduce only on one side would break the330

synchronized diamond property. For example, if we allow reducing only in the first term, by331

substitutivity we would get the peak t2 � if false then t1 else t2 ⇀ if false then t′1 else t2 and there332

would in general be now way to close this peak: one has if false then t′1 else t2 � t2 but in general333

we do not have t2 ⇀ t2. For the exact same reasons, we should have (M,N) ⇀ (M ′, N ′)334

whenever M ⇀ M ′ and N ⇀ N ′ (with the slight difference that now substitutivity is335

substitutivity with respect to stack variables, which allows to deduce πi (M,N) ⇀ πi (M ′, N ′)336

from (M,N) ⇀ (M ′, N ′)). In the L calculus, the same thing happens, and the syntax makes337

the symmetry clearer: if� then t1 else t2 becomes µ̃ [true .c1 | false .c2], and (M1,M2) becomes338

µ〈 (π1 · ?−) .c1 | (π2 · ?−) .c2〉.339

Detecting dead branches340

Another difficulty that arises when adding additives is that some branches are clearly341

inaccessible / dead, but not→ reduction step can erase them. For example, ifx then (ifx then Ω else I) else Ω342

is not solvable: both [true/x] and [false/x] lead to Ω, and any other substitution either does343
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nothing or leads to a crash. This should be contrasted with ifx then (if y then Ω else I) else Ω344

which is solved by [true/x, false/y]. Unfortunately, if the ahead reduction reduces in parallel345

in all branches, then ifx then (ifx then Ω else I) else Ω will be ahead normal, hence breaking346

solvability of normal forms.347

One way to solve this problem would be to reason modulo some relation ∼ ⊆ =βη which348

will use η rules to propagate information. Indeed, writing KKKKKKKKKKKKKKKKK for let y = � in if y then (if y then Ω else I) else Ω,349

we would have350

ifx then (ifx then Ω else I) else Ω � KKKKKKKKKKKKKKKKKx =η ifx thenKKKKKKKKKKKKKKKKKtrue elseKKKKKKKKKKKKKKKKK false351

352

ifx thenKKKKKKKKKKKKKKKKKtrue elseKKKKKKKKKKKKKKKKK false ⇀ ifx then (if true then Ω else I) else Ω ⇀ ifx then Ω else Ω353

More generally, we would ∼ to identify ifx then t1 else t2 and ifx then t1 [true/x] else t2 [false/x].354

This approach would be slightly unsatisfying because we would no longer have ⇀ ⊆ →∗355

(whereas the approach we will describe later will preserve this inclusion), and very hard to356

work with because it substitutes free variables. This makes it very hard to reason locally357

(because free variables could appear elsewhere in the term). In order for ⇀ to be substitutive,358

the ∼ equivalence has to be pretty complex. Indeed, since359

matchxwith ι1 (y1)� I | ι2 (y2)�
matchxwith ι1 (z1)� I | ι2 (z2)� I

=η
matchxwith ι1 (y1)� I | ι2 (y2)�

match ι2 (y2) with ι1 (z1)� I | ι2 (z2)� I
360

by applying the substitution [ι2 (V )/x], we would expect361

match ι2 (V ) with ι1 (y1)� I | ι2 (y2)�
match ι2 (V ) with ι1 (z1)� I | ι2 (z2)� I

∼ match ι2 (V ) with ι1 (y1)� I | ι2 (y2)�
match ι2 (y2) with ι1 (z1)� I | ι2 (z2)� I

362

but this is no longer true by just =η. This would require the more general363

matchV with ι1 (y1)� t1 | ι2 (y2)� t2 ∼ matchV with ι1 (y1)� t1 [V1/x] | ι2 (y2)� t2 [V2/x]364

whenever any substitution ϕ that unifies V and ιi (yi) also unifies V and Vi. It might be365

possible to make this approach work but we found proving UTB with it challenging, and366

therefore decided to use another approach.367

The other approach is that instead of having the reduction propagate the information “V368

was matched against ι1 (y) somewhere above”, we keep this information in the reduction. To369

do this, we record the context under which we are reducing above the reduction: KKKKKKKKKKKKKKKKK
⇀ . For370

example,371

matchV with ι1 (y1)� t1 | ι2 (y2)� t2
KKKKKKKKKKKKKKKKK
⇀ matchV with ι1 (y1)� t′1 | ι2 (y2)� t′2372

whenever373

t1
KKKKKKKKKKKKKKKKK matchV with ι1(y1)��|ι2(y2)�t2

⇀ t′1 and t1
KKKKKKKKKKKKKKKKK matchV with ι1(y1)�t1|ι2(y2)��

⇀ t′1374

We can then allow (notice that it is t2 on both side, there is no t′2)375

matchV with ι1 (y1)� t1 | ι2 (y2)� t2
KKKKKKKKKKKKKKKKK
⇀ matchV with ι1 (y1)� t′1 | ι2 (y2)� t2376

if KKKKKKKKKKKKKKKKK is of the shape KKKKKKKKKKKKKKKKK1 matchV with ι1 (y1)� KKKKKKKKKKKKKKKKK2 | ι2 (y2)� u2 because we know that in377

the full term, the t2 branch is dead. This rule would not be enough, as shown by378

matchxwith ι1 (y1)� if y1 then

 matchxwith
| ι1 (z1)� if z1 then Ω else I
| ι2 (z2)� I

 else Ω | ι2 (y2)� Ω379
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which might give the impression that it is solvable but is not. The first match forces x ∼ ι1 (y1)380

and the first ifthenelse forces y1 ∼ true. The reduction we described above would detect381

that the second branch of the second match is dead (because x ∼ ι1 (y1)), but would not382

infer x ∼ ι1 (true) from the two previous equations, and would therefore not detect that383

the second branch of the second ifthenelse is dead. Another way to think about this is that384

the term ifx then t else Ω is solvable if and only if the term t is solved by a substitution ϕ385

such that ϕ (x) = true. In other words, the context ifx then� else Ω restricted the set of386

substitutions that could be used to prove that the term is solvable. We make this formal by387

saying that ψ is available under KKKKKKKKKKKKKKKKK if there exists some ϕ such that KKKKKKKKKKKKKKKKK [ϕ] �∗ � [ψ] (i.e. for all388

c, KKKKKKKKKKKKKKKKKc [ϕ] �∗ c [ψ]). We could actually define � directly on contexts if we were careful enough389

with how we handle substitutions, for example as described in [13], but for our purposes,390

taking � on contexts as a notation is sufficient. By restricting detection of dead branches to391

contexts KKKKKKKKKKKKKKKKK of a specific shape (which is more or less “no redex above the hole”), we are able392

to prove that this property, and hence the ⇀ reduction which relies on it, are decidable in393

some interesting versions of the calculus.394

The detection of dead branches described above also solves all problems related to branches395

being dead because of clashes in our calculus. For example, any branch placed in the context396

if ι1 (V ) then� else t is dead because there is no way to have ι1 (V ) ∼ true.397

Detecting forced unsolvability398

Sometimes, a command c can not be decomposed as KKKKKKKKKKKKKKKKKc0 such that KKKKKKKKKKKKKKKKK allows to detect399

the unsolvability, even though c is unsolvable. Those cases happen when KKKKKKKKKKKKKKKKK restricts the400

available substitutions to only those that will make c0 unsolvable. For example the term letx =401

yV inπ1y will be clashing, but the corresponding command 〈y− || V ·{µ̃x+.〈y− || π1 · ?−〉−} 〉−402

can at most be decomposed into 〈y− || V · {µ̃x+.�} 〉− and 〈y− || π1 · ?−〉−. We therefore403

generalize a bit our detection of dead branches: We say that c is solvable under KKKKKKKKKKKKKKKKK if there404

exists ϕ and ψ such that KKKKKKKKKKKKKKKKK [ϕ] �∗ � [ψ] and c [ψ] �∗ 〈xε || αε〉ε. To get decidability of405

⇀ in some interesting cases, we restrict the shape of KKKKKKKKKKKKKKKKK as previously, and ask that c is406

indecomposable: There is no ahead context KKKKKKKKKKKKKKKKK′ such that c = KKKKKKKKKKKKKKKKK′ c0 .407

The remaining obstacle: separability408

Out reduction⇀ will fail only in intuitionistic calculi where separability of stacks of the shape409

sτk

(
#»

V , ?ε
)
is undecidable. The problem is exemplified by the term ifxV1 then ifxV2 then Ω else I else Ω:410

This term is solvable if and only if xV1 ∼ true and xV2 ∼ false, which is exactly the definition411

of V1 and V2 being separable. Note that this would not be a problem in the classical412

calculus because we would substitute x by a µ that would just discard everything, and the413

term would be solvable. In the intuitionistic fragment, our solution for now is to restrict414

ourselves to subfragments where separability of stacks of the shape sτk

(
#»

V , ?ε
)
is decidable.415

The subfragment where sτk

(
#»

V , ?ε
)
never contains a negative value, so that all the values416

it contains are hereditarily positive, i.e. made only of vτk constructors, and separability is417

therefore decidable (by check if τ and k match or not, and if both do checking subvalues418

recursively). The other way to ensure that separability is decidable is to have at most one419

positive constructor, so that no two stacks are separable.420
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3.2 Definition421

Positive values:
VVVVVVVVVVVVVVVVV+ ::= nothing

Positive stacks and evaluation contexts:
SSSSSSSSSSSSSSSSS+, eeeeeeeeeeeeeeeee+ ::= µ̃x+.ccccccccccccccccc | µ̃

[
v
τ+

1
1 ( #»a1) .ccccccccccccccccc1 | . . . | v

τ+
1
n1 ( #   »an1) .cccccccccccccccccn1

]
| . . .

Positive terms:
TTTTTTTTTTTTTTTTT+, ttttttttttttttttt+ ::= µα+.ccccccccccccccccc

Negative values and terms:
VVVVVVVVVVVVVVVVV−, ttttttttttttttttt− ::= µα−.ccccccccccccccccc | µ〈sτ−11 ( #»a1) .ccccccccccccccccc1 | . . . | s

τ−1
n1 ( #   »an1) .cccccccccccccccccn1

〉 | . . .

Negative stacks:
SSSSSSSSSSSSSSSSS− ::= s

τ−1
1

(
#»

V , SSSSSSSSSSSSSSSSSε
)
| . . . | sτ

−
1
n1

(
#»

V , SSSSSSSSSSSSSSSSSε
)

| . . . (i)
nothing (c)

Negative evaluation contexts:
EEEEEEEEEEEEEEEEE− ::= µ̃x−.ccccccccccccccccc
eeeeeeeeeeeeeeeee− ::= EEEEEEEEEEEEEEEEE− | SSSSSSSSSSSSSSSSS−

Commands:
ccccccccccccccccc ::= � | 〈TTTTTTTTTTTTTTTTT+ || S+〉+ | 〈V+ || SSSSSSSSSSSSSSSSS+〉+ | 〈V− || EEEEEEEEEEEEEEEEE−〉− | 〈VVVVVVVVVVVVVVVVV− || S−〉−

| 〈T+ || SSSSSSSSSSSSSSSSS〉+ | 〈V− || SSSSSSSSSSSSSSSSS−〉− (i)

Figure 4 l-ahead multicontexts

We start by definition the contexts that will allow us to reduce in parallel in the right places.422

I Definition 3.1. A multicontext is a term with several holes.423

An l-ahead multicontext (where l = i for intuitionistic or l = c for classical) is a424

multicontext of the shape described in figure 4. The l will sometimes be made implicit.425

An l-ahead context is the result of plugging all holes of an l-ahead multicontext except426

one.427

I Lemma 3.2. If wwwwwwwwwwwwwwwww is a l-ahead multicontext then wwwwwwwwwwwwwwwww [ϕ] = wwwwwwwwwwwwwwwww′� [ψ1] , . . . ,� [ψn] where wwwwwwwwwwwwwwwww′ is428

a l-ahead multicontext.429

I Definition 3.3. A substitution ϕ solves c under the context KKKKKKKKKKKKKKKKK, written ϕ |= (KKKKKKKKKKKKKKKKK, c), if there430

exists ψ such that KKKKKKKKKKKKKKKKK [ϕ] �∗ � [ψ] and ψ |= c.431

A command c is solvable under a context KKKKKKKKKKKKKKKKK, written ∃ |= (KKKKKKKKKKKKKKKKK, c), if there exists ϕ such432

that ϕ |= (KKKKKKKKKKKKKKKKK, c).433

We then define bad sets as approximation of “dead branches”.434

I Definition 3.4. 
 is called a bad set when:435

(Bad-unsol) For all (KKKKKKKKKKKKKKKKK, c) ∈ 
, c is not solvable under KKKKKKKKKKKKKKKKK;436

(Bad-subst) If (KKKKKKKKKKKKKKKKK, c) ∈ 
, and KKKKKKKKKKKKKKKKK [ϕ] = KKKKKKKKKKKKKKKKK′� [ψ] then (KKKKKKKKKKKKKKKKK′, c [ψ]) ∈ 
;437

(Bad-move) If (KKKKKKKKKKKKKKKKK1,KKKKKKKKKKKKKKKKK2 c) ∈ 
 then (KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2 , c) ∈ 
;438

(Bad-red-K) If (KKKKKKKKKKKKKKKKK, c) ∈ 
 and KKKKKKKKKKKKKKKKK→ KKKKKKKKKKKKKKKKK′� [ϕ] then (KKKKKKKKKKKKKKKKK′, c [ϕ]) ∈ 
;439

(Bad-red-c) If (KKKKKKKKKKKKKKKKK, c) ∈ 
 and c→ c′ then (KKKKKKKKKKKKKKKKK, c′) ∈ 
.440

The set 
sem := {(KKKKKKKKKKKKKKKKK, c) : c is not solvable under KKKKKKKKKKKKKKKKK} is an undecidable bad set. We will441

later construct a decidable bad set for some versions of the calculus. Given a bad set442


, we can formalize the intuition we gave about dead branches as described below: We443
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reduce under an ahead multicontext, and for each hole, we reduce the command by one444

step, unless we are in a dead branch. Note that contexts retain more information that445

needed: Contexts up to commutations KKKKKKKKKKKKKKKKK1KKKKKKKKKKKKKKKKK2 ; KKKKKKKKKKKKKKKKK2KKKKKKKKKKKKKKKKK1 when they do not bind each other’s446

variables, and where branches not above the hole are forgotten, would still have enough447

information: The reduction KKKKKKKKKKKKKKKKK
⇀ is the same for KKKKKKKKKKKKKKKKK = ifx then if y then� elseM1 elseM2 and KKKKKKKKKKKKKKKKK =448

if y then ifx then� else Ω else Crash (assuming that 
 is stable under those transformations,449

but if it is not, we can complete while preserving being a bad set and being decidable).450

I Definition 3.5.

c � c′ KKKKKKKKKKKKKKKKK l-ahead context

c
KKKKKKKKKKKKKKKKK
I l,
 c

′

(KKKKKKKKKKKKKKKKK, c) ∈ 
 KKKKKKKKKKKKKKKKK l-ahead context

c
KKKKKKKKKKKKKKKKK
I l,
 c

c1
KKKKKKKKKKKKKKKKKwwwwwwwwwwwwwwwww�,c2,...,cn

I l,
 c
′
1 . . . c1

KKKKKKKKKKKKKKKKKwwwwwwwwwwwwwwwwwc1,...,cn−1,�

I l,
 c
′
1

wwwwwwwwwwwwwwwwwc1, . . . , cn
KKKKKKKKKKKKKKKKK
⇀ l,
 wwwwwwwwwwwwwwwwwc′1, . . . , c′n

I Lemma 3.6. If w
KKKKKKKKKKKKKKKKK
I l,
 w

′ and KKKKKKKKKKKKKKKKK [ϕ] = KKKKKKKKKKKKKKKKK′� [ψ] then w [ψ]
KKKKKKKKKKKKKKKKK′
I l,
 w

′ [ψ].451

Proof. By lemma 1.2 and (Bad-subst). J452

I Lemma 3.7 (Subst). If w ⇀ w′ then w [ϕ] ⇀ w′ [ϕ].453

Proof. In the appendix. J454

4 Solvable implies strongly ahead normalizing455

By lemma 2.6, the only remaining property to prove is uniqueness of termination behavior.456

In the call-by-name λ-calculus, the uniqueness of termination behavior is trivial because ⇀457

is the head reduction which is deterministic. In the call-by-value λ-calculus, the proof of458

UTB given in [5] relies on proving the diamond property: Whenever Ml ↼M ⇀Mr, either459

Ml = Mr or there exists M ′ such that Ml ⇀M ′ ↼Mr. Unfortunately, this property if false460

in the presence of additives. For example (where the ⇀ reduction reduces the Ω in the else461

branch):462

��HH↼ ifx then I else Ω ↼ ifx then II else (λy.Ω) I ⇀ ifx then I else (λy.Ω) I��HH⇀463

The same example would work for any M1 such that M1 ⇀ M ′1 ��HH⇀ and M2 such that464

M2,l ↼ M2 ⇀ M2,r with M2,l 6= M2,r, at least when y is not free in M1 (which prevents465

M1
NNNNNNNNNNNNNNNNN
I ):466

��HH↼ if y thenM ′1 elseM2,l ↼ if y thenM1 elseM2 ⇀ if y thenM ′1 elseM2,r��HH⇀467

The problem is that both branches of the if are synchronized, so that even though the two468

reductions in the else branch could potentially be joined, they are blocked by the if branch.469

One could try to weaken the diamond property to: Whenever Ml ↼ M ⇀ Mr, either Ml470

and Mr are both normal or there exists M ′ such that Ml ⇀M ′ ↼Mr. However, this still is471

not enough as show by the following counter-example:472

if Ω thenM ′1 elseM2,l ↼ if Ω thenM1 elseM2 ⇀ if Ω thenM ′1 elseM2,r473
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The intuition is the same as in the previous counter-example, i.e. the if branch prevents the else474

branch from joining, except that we added redexes above to prevent normalization. Thinking475

about those two terms a bit more, one can see that any reduction in if Ω thenM ′1 elseM2,l476

corresponds exactly to one reduction in if Ω thenM ′1 elseM2,r, hence the idea of proving477

that ↼·⇀, is a bisimulation for ⇀: If Ml ↼·⇀ Mr ⇀ M ′r then there exists M ′l such that478

Ml ⇀Ml′ ↼·⇀Mr′ . From this, one can prove that if Ml ↼
n·⇀n Mr then Ml (↼·⇀)n Mr,479

and hence that Ml is normal if and only if Mr is. This allows us to conclude that ⇀ has480

uniqueness of termination behavior.481

The next section prove that ↼·⇀ is indeed a bisimulation for ⇀, which involves a lot of482

case analysis, and is mostly unsurprising, except maybe the presence of lemma 4.1 which gives483

some intuition on why the intuitionistic case is special. The following section proves that484

from ↼·⇀ being a bisimulation for ⇀, one can prove that ⇀ has uniqueness of termination485

behavior, the proof of which is very generic and could apply to other calculi.486

I Lemma 4.1. In the intuitionistic calculi, if Sε
KKKKKKKKKKKKKKKKK
⇀ S′ε then c [Sε/?ε]

KKKKKKKKKKKKKKKKK
⇀ c [S′ε/?ε].487

Proof. By induction the syntax, using the fact that ?ε is linearly free. J488

I Lemma 4.2. If cl
KKKKKKKKKKKKKKKKK
J c

(
KKKKKKKKKKKKKKKKK
⇀ \

KKKKKKKKKKKKKKKKK
I

)
cr then there exists c′ such that cl

KKKKKKKKKKKKKKKKK
⇀ c′

KKKKKKKKKKKKKKKKK
J cr.489

I Lemma 4.3 (Bisimulation). ↼·⇀ is a bisimulation for ⇀: If cl ↼ c ⇀ cr ⇀ c′r then there490

exists c′l and c′ such that cl ⇀ c′l ↼ c′ ⇀ c′r.491

I Lemma 4.4 (Uniqueness of termination behavior). The ahead reduction has uniqueness of492

termination behavior: If c ⇀∗ c′��HH⇀ then c��HH⇀ω.493

Proof. All 3 proofs are in the appendix. J494

5 Decidable ahead reduction495

The bad set 
sem is decidable in none of the calculi, and the associated reduction ⇀
sem is496

therefore not decidable. In order to497

I Definition 5.1. An ahead context KKKKKKKKKKKKKKKKK is said to be reduced when it is not of the shape498

KKKKKKKKKKKKKKKKK0 〈Vε || µ̃xε.KKKKKKKKKKKKKKKKK1〉ε , KKKKKKKKKKKKKKKKK0 〈µαε.KKKKKKKKKKKKKKKKK1 || Sε〉ε , KKKKKKKKKKKKKKKKK0〈vτk
(

#»

A
)
|| µ̃ [vτ1 ( #»a1) .KKKKKKKKKKKKKKKKK1 | . . . | vτn ( # »an) .KKKKKKKKKKKKKKKKKn]〉+ or499

KKKKKKKKKKKKKKKKK0〈µ〈sτ1 ( #»a1) .KKKKKKKKKKKKKKKKK1 | . . . | sτn ( # »an) .KKKKKKKKKKKKKKKKKn〉 || sτk
(

#»

A
)
〉− .500

A command c is said to be indecomposable if it is not of the shape KKKKKKKKKKKKKKKKKc0 where KKKKKKKKKKKKKKKKK is an501

ahead context.502

Given this definitions, we can define a bad set that will be decidable in some of the calculi:503

I Definition 5.2. 
syn := {(KKKKKKKKKKKKKKKKK, c) | KKKKKKKKKKKKKKKKK reduced ∧ c indecomposable ∧��∃ |= (KKKKKKKKKKKKKKKKK, c)}504

The intuition behind why this is decidable is that we removed all unsolvability that505

was due to non-termination: KKKKKKKKKKKKKKKKK is reduced and therefore has no redex above the hole, and506

c is indecomposable and KKKKKKKKKKKKKKKKK
⇀ ∅-normal (which, if KKKKKKKKKKKKKKKKK does not have a clash above the hole,507

is equivalent to �-normal since it is indecomposable). The only remaining obstacles to508

solvability are therefore clashes and dead branches, and the presence of these obstacles can509

be decided in well-chosen fragments of the calculus.510

We will show that 
syn is decidable in Lc, Livs and Li6⇓. The lemma that says that normal511

forms are solvable is easy because we “cheated” by making 
, and hence the reduction, speak512

about solvability, and the difficulty is therefore pushed to the proof that 
 is decidable.513
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I Lemma 5.3 (Solvability of normal forms). If c���XXX⇀
syn then c is solvable.514

Proof. Decompose c as c = ccccccccccccccccc0 c1, . . . , cn where for each k, ck is indecomposable. Since515

c���XXX⇀
syn , we in particular have c��HH⇀∅ so that there exists a k such KKKKKKKKKKKKKKKKK := ccccccccccccccccc0 c1, . . . ck−1,�, ck+1, cn516

is reduced. Since c���XXX⇀
syn , we also have (KKKKKKKKKKKKKKKKK, ck) 6∈ 
syn. Since ck is indecomposable and KKKKKKKKKKKKKKKKK is517

reduced, (KKKKKKKKKKKKKKKKK, ck) 6∈ 
syn necessarily comes from ∃ |= (KKKKKKKKKKKKKKKKK, ck). We can therefore conclude that518

∃ |= KKKKKKKKKKKKKKKKKck , i.e. ∃ |= c. J519

Note that the proof for c���XXX⇀
sem is even easier: We do not have (�, c) ∈ 
sem because520

otherwise we would have c ⇀
sem c. We can therefore conclude that ∃ |= (�, c), and hence521

that ∃ |= c.522

The intuition behind the existence of a decidable bad set 
 is simple: In Lc the equations523

imposed on the substitution by KKKKKKKKKKKKKKKKK are only of the shape x+ ∼ vτk ( #»a ) and α− ∼ sτk ( #»a ) so524

that this is a first order unification problem and we can simply compute the most general525

unifier and apply it to the command. In the intuitionistic calculi, one can get equations that526

speak of x−V and things therefore get more complicated. In the Livs, there is always a single527

branch and no clashes are possible, so that 
 = ∅ suffices. In Li6⇓, one can get equations528

of the shape x−V1 ∼ v1 and x−V2 ∼ v2 so that one has to decide whether V1 and V2 are529

separable, and if so, substitute x− by the value that separates them. Fortunately, since both530

Vi contain no negative value, and hence no command, deciding whether they are separable531

or not is easy. While we could therefore build one specific 
 per fragment, we prefer giving a532

unique 
syn for all those fragments, and a generic proof that it is decidable. The idea is that533

in all those fragments, one can bound the size of the substitution and the number of reduction534

steps needed as a function of c, so that ∃ |= c, i.e. ∃ϕ, c �∗ 〈xε || αε〉ε, becomes decidable.535

The extension to the decidability of ∃ |= (KKKKKKKKKKKKKKKKK, c) is done by defining K̂KKKKKKKKKKKKKKKK as the same context536

where all branches not above the hole are replaced by Ω (or a clash, or some other unsolvable537

command whose shape is easy to detect). ∃ |= (KKKKKKKKKKKKKKKKK, c) is then equivalent to ∃ |= K̂KKKKKKKKKKKKKKKKc .538

I Proposition 5.4. For any fixed c, c′ and n, the property “∃ϕ, c [ϕ] �n c′” is decidable.539

Proof. In the appendix. J540

6 Conclusion541

I Theorem 6.1. ⇀
syn operationally characterizes solvability in Lc and Livs and Li6⇓.542

It seems plausible that ⇀ can be extended to the full intuitionistic calculus by making it543

reduce V1, . . . , Vn in parallel, whenever we detect that if none of these values are separable544

from some other values found in the command, then the term is not solvable. These reduction545

steps can a priori be postponed until after normal ⇀ steps without breaking substitutivity, so546

UTB should not be too hard. However, somewhere between solvability of normal forms and547

decidability of 
syn, one would have to prove that for “normal-enough terms”, separability is548

decidable, which we expect to be hard.549
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(Fact) Factorization

M →∗ M ′ ⇒M �∗(→\�)∗ M ′
c→∗ c′ ⇒ c �∗(→\�)∗ c′

↓
(FactToVar)

M →∗ x⇒M �∗ x
c→∗ 〈xε || αε〉ε ⇒ c �∗ 〈xε || αε〉ε ←

(RedToVar)

M → x⇒M � x

c→ 〈xε || αε〉ε ⇒ c � 〈xε || αε〉ε

↓
(EqSol) �-solvability, ⇀-solvability and →-solvability coincide

∃
(
σ,

#»

N
)
,M [σ] #»

N �∗ x

∃ϕ, c [ϕ] �∗ 〈xε || αε〉ε
⇒

⇑ ∃
(
σ,

#»

N
)
,M [σ] #»

N ⇀∗ x

∃ϕ, c [ϕ] ⇀∗ 〈xε || αε〉ε

∃
(
σ,

#»

N
)
,M [σ] #»

N →∗ x
∃ϕ, c [ϕ]→∗ 〈xε || αε〉ε

⇐

Figure 5 Equivalence of solvability definitions - λ-calculus
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Proofs of Section 2619

I Lemma .2. For any reductions � and ⇀ such that � ⊆⇀ ⊆ →, if (Fact) and (RedToVar)620

then (EqSol). See Figure 5 on page 17.621

Proof. J622

(FactS) Suppose that c →∗ 〈xε || αε〉ε. By (Fact), c �∗ c′ (→\�)n 〈xε || αε〉ε for623

some n ∈ N. By (RedS), there is no c′′ such that c′′ (→\�) 〈xε || αε〉ε, so that n = 0624

and c′ = 〈xε || αε〉ε. We can therefore conclude that c �∗ 〈xε || αε〉ε.625

(EqSol) By � ⊆⇀ ⊆ →∗, two of the implications are trivial, and the remaining one is626

(FactToVar).627

Note that in order to show that⇀-solvability is equivalent to solvability, it would be sufficient628

to show the following factorization: If c →∗ c′ then c ⇀∗(→\⇀)∗ c′. However, the ⇀629

reduction will end up being far more complicated than the � one, so that the detour through630

�-solvability as described in Figure 5 on page 17 actually simplifies proofs. An additional631

advantage of this proof is that we can pick ⇀ a posteriori, since we proved that ⇀-solvability632

is equivalent to solvability for any ⇀ such that � ⊆⇀ ⊆ →∗.633

In order to complete the proof, we need to prove (Fact) and (RedToVar). (RedToVar) is634

immediate. Note however that (λx.Ix) (→\�) λx.x, which is another reason why we picked635
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x and not I in the definition of solvability. The only thing missing piece is the following636

factorization lemma (sometimes also called standardization, when presented in a slightly637

stronger form):638

I Lemma .3 (Factorization). If c→∗ c′ then c �∗(→\�)∗ c′.639

Proof. We apply a generic theorem for higher-order rewrite systems given in [7]. This640

theorem is stated below (with implicit hypothesis made explicit).641

Another option would be to use [1]. J642

I Theorem .4 (Theorem 5.5.1 (Standardization Theorem) of [7]). In any local higher-order643

rewrite system, for every finite reduction, there exists a unique, permutation equivalent,644

standard reduction. This standard reduction is the same for permutation equivalent reductions.645

Proofs of Section 3646

of Lemma 3.7. Suppose that w ⇀ w′. By definition of⇀, there exists a l-ahead multicontext647

wwwwwwwwwwwwwwwww0 such that w = wwwwwwwwwwwwwwwww0 c1, . . . , cn , w′ = wwwwwwwwwwwwwwwww0 c
′
1, . . . , c

′
n and for each k, ck

wwwwwwwwwwwwwwwww0 ...,ck−1,�,ck+1,...

I l,
648

c′k. By Lemma 3.2, wwwwwwwwwwwwwwwww0 [ϕ] = wwwwwwwwwwwwwwwww′0�ψ1 , . . . ,�ψn where wwwwwwwwwwwwwwwww′0 is a l-ahead multicontext. For649

each k, since
(
wwwwwwwwwwwwwwwww0 . . . , ck−1,�, ck+1, . . .

)
[ϕ] = wwwwwwwwwwwwwwwww′0 . . . , ck−1 [ψk−1] ,�ψk , ck+1 [ψk+1] , . . . , by650

Lemma 3.6, ck [ψk]
wwwwwwwwwwwwwwwww′0 ...,ck−1[ψk−1],�,ck+1[ψk+1],...

I l,
 c
′
k [ψk]. We can therefore conclude that651

w [ϕ] = wwwwwwwwwwwwwwwww′0 c1 [ψ1] , . . . , cn [ψn] ⇀l,
 wwwwwwwwwwwwwwwww′0 c1 [ψ1] , . . . , c′n [ψn] = w′ [ϕ]. J652

Proofs of Section 4653

of Lemma 4.2. By case analysis on the reduction cl
KKKKKKKKKKKKKKKKK
J c.654

cl = c and (KKKKKKKKKKKKKKKKK, c) ∈ 
 By (Bad-red-c), (KKKKKKKKKKKKKKKKK, cr) ∈ 
 so that we can take c′ = cr and655

conclude that cl
KKKKKKKKKKKKKKKKK
⇀ c′

KKKKKKKKKKKKKKKKK
J cr.656

cl = ck

[
#»

A
/

# »ak

]
� 〈µ〈sτ1 ( #»a1) .c1 | . . . | sτn ( # »an) .cn〉 || sτk

(
#»

A
)
〉− = c There are two possibilities657

for cr:658

cr = 〈µ〈sτ1 ( #»a1) .c′1 | . . . | sτn ( # »an) .c′n〉 || sτk
(

#»

A
)
〉− where for each k, ck

KKKKKKKKKKKKKKKKKµ〈...|sτk( # »ak).�|...〉
⇀659

c′k. We can pick c′ = c′k

[
#»

A
/

# »ak

]
. By Lemma 3.7, we have cl = ck

[
#»

A
/

# »ak

] KKKKKKKKKKKKKKKKK
⇀660

c′k

[
#»

A
/

# »ak

]
= c′. We can therefore conclude that cl

KKKKKKKKKKKKKKKKK
⇀ c′ � 〈µ〈sτ1 ( #»a1) .c′1 | . . . |661

sτn ( # »an) .c′n〉 || sτk
(

#»

A
)
〉−.662

cr = 〈µ〈sτ1 ( #»a1) .c1 | . . . | sτn ( # »an) .cn〉 || sτk
(

#»

A′
)
〉− This case is only possible in the663

intuitionistic version so that sτk
(

#»

A
)

= sτk

(
#»

V , S
)
, sτk

(
#»

A′
)

= sτk

(
#»

V , S′
)
and # »ak = #»x , ?ε664

with S
〈µ〈...〉||sτk( #»

V ,�)〉−
⇀ S′. Let c′ = ck

[
#»

V
/

#»x , S′
/
?ε
]
. By Lemma 4.1, we can therefore665

conclude that cl
KKKKKKKKKKKKKKKKK
⇀ c′ � cr.666

The remaining cases are all similar to, and simpler than the previous case so we will not667

detail them.668

J669
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of Lemma 4.3. We show by induction on the syntax of w that for any wl, wr, w′r and KKKKKKKKKKKKKKKKK, if670

wl
KKKKKKKKKKKKKKKKK
↼ w

KKKKKKKKKKKKKKKKK
⇀ wr

KKKKKKKKKKKKKKKKK
⇀ w′r then there exists w′l and w′ such that wl

KKKKKKKKKKKKKKKKK
⇀ w′l

KKKKKKKKKKKKKKKKK
↼ w′

KKKKKKKKKKKKKKKKK
⇀ w′r.671

In some cases, we will instead prove a slightly stronger statement: There exists w′′ such672

that wl
KKKKKKKKKKKKKKKKK
⇀ w′′

KKKKKKKKKKKKKKKKK
↼ wr. We can get back the weaker result by taking w′l = w′′ and w′ = wr:673

wl
KKKKKKKKKKKKKKKKK
⇀ w′′

KKKKKKKKKKKKKKKKK
↼ wr

KKKKKKKKKKKKKKKKK
⇀ w′r.674

w 6= c All cases where w is not a command are done by applying the induction675

hypothesis, and the two most complex ones are w = µ̃ [vτ1 ( #»a1) .c1 | . . . | vτn ( # »an) .cn]676

and w = µ〈sτ1 ( #»a1) .c1 | . . . | sτn ( # »an) .cn〉. Since they are similar, we only detail the677

w = µ̃ [vτ1 ( #»a1) .c1 | . . . | vτn ( # »an) .cn] case. We have wl = µ̃ [vτ1 ( #»a1) .c1,l | . . . | vτn ( # »an) .cn,l],678

wr = µ̃ [vτ1 ( #»a1) .c1,r | . . . | vτn ( # »an) .cn,r] and w′r = µ̃
[
vτ1 ( #»a1) .c′1,r | . . . | vτn ( # »an) .c′n,r

]
with679

for each k, ck,l
KKKKKKKKKKKKKKKKK µ̃[...|vτk( # »ak).�|... ]

↼ ck
KKKKKKKKKKKKKKKKK µ̃[...|vτk( # »ak).�|... ]

⇀ ck,r
KKKKKKKKKKKKKKKKK µ̃[...|vτk( # »ak).�|... ]

⇀ c′k,r. For680

each k, by the induction hypothesis, there exists c′k,l and c′k such that ck,l
KKKKKKKKKKKKKKKKK µ̃[...|vτk( # »ak).�|... ]

⇀681

c′k,l
KKKKKKKKKKKKKKKKK µ̃[...|vτk( # »ak).�|... ]

↼ c′k
KKKKKKKKKKKKKKKKK µ̃[...|vτk( # »ak).�|... ]

⇀ c′k,r. We can therefore pick w′l = µ̃
[
vτ1 ( #»a1) .c′1,l | . . . | vτn ( # »an) .c′n,l

]
682

and w′ = µ̃ [vτ1 ( #»a1) .c′1 | . . . | vτn ( # »an) .c′n], and conclude that wl
KKKKKKKKKKKKKKKKK
⇀ w′l

KKKKKKKKKKKKKKKKK
↼ w′

KKKKKKKKKKKKKKKKK
⇀ w′r.683

w = c If w is a command c, there there are several subcases depending on what the684

reductions are:685

cl = c
KKKKKKKKKKKKKKKKK
⇀ cr

KKKKKKKKKKKKKKKKK
⇀ c′r We have cl = c and (KKKKKKKKKKKKKKKKK, c) ∈ 
. By (Bad-red-c), (KKKKKKKKKKKKKKKKK, cr) ∈ 
 so686

that we can take c′′ = cr and conclude that cl
KKKKKKKKKKKKKKKKK
⇀ c′′

KKKKKKKKKKKKKKKKK
J cr.687

cl
KKKKKKKKKKKKKKKKK
↼ c = cr

KKKKKKKKKKKKKKKKK
⇀ c′r We have c = cr and (KKKKKKKKKKKKKKKKK, c) ∈ Ω. By (Bad-red-c), (KKKKKKKKKKKKKKKKK, cl) ∈ 
 so688

that we can take c′l = cl and c′ = c and get cl
KKKKKKKKKKKKKKKKK
I c′l

KKKKKKKKKKKKKKKKK
↼ c = cr

KKKKKKKKKKKKKKKKK
⇀ c′r.689

cl � c � cr
KKKKKKKKKKKKKKKKK
⇀ c′r By 1.1, cl = cr and we can therefore take c′′ = c′r and conclude690

that cl
KKKKKKKKKKKKKKKKK
⇀ c′′

KKKKKKKKKKKKKKKKK
↼ cr.691

cl
KKKKKKKKKKKKKKKKK
J c

(
KKKKKKKKKKKKKKKKK
⇀ \

KKKKKKKKKKKKKKKKK
I

)
cr

KKKKKKKKKKKKKKKKK
⇀ c′r By Lemma 4.2, there exists c′′ such that cl

KKKKKKKKKKKKKKKKK
⇀ c′′

KKKKKKKKKKKKKKKKK
J cr692

and we are done.693

cl

(
KKKKKKKKKKKKKKKKK
↼ \

KKKKKKKKKKKKKKKKK
J

)
c
KKKKKKKKKKKKKKKKK
I cr

KKKKKKKKKKKKKKKKK
⇀ c′r By Lemma 4.2, there exists c′′ such that cl

KKKKKKKKKKKKKKKKK
I c′′

KKKKKKKKKKKKKKKKK
↼ cr694

and we are done.695

cl

(
KKKKKKKKKKKKKKKKK
↼ \

KKKKKKKKKKKKKKKKK
J

)
c

(
KKKKKKKKKKKKKKKKK
⇀ \

KKKKKKKKKKKKKKKKK
I

)
cr

KKKKKKKKKKKKKKKKK
⇀ c′r There are two types of subcases: Either both696

reductions happen on the same side of the command, or they happen on different sides.697

We detail one of each.698

∗ 〈t || el〉
KKKKKKKKKKKKKKKKK
↼ 〈t || e〉 KKKKKKKKKKKKKKKKK⇀ 〈tr || e〉

KKKKKKKKKKKKKKKKK
⇀ c′r We can pick c′ = 〈tr || el〉+ and we are done699

because 〈t || el〉+
KKKKKKKKKKKKKKKKK
⇀ 〈tr || el〉+

KKKKKKKKKKKKKKKKK
↼ 〈tr || e〉+. (Note that this case can only happen700

in the intuitionistic calculi.)701

∗ 〈Vl || S〉−
KKKKKKKKKKKKKKKKK
↼ 〈V || S〉− KKKKKKKKKKKKKKKKK

⇀ 〈Vr || S〉−
KKKKKKKKKKKKKKKKK
⇀ c′r702

· c′r = 〈V ′r || S〉− We have Vl
KKKKKKKKKKKKKKKKK0↼ V

KKKKKKKKKKKKKKKKK0⇀ Vr
KKKKKKKKKKKKKKKKK0⇀ V ′r , where KKKKKKKKKKKKKKKKK0 = KKKKKKKKKKKKKKKKK〈� || S〉− . By703

the induction hypothesis, there exists V ′l and V ′ such that Vl
KKKKKKKKKKKKKKKKK0⇀ V ′l

KKKKKKKKKKKKKKKKK0↼ V ′
KKKKKKKKKKKKKKKKK0⇀ V ′r .704
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We can therefore pick c′l = 〈V ′l || S〉− and c′ = 〈V ′ || S〉− and we are done.705

· c′r = 〈Vr || S′〉− We can take c′l = 〈Vl || S′〉− and c′ = 〈V || S′〉− and we are706

done.707

· 〈Vr || S〉− � c′r We will detail the case V = µ〈sτ1 ( #»a1) .c1 | . . . | sτn ( # »an) .cn〉.708

The other cases are similar. We have Vl = µ〈sτ1 ( #»a1) .c1,l | . . . | sτn ( # »an) .cn,l〉,709

Vr = µ〈sτ1 ( #»a1) .c1,r | . . . | sτn ( # »an) .cn,r〉, Sr = sτk

(
#»

A
)
and c′r = ck,r

[
#»

A
/

# »ak

]
. We710

can therefore pick c′l = ck,l

[
#»

A
/

# »ak

]
and c′ = ck

[
#»

A
/

# »ak

]
, and by Lemma 3.7, we711

have c′l
KKKKKKKKKKKKKKKKK
↼ c′ and we are done.712

J713

I Lemma .5. If ∼ is a bisimulation then so is ∼n for any n: If cl ∼n cr ⇀ c′r then there714

exists c′l such that cl ⇀ c′l ∼n c′r.715

Proof. Since ∼ is a bisimulation, whenever c ∼⇀ c′, we have c ⇀∼ c′, i.e. we can postpone716

∼ with respect to ⇀. We get the result by applying this n times. J717

I Lemma .6. If cl ↼n c ⇀n cr then cl (↼·⇀)n cr.718

Proof. By induction on n. The base case is trivial. In the inductive case, we have c′l ↼719

cl ↼
n c ⇀n cr ⇀ c′r. By the induction hypothesis, cl (↼·⇀)n cr. By lemma .5 and720

c′l ↼ cl (↼·⇀)n cr, we get that there exists c′′r such that c′l (↼·⇀)n c′′r ↼ cr. We therefore721

have c′l (↼·⇀)n c′′r ↼ cr ⇀ c′r, i.e. c′l (↼·⇀)n+1
cr. J722

I Lemma .7. If��HH↼ cl ↼
n c ⇀n cr then cr��HH⇀.723

Proof. By lemma .6, we have��HH↼ cl (↼·⇀)n cr. If we had cr ⇀ then by lemma .5, we would724

have cl ⇀ which is absurd. J725

of lemma 4.4. Suppose that��HH↼ cl ↼
n c ⇀ω. There exists cr such that the reduction c ⇀ω

726

is of the shape c ⇀n cr ⇀
ω. Since��HH↼ cl ↼

n c ⇀n cr, by lemma .7 cr��HH⇀ which is absurd. J727

Proofs of Section 5728

I Definition .8. ∼d := equal up to depth d729

(∼d-contr)

d1 ≤ d2 ⇒ ∼d1⊇ ∼d2

(∼d-subst)

c ∼d c′ ⇒ c [ϕ] ∼d c′ [ϕ]
(∼d-in-subst)

ϕ ∼d ϕ′ ⇒ c [ϕ] ∼d c [ϕ′]

(∼d+n�n-swap)

c ∼d+n�n c′ ⇒ c �n∼d c′
(c∼lcl-singleton)

c ∼lcl c′ ⇒ c = c′

(�d-truncate)
c [ϕ] �n c′ ⇒ ∃ϕ′, lϕ′l ≤ lc′l+ n ∧ c [ϕ′] �n c′

(Subst-truncate)

∀d,∀ϕ,∃ϕ′, lϕ′l ≤ d ∧ ϕ′ ∼d ϕ

730

I Lemma .9. If c [ϕ] �d c′ then there exists ϕ′ such that lϕ′l ≤ d and c [ϕ′] �d c′.731
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Proof. See figure.732

∼d -contr By induction on d1.733

∼d -subst By induction on d, using (∼d -contr).734

∼d -in-subst By induction on d, using (∼d -contr).735

∼d+n�n -swap It is sufficient to show this for n = 1, as the general case can then be736

proved by induction on n. Suppose that c ∼d+1 c
′ � c′′. We show that c �∼d c′′ by case737

analysis on the reduction c′ � c′′.738

c′ = 〈µαε.c′0 || S′ε〉ε � c′0 [S′ε/αε] = c′′ Since c ∼d+1 c
′, there exists c0 and Sε such739

that c0 ∼d c′0, Sε ∼d+1 S′ε and c = 〈µαε.c0 || Sε〉ε. We can therefore conclude740

c = 〈µαε.c0 || Sε〉ε � c0 [Sε/αε] ∼d c′0 [S′ε/αε] = c′′ by (∼d -subst) and (∼d -in-subst).741

The remaining cases are similar.742

c ∼lcl -singleton By induction on the syntax of c.743

Subst-truncate It is sufficient to prove that: (Expr-truncate) For any d and w, there744

exists w′ such that lw′l ≤ d and w′ ∼d w. (Subst-truncate) is then obtained by745

taking for each a, ϕ′ (a) := w′ where w′ is the result of (Expr-truncate) for w = ϕ (a).746

(Expr-truncate) is shown by induction on d.747

d = 0 Let w′ be the result of replacing all tε by αε and eε by xε in w. We have748

lw′l = 0 ≤ d and w′ ∼0 w because ∼0 identifies all terms.749

d = d0 + 1 Sufficient case analysis (to be able to get subexpressions that are ∼d0),750

and then applying the induction hypothesis works.751

�d -truncate Suppose that c [ϕ] �n c′. By (Subst-truncate), there exists ϕ′ such that752

lϕ′l ≤ lc′l + n and ϕ′ ∼lc′l+n ϕ. By (∼d -in-subst), we have c [ϕ′] ∼lc′l+n c [ϕ]. We753

therefore have c [ϕ′] ∼lc′l+n c [ϕ] �n c′, and hence, by (∼d+n�n -swap), there exists754

c′′ such that c [ϕ′] �n c′′ ∼lc′l c′. By
(
c ∼lcl -singleton

)
, c′′ = c′. We can therefore755

conclude that c [ϕ′] �n c′ where lϕ′l ≤ lc′l+ n.756

J757

of 5.4. By Lemma .9, this property is equivalent to “∃ϕ, lϕl ≤ lc′l+n∧ c [ϕ] �n c′”, which758

is decidable because there are only finitely many substitutions ϕ of height lϕl bounded by759

lc′l+ n, and finitely many � reduction paths of length bounded by n. J760

Proof of Lemma 2.6761

Proof. The structure is described in Figure 6 on page 22.762

(WNSol) If c ⇀∗ c′��HH⇀ then by (NFSol), there exists ϕ such that c′ [ϕ] ⇀∗ 〈xε || αε〉ε.763

By (Subst), we have c [ϕ] ⇀∗ c′ [ϕ] and we can therefore conclude that c [ϕ] ⇀∗ 〈xε || αε〉ε.764

(SubstSN) The contrapositive is a corollary of (Subst).765

(SolSN) If M [σ] #»

N ⇀∗ S then by (UTB), we have M [σ] #»

N��HH⇀ω. By (SubstSN), we can766

therefore conclude that M��HH⇀ω.767

(OpCharAhead) (WNSol) and (SolSN) give two of the implications, and the third one768

(that strongly-normalizing implies weakly-normalizing) is well-known.769

J770
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(NFSol) ⇀-normal
implies ⇀-solvable

M��HH⇀⇒ ∃
(
σ,

#»

N
)
,M [σ] #»

N ⇀∗ x

c��HH⇀⇒ ∃ϕ, c [ϕ] ⇀∗ 〈xε || αε〉ε

(Subst) The ⇀ reduction is stable
under value substitutions and

applicative contexts / stack substitutions

M ⇀M ′ ⇒M [σ] #»

N ⇀M ′ [σ] #»

N

c ⇀ c′ ⇒ c [ϕ] ⇀ c [ϕ]

(UTB) The ⇀ reduction has
uniqueness of termination behaviour

M ⇀∗��HH⇀⇒M��HH⇀ω

c ⇀∗��HH⇀⇒ c��HH⇀ω

↓ ↙ ↓ ↓

(WNSol) Weakly ⇀-normalizing
implies ⇀-solvable

M ⇀∗��HH⇀⇒ ∃
(
σ,

#»

N
)
,M [σ] #»

N ⇀∗ x

c ⇀∗��HH⇀⇒ ∃ϕ, c [ϕ] ⇀∗ 〈xε || αε〉ε

(SubstSN) ⇀-divergence is stable
under subsitutions and

applicative contexts / stack substitutions

M [σ] #»

N��HH⇀ω ⇒M��HH⇀ω

c [ϕ]��HH⇀ω ⇒ c��HH⇀ω →

(SolSN) ⇀-solvable implies
strongly ⇀-normalizing

M [σ] #»

N ⇀∗ x⇒M��HH⇀ω

c [ϕ] ⇀∗ 〈xε || αε〉ε ⇒ c��HH⇀ω

↓ ↙
(OpCharAhead) The ahead reduction ⇀
operationally characterizes ⇀-solvability

M ⇀∗��HH⇀

c ⇀∗��HH⇀
⇒

⇑ ∃
(
σ,

#»

N
)
,M [σ] #»

N ⇀∗ x

∃ϕ, c [ϕ] ⇀∗ 〈xε || αε〉ε
M��HH⇀ω

c��HH⇀ω ⇐

Figure 6 Proof structure of Lemma 2.6
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