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Untyped polarized calculi

XAVIER MONTILLET
We revisit the polarized L calculus, an abstract-machine-like calculus with
mixed evaluation order (i.e. call-by-name and call-by-value) and pattern-
matches, and its relation to the λ-calculus. We then show that it is a more
symmetric syntax for Call-By-Push-Value. We also introduce a dynamically
typed / bi-typed variant of this calculus which completely eliminates clashes
(i.e. pattern-matching failures) without relying on any form of typing judg-
ments, and illustrate its usefulness in the study of extensions of the untyped
λ-calculus with constructors.
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INTRODUCTION

History
The λ-calculus is a well-known abstraction used to study program-
ming languages. It has two main evaluation strategies: call-by-name
(CBN) evaluates subprograms only when they are observed / used,
while call-by-value (CBV) evaluates subprograms when they are
constructed. Each strategy has its own advantage: CBN ensures that
no unnecessary computations are done, while CBV ensures that no
computations are duplicated. Somewhat surprisingly, the study of
CBV turned out to be more involved than that of CBN, for exam-
ple requiring computation monads [12, 13] to build models. Some
properties of CBN, given by Barendregt in 1984 [1], have yet to be
adapted to CBV. Call-by-push-value (CBPV) [10, 11] decomposes
Moggi’s computation monad as an adjunction, subsumes both CBV
and CBN and sheds some light on the interactions and differences
of both strategies.
Another direction the λ-calculus has evolved in is the computa-

tional interpretation of classical logic, with the continuation-passing
style translation and the λµ-calculus [16]. This eventually led to
the λµµ̃-calculus [3], which instead of having natural deduction as
type system, has the sequent calculus. An interesting property of
λµµ̃ is that it resembles both the λ-calculus and the Krivine abstract
machine [9], allowing to speak of both the equational theory and the
operational semantics. It also sheds more light on the relationship
between CBN and CBV: the full calculus is not confluent because of
the Lafont critical pair [8]

c1[︀µ̃x . c2(︀α ⌉︀ ⊲ ∐︀µα . c1 ⋃︀⋃︀ µ̃x . c2̃︀ ⊳ c2[︀µα . c1(︀x ⌉︀

where µα . c1 represents “the result of running the computation c1”
and and µ̃x . c2 represents the context let x = ◻ inc2, so that the
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critical pair can be reformulated (if we restrict ourselves to the
intuitionistic fragment) as

let x = T 1 inT 2
⊲ let x = T 1 inT 2

⊳ T 2
[︀T 1
(︀x ⌉︀

(where the underlined subterm is the one that the machine is cur-
rently trying to evaluate). This is exactly the distinction between
CBV (where we want to evaluateT 1 before substituting it), and CBN
(where we substitute it immediately). Since CBV is syntactically
dual to CBN in λµµ̃, the additional difficulty in the study of CBV can
be understood as coming from the restriction to the intuitionistic
fragment (as illustrated in Figures A.1 and A.2) which breaks this
symmetry.
Surprisingly, those two lines of work (CBPV and λµµ̃) lead to

very similar calculi (especially if one looks at the abstract machine
of CBPV), and both can be combined into a polarized sequent calcu-
lus LJηp [2], an intuitionistic variant of (a syntax for) Danos, Joinet
and Schellinx’s LKηp [4]. The main difference between (the abstract
machine of) CBPV and LJηp is the same as that of the Krivine ab-
stract machine and the CBN fragment of λµµ̃: Subcomputations
are also represented by subcommands / subconfigurations, so that
the “abstract machine style” evaluation is no longer restricted to
the top-level. The difference between λµµ̃ and LJηp is that instead of
begin restricted to a single evaluation strategy (which is necessary
in λµµ̃ to preserve confluence), both are available, and commands
are annotated by a polarity + (for CBV) or − (for CBN) to denote the
current evaluation strategy, which removes the Lafont critical pair.
The type system also changes from classical logic to intuitionistic
logic with explicitly-polarised connectives.

In this article, we use a slight variation of LJηp which we will call
Lp, the main difference being that the calculus is untyped but well-
polarized. This calculus inherits many of the advantages of λµµ̃: it is
abstract-machine-like so that weak head evaluation is just top-level
reduction; commuting conversions are derivable and give rise to a
confluent reduction; the classical (as in classical logic) binder µ is
available and the full calculus exhibits a perfect symmetry between
CBN and CBV; it is easy to restrict to the intuitionistic fragment,
and the way in which this breaks the symmetry gives some insight
into why CBV is harder than CBN; applicative contexts can be
represented by stacks and plugging a term in an applicative context
can therefore be seen a substituting a stack for a stack variable. It also
inherits many of the advantages of CBPV: It subsumes CBN and CBV
and allows mixing both evaluation strategies; it has nice models;
and natural η-conversion laws. The additional restriction to well-
polarized terms restricts the possible shapes of clashes (i.e. pattern-
matching failures). It also makes the “dynamically typed” variant
(in which pattern-matches match over all constructors) clashless.
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Goals
Given a calculi, one has two choices of syntax: a λ-calculus-like /
natural-deduction-like syntax or an abstract-machine-like / sequent-
like syntax. Both choices are equivalent in terms of what they repre-
sent, and it is easy to translate terms from one to the other. However,
for most, if not all, uses, the abstract-machine-like syntax will make
everything (definitions, proofs, getting intuition, ...) easier. The cost
of using an abstract-machine-like syntax is unfortunately still very
high: One has to step out of the well-known syntax of the λ-calculus,
therefore making results more difficult to understand by many, and
one often does not have the space to describe everything in both
variants of the calculus1. The main goals of this article are:
● To provide a self-contained introduction to abstract-machine-
like calculi, by showing all the steps involved in transforming
a λ-calculus-like into an abstract-machine-like syntax;
● To provide a self-contained description of Lp, its equivalent
λ-calculus-like syntax λp, and its link with well known calculi
(call-by-name and call-by-value λ-calculi, Call-by-push-value,
...);
● To convince the reader that the abstract-machine-like syntax
indeed makes (nearly) everything (definitions, proofs, getting
intuition, ...) easier;
● To put forward and motivate the use of dynamically typed /
bi-typed calculi for the study of untyped programs.

The main technical contributions of this article is the introduc-
tion of the λ→&⇑⊗⊕⇓

p calculus and the description of its relation
with L→&⇑⊗⊕⇓

p and Call-by-push-value, and hence of the relation
between L→&⇑⊗⊕⇓

p and Call-by-push-value. Minor technical contribu-
tions include: The concise description of the intuitionistic fragment
L→&⇑⊗⊕⇓
p , a syntactic description of the direct-style embedding of

CBV in CBN with downshifts.

Outline
In Section 1, we introduce a pure polarized calculus λ→p and embed
the call-by-name and call-by-value λ-calculi in it. In Section 2, we
extend λ→p with datatypes, yielding λ→&⇑⊗⊕⇓

p and describe its relation
to Call-by-push-value. In Section 3, we describe the progressive
transformation of a λ-calculus-like syntax into an abstract-machine-
like syntax, and give an abstract-machine-like syntax to λ→&⇑⊗⊕⇓

p :
L→&⇑⊗⊕⇓
p . In Section 4, we look at solvability and η-conversion in

L→&⇑⊗⊕⇓
p , showcasing its advantages.

Conventions and notations
In this article, we will describe many calculi, and will use the same
conventions for all of them.

Calculi. We write T (︀V ⇑x⌋︀ for the capture-avoiding substitution of
the free occurrences of x by V in T . We also use contexts KKKKKKKKKKKKKKKKK, i.e.
expressions (terms, values, ...) with a hole ◻. We also write TTTTTTTTTTTTTTTTT for a
term with a hole, VVVVVVVVVVVVVVVVV for a value with a hole, ...). We write KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKT for the

1This leads some authors to resigning themselves to doing everything in the λ-calculus-
like syntax, even though the intuition comes from the abstract-machine-like syntax
[17]. (One can search “sequent” to find mentions of the abstract-machine-like syntax)

result of plugging T in KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK, i.e. the result of the non-capture-avoiding
substitution of the unique occurrence of ◻ by T in KKKKKKKKKKKKKKKKK.
Similar constructions in different calculi will be differentiated

by adding a symbol: n for call-by-name, v for call-by-value, p for
polarized (or + and − when the polarized calculus contains two vari-
ants). We also differentiate between λ-calculus-like calculi, whose
termsT, valuesV, and the rest are denoted by uppercase letters, and
abstract-machine-like calculi whose terms t , values v , and the rest
are denoted by lowercase letters.

The translation of a term (or value, or ...) into another calculi will
be denoted by the term underlined, with a subscript specifying the
target calculus. For example Tnv is the translation of call-by-name
λ-term Tn into the call-by-value λ-calculus.

Reductions. We use three reductions: The top-level reduction ≻ is
used to factor the definitions of the two other reductions. The oper-
ational reduction ⊳ is the one that defines the operational semantics
of the calculus, and can be defined as the closure or the top-level re-
duction ≻ under a chosen set of contexts, called operational contexts
and denoted by OOOOOOOOOOOOOOOOO. For all the calculi in this paper, the operational
reduction ⊳ is deterministic (i.e. T1 ⊲ T ⊳ T2 implies T1 = T2). The
strong reduction→ defines the (oriented) equational theory, and is
defined as the closure of the top-level reduction ≻ under all contexts
(i.e. it can reduce anywhere). Since it is both simple and long, its
definition will remain implicit for all calculi.
We write ↝ for an arbitrary reduction (i.e. an arbitrary binary

relation whose domain and codomain are equal). Given a reduction
↝, we write ↝+ for its transitive closure and ↝∗ for its reflexive
transitive closure. We say that T ↝-reduces to T ′, written T ↝ T ′,
when (T ,T ′) ∈↝. Relations will sometimes be used as predicate in
which case the second argument is to be understood as existentially
quantified (e.g. T ↝ means that there exists T ′ such that T ↝ T ′)
unless the relation is striked in which case it should be understood
as universally quantified (e.g. T ⇑↝ means that for all T ′, T ⇑↝ T ′, in
other words there exists noT ′ such thatT ↝ T ′). We will say thatT
is↝-reducible if T ↝ and↝-normal otherwise. We will say that T ′
is a↝-normal form ofT ifT ↝∗ T ′ ⇑↝, and thatT has an↝-normal
form if such a T ′ exists. If ↝ is deterministic, we will say that T
↝-converges if it has a normal form, and that it diverges otherwise.

1 PURE λ-CALCULI

1.1 Pure call-by-name λ-calculus
We recall the pure call-by-name λ-calculus, we which we will call
λ→n , in Figure 1.1. When compared with the usual presentation, there
are a few slight differences. First, in order to differentiate it from the
other calculi that will be introduced, we added n everywhere and
haveTn@nVn instead ofTnVn in the formal syntax for the application
of Tn to Vn. We will still write TnVn for Tn @n Vn (and TnVnWn for
(TnVn)Wn) when the calculus in which the application takes place is
clear. Secondly, since we are in a call-by-name calculus, there is no
distinction between terms Tn and values Vn, and both can be used
interchangeably. We will nevertheless nameVn any term that will be
substituted for a variable to keep the naming convention similar to
that of the call-by-value calculi. Thirdly, we added let-expressions
let xn

= Vn inTn, even though they behave exactly like (λxn.Tn)Vn,

, Vol. 1, No. 1, Article . Publication date: May 2020. 2020-05-23 11:03. Page 2 of 1–15.
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Terms / values:
Tn,Un,Vn,Wn ∶∶= xn

⋃︀ λxn.Tn ⋃︀ Tn @n Vn ⋃︀ let xn
= Vn inTn

(a) Syntax

(λxn.Tn)@n Vn ≻ Tn(︀Vn⇑x
n
⌋︀

let xn
= Vn inTn ≻ Tn(︀Vn⇑x

n
⌋︀

(b) Top-level reduction

Operational contexts:
OOOOOOOOOOOOOOOOOn ∶∶= ◻ ⋃︀ OOOOOOOOOOOOOOOOOn @n Vn

Tn ≻ T
′
n

OOOOOOOOOOOOOOOOOnTn ⊳ OOOOOOOOOOOOOOOOOnTn

(c) Operational reduction

Fig. 1.1. Pure call-by-name λ-calculus: λ→n

Values:
Vv,Wv ∶∶= xv

⋃︀ λxv.Tv

Terms:
Tv,Uv ∶∶= valv (Vv) ⋃︀ Tv @v Vv ⋃︀ let xv

= Tv inUv

(a) Syntax

(λxv.Tv)@v Vv ≻ Tv(︀Vv⇑x
v
⌋︀

let xv
= Vv inTv ≻ Tv(︀Vv⇑x

v
⌋︀

(b) Top-level reduction

Operational contexts:
OOOOOOOOOOOOOOOOOv ∶∶= ◻ ⋃︀ OOOOOOOOOOOOOOOOOv @v Vv ⋃︀ let xv

= OOOOOOOOOOOOOOOOOv inUv

Tv ≻ T
′
v

OOOOOOOOOOOOOOOOOvTv ⊳ OOOOOOOOOOOOOOOOOvTv

(c) Operational reduction

Fig. 1.2. Pure call-by-value λ-calculus: λ→v

because their translations into other calculi will be simpler than
that of (λxn.Tn)Vn.

1.2 Pure call-by-value λ-calculus
We recall the pure call-by-value λ-calculus, which we will call λ→v ,
in Figure 1.2. We again added v everywhere, haveTv@vVv instead of
TvVv, and added let-expressions.We alsomade the inclusion of values
into terms explicit: The value Vv seen as a term is valv (Vv), and not
just Vv. Since the context-free grammar remains non-ambiguous
without it, we will leave this conversion implicit most of the time,
for example writing λxv.xv for the identity instead of λxv. valv (xv

).
This will however be useful when translating from λ→v to another
language as we can translate Vv and valv (Vv) differently (as is done
in Figure 1.6).

We also restricted the application so that the argument has to be
a value, i.e. the application is TvVv and not TvUv. Note that there are
4 possibilities (TvUv,VvUv,TvWv orVvWv) and that those are all equiv-
alent in terms of expressiveness because we can let-expand terms:
let xv

= Tv in letyv
= Uv inxvyv simulates TvUv with left-to-right

evaluation (i.e. evaluation of Tv beforeUv) and letyv
= Uv in let xv

=

Tv inxvyv simulates TvUv with right-to-left evaluation (i.e. evalua-
tion of Uv before Tv). There are two reasons for our choice of not
allowing terms as arguments:

First, the calculi in which we will embed λ→v naturally restricts the
argument to being a value, and allowing terms as arguments would
therefore make the embeddings more complex: The translation of
TvUv orVvUv would have to contain the let-expansion. In other words,
we would be describing the composition of let-expansion (i.e. the
translation from λ→v withTvUv to λ→v withTvVv) with the translation
from λ→v with TvVv to the other calculus.

Secondly, it condenses the difference between call-by-name and
call-by-value to a single spot: let-expressions. If TvUv or VvUv are
allowed, then the reductions for the application also differ between
call-by-value and call-by-name.

1.3 Relative expressiveness of call-by-name and
call-by-value

The fundamental distinction between call-by-name and call-by-
value is how let-expressions are reduced, as shown below. In call-
by-name a let-expression let x = T inU is immediately reduced to
U(︀T⇑x ⌋︀ because any T is a value, whereas in call-by-value the term
T is first reduced until is reaches a valueW (and if it never does,
i.e. T diverges, then so does let x = T inU) and only then does the
substitution happen.

let xn
= Tn inUn = let xn

= Vn inUn ⊳ Un(︀Vn⇑x
n
⌋︀

let xv
= Tv inUv ⊳

∗ let xv
=Wv inUv ⊳ Tn(︀Wn⇑x

n
⌋︀

With that in mind, we now look at how λ→n and λ→v can be em-
bedded in each other in direct style (i.e. not in continuation-passing
style). In section 1.3.1, we give an embedding of λ→v into a slight
extension of λ→n called λ→⇓n , and in section 1.3.2, we give an em-
bedding of λ→n into a slight extension of λ→v called λ→⇑v . Since there
is a translation from λ→⇑v to λ→v , we could have embedded λ→n into
λ→v directly, but introducing λ→⇑v makes the translation easier to
understand, and the duality between CBN and CBV more apparent.

1.3.1 Embedding call-by-name in call-by-value. The extension of
λ→v , called λ→⇑v , is defined in Figure 1.3. Given a computation
Tv, we add freezev (Tv) which represents the computation Tv

paused: freezev (Tv) ⇑⊳. The computation can later be resumed:
unfreezev ( freezev (Tv)) ⊳ Tv. Since freezev (Tv) is a value, we can
now pass “paused” computations to functions, and let these func-
tions resume the computation if needed by means of the unfreezev
construction. In a typed calculus, freezev would be the constructor
of a type ⇑A called upshift, and unfreezev its destructor, as shown
in Figure 1.3. Both freezev and unfreezev can actually be encoded
in λ→v so that there is a translation λ→⇑v → λ→v . The idea is that we
can take freezev (Tv) = λx

v.Tv and unfreezev (Vv) = VvWv where xv

is an arbitrary fresh variable, andWv an arbitrary value. The reduc-
tion unfreezev ( freezev (Tv)) ⊳ Tv then becomes (λ_v.Tv)Wv ⊳ Tv.
In programming languages that have a unit type with a unique
inhabitant ()v, it is common to take freezev (Tv) = λ()v.Tv and
unfreezev (Vv) = Vv()

v which work exactly the same except with
two additional advantages: There are no arbitrary choices for the
variable xv and the valueWv, and the fact that xv is not free in Tv is
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Values:
Vv,Wv ∶∶= ⋅ ⋅ ⋅ ⋃︀ freezev (Tv)

Terms:
Tv,Uv ∶∶= ⋅ ⋅ ⋅ ⋃︀ unfreezev (Vv)

(a) Syntax

unfreezev ( freezev (Tv)) ≻ Tv

(b) Top-level reduction

Γ ⊢ Tv ∶ Av

Γ ⊢ freezev (Tv) ∶ ⇑Av

Γ ⊢ Vv ∶ ⇑Av

Γ ⊢ unfreezev (Vv) ∶ Av

(c) Typing

Fig. 1.3. Call-by-value λ-calculus with upshift: λ→⇑v

⋅ v ∶ Tn → Tv

xn
v

def
= unfreezev (xv

)

λxn.Tnv
def
= λxv.Tnv

Tn @n Vnv
def
= Tnv @

v freezev (Vnv)

let xn
= Vn inUnv

def
= let xv

= freezev (Vnv) inUnv

Fig. 1.4. Embedding of λ→n into λ→⇑v

easier to see. In terms of types, this means that we can encode ⇑A
as ⇑A = unit→A .
The embedding λ→n ↪ λ→⇑v is described in Figure 1.4. The idea is

that we wrap every term Tv to make it a value freezev (Tv) if it is
meant to be substituted for a variable, and then use unfreezev on
variables to restart the computations after the substitution.

1.3.2 Embedding call-by-value in call-by-name. The extension of
λ→n , called λ→⇓v , is described in Figure 1.3. The idea is that in λ→n
there is no way of distinguishing a value λxn.Tn from an arbi-
trary term Un because two η-convertible terms can not be distin-
guished (internally) and Un =η λx

n.Unx
n. We therefore add a way

to “mark” a termTn by placing it under boxn: boxn (Tn). We also add
a match matchTn with (︀ boxn (xn

).Un⌋︀ that forces the evaluation
of Tn until it reaches a marked term boxn (Vn). In a typed calcu-
lus, boxn would be the constructor of a type ⇓A called downshift,
and matchTn with (︀ boxn (xn

).Un⌋︀ its associated pattern-match, as
shown in Figure 1.5.
Note that the pattern-match allows to define a destructor

unboxn (Tn)
def
= matchTn with (︀ boxn (xn

).xn
⌋︀, with the expected

induced reduction unboxn ( boxn (Tn)) ⊳ Tn. The destructor, how-
ever, does not allow to define the pattern-match. Indeed, one
could try to define the pattern-matchmatchTn with (︀ boxn (xn

).Un⌋︀

as let xn
= unboxn (Tn) inUn but since this is a call-by-name let-

expression, it will immediately reduce to Un(︀unboxn (Tn)⇑x
n
⌋︀ while

the match would first reduce Tn until it reaches a boxn. Note how-
ever that in a call-by-value calculus, the pattern-match could be
expressed using the destructor because let xv

= unboxv (Tv) inUv

Terms / values:
Tn,Un,Vn,Wn ∶∶= ⋅ ⋅ ⋅ ⋃︀ boxn (Vn) ⋃︀ matchTn with (︀ boxn (xn

).Un⌋︀

(a) Syntax

match boxn (Vn)with (︀ boxn (xn
).Un⌋︀ ≻ Un(︀Vn⇑x

n
⌋︀

(b) Top-level reduction

Operational contexts:
OOOOOOOOOOOOOOOOOv ∶∶= ⋅ ⋅ ⋅ ⋃︀ matchOOOOOOOOOOOOOOOOOv with (︀ boxn (xn

).Un⌋︀

(c) Operational reduction

Γ ⊢ Tn ∶ An

Γ ⊢ boxn (Tn) ∶ ⇓An

Γ ⊢ Tn ∶ ⇓An Γ,xn
∶ An ⊢ Un ∶ Bn

Γ ⊢ matchTn with (︀ box
n
(xn
).Un⌋︀ ∶ Bn

(d) Typing

Fig. 1.5. Call-by-name λ-calculus with downshift: λ→⇓n

would also start by reducing Tv as expected. In a way, the pattern-
match is inherently call-by-value, which is why adding it to the
call-by-name calculus will allow us to embed call-by-value in direct
style.
This boxn operator is not really common in programming

languages but some other constructors are, including pairs. Let us
imagine that we add pairs (Vn⊗nWn) of type An ⊗Bn to the calculus,
and the correspondingmatchmatchTn with (︀(xn⊗nyn

).Un⌋︀with the
reduction match (Vn⊗nWn)with (︀(xn⊗nyn

).Un⌋︀ ⊳ Un(︀Vn⇑x
n,Wn⇑y

n
⌋︀.

The constructor boxn (Tn) can then be encoded as (Tn⊗nVn) where
Vn is an arbitrary term, and the matchmatchTn with (︀ boxn (xn

).Un⌋︀

by matchTn with (︀(xn⊗nyn
).Un⌋︀ with yn fresh. Just like when

encoding freezev (Tv) as λ()v.Tv instead of λxv.Tv, the in-
tended behavior becomes more apparent by replacing
unused variables and values by ()n, so that boxn (Tn) be-
comes (Tn⊗n

()
n
) and matchTn with (︀ boxn (xn

).Un⌋︀ becomes
matchTn with (︀(xn⊗n

()
n
).Un⌋︀. In a typed calculus, this would

correspond to encoding ⇓An as ⇓An = An ⊗ unit.
The embedding λ→n ↪ λ→⇑v is described in Figure 1.6. The idea is

to translate values as expected with the ⋅ n part of the translation,
and then use boxn to mark values, i.e. we translate valv by boxn. We
then extract the actual value when applying it or substituting it for
a variable.
One way to think of this translation in the well-typed fragment

is that boxn and its pattern-match provide a runnable monad [5]
as explained in [14, 15]. A computation of type A is represented as
an element ofMA = ⇓A , and the monadM has an extra operation
run ∶ MA → A that runs the computation, in addition to the usual
ones: return ∶ A → MA and bind ∶ MA → (A → MB)→ MB . Here,
return is boxn, bind(Tn,Un) is matchTn with (︀ boxn (xn

).Unx
n
⌋︀ and

run is unboxn. This translation is dual to the one done to encode
CBN in CBV.

1.4 Pure polarized λ-calculus
1.4.1 Syntax.
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514

515

516
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527

528
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⋅ n ∶ Vv → Tn

xv
n

def
= xn

λxv.Tv n
def
= λxn.Tvn

⋅ n ∶ Vv → Tn

valv (Vv)
n

def
= boxn (Vv n)

Tv @v Vvn
def
= unboxn (Tvn)@

n Vv n

let xv
= Tv inUvn

def
= matchTvn with (︀ box

n
(xn
).Uvn⌋︀

Fig. 1.6. Embedding of λ→v into λ→⇓n

We now introduce a pure polarized calculus λ→⇑⇓p described in
Figure 1.7. Just like call-by-name was annotated with n and call-by-
value with v, we annotate most constructors by either p, if there is
only one variant of this construction in the calculus, or + and −
if there are two variants. When it does not lead to ambiguity, we
will remove the p. In this calculus, there are 3 syntactical categories:
positive valuesV+, positive termsT+, and negative values / termsT−.
Values are the terms that can be substituted for variables, so that
a negative variable x− can be substituted by any negative term T−
because the same term is also a value V−, but a positive variable x+
can only be substituted by a positive valueV+ (in this pure case, this
means either another variable y+ or box (V−), but in general it can
also include, for example, booleans true and false, and positive pairs
(V⊗W)). The distinction between the two polarities + and − is that
the positive polarity + represents call-by-value while a negative
polarity − represents call-by-name. The distinction is best seen on
let-expressions: letε x− = T− inUε will immediately substituteT− for
x− (because any negative termT− is also a negative valueV−), while
letε x+ = T+ inUε will start by reducing T+ to a valueW+ and then
substitute that value for x+:

letε x− = T− inUε = letε x− = V− inUε ⊳ Uε (︀V−⇑x
−
⌋︀

letε x+ = T+ inUε ⊳
∗ letε x+ =W+ inUε ⊳ Uε (︀V+⇑x

+
⌋︀

Note that the polarity ε1 in letε1 x ε2 = Tε2 inUε1 or
matchε1 T+with (︀ box (x+).Uε1⌋︀ is only here to remind us
whether we are building a positive termU+ (i.e. ε1 = +) or negative
term U− (i.e. ε1 = − ). Since it does not matter for the reduction,
and the grammar would still be unambiguous without it, it could
be removed. We nevertheless keep it because it makes knowing
if a term is positive or negative very easy, whereas without it,
one may have to look deep into the term to know. For example
let x+ = V+ in lety− =W− inTε is a term of polarity ε but one has to
read the whole term before realizing it, whereas with our notation
it is immediately clear that letε x+ = V+ in letε y− = W− inTε is a
term of polarity ε . The polarity ε2 on the variable x ε2 however
impacts the reduction as shown above.

V+ V−

T+

⊆

box

free
ze

Fig. 1.8. Shifts

1.4.2 Shifts. In order to go from one
polarity to the other, one uses shifts,
as described in Figure 1.8: boxp (V−)
is a positive value, and freezep (T+)
is a negative value. Both can be in-
verted: unboxp ( boxp (V−)) ⊳ V− and

unfreezep ( freezep (T+)) ⊳ T+. Common
names for box / unbox include wrap /
unwrap [14] and thunk / force [10], and
common names for freeze / unfreeze include delay / force [14] and
return [10] (for freeze, and unfreeze is not present there). To remem-
ber which shift goes in which direction, one can notice that freeze
goes from positive to negative, so that one can think of polarities
as temperatures, and box goes the other way. The intuitions about
boxn and freezev given in section 1.3 also apply to boxp and freezep:
We can think of boxp as being a pattern-match-able constructor, of
freezep (T+) as being λ()+.T+, and of unfreezep (V−) as beingV−()+.
Note however that functions λx+.T− have a negative body T− so
that freezep is not expressible with functions (because we would
need functions λx+.T+ with a positive body T+).

In fact, functions with a positive body λx+.T+ will be encoded as
λx+. freezep (T+). More generally, we can encode functions λx ε1 .Tε2
that take an argument of arbitrary polarity ε1, and returns a term of
arbitrary polarity ε2, and the corresponding application T−@ε1 ,ε2

Vε1 so that (λx ε1 .Tε2)@
ε1 ,ε2 Vε1 ⊳

+ Tε2(︀Vε1⇑x
ε1⌋︀. Some encodings

are given in Figure 1.9. In the typed variant of the calculus, these
encodings would correspond to using whatever shift is needed to
make the domain positive and the codomain negative: A− → B−
becomes (⇓A−)→ B−, A+ → B+ becomes A+ → (⇑B+) and A− →
B+ becomes (⇓A−)→ (⇑B+). We give two encodings for λx−.T+
because we see no reason to prefer one over the other since the
only difference is the order in which they remove the two shifts of
(⇓A−)→ (⇑B+). Those are not the only possible encodings, but
are the simplest ones.

1.4.3 Embedding call-by-name and call-by-value. When trying to
embed a calculus into a polarized calculus such as λ→⇑⇓p , the first
choice that one has to make is the polarity of the translations of
terms, values and variables. It is often a good idea to use the same
polarity for variables and values, so thatT(︀V⇑x⌋︀ can be translated to
Tε1(︀Vε2⇑x

ε2⌋︀. The polarities of terms and values however should be
chosen to match the source calculus as closely as possible, without
necessarily being the same (and indeed we will see in section 2.2 that
in call-by-push-value, values are positive and terms are negative).
An embedding of λ→n into λ→⇑⇓p (or even into λ→⇓p since we use

neither freezep nor unfreezep) is described in Figure 1.10: Terms Tn

are sent to negative terms T−, with functions λxn.Tn being sent to
the encoding of λx−.T− described in Figure 1.9, and let-expressions
let xn

= Tn inUn being sent to let− x− = T− inU−. In terms of types
this corresponds to call-by-name types being sent to negative types,
with An → Bnp

def
= (⇓Anp)→ Bnp.

An embedding of λ→v into λ→⇑⇓p is described in Figure 1.11: Terms
Tv are sent to positive terms T+ and values Vv to positive values
V+, with functions λxv.Tv being sent to the encoding of λx+.T+
described in Figure 1.9 wrapped in boxp to make them positive, and
let-expressions let xv

= Tv inUv being sent to let+ x+ = T+ inU+. In
terms of types, this corresponds to call-by-value types being sent to
positive types, with Av → Bvp

def
= ⇓ (Avp → (⇑Bvp)).
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Positive values:
V+,W+ ∶∶= x+

⋃︀ boxp (V−)

Negative values / terms:
V−,W−,T−,U− ∶∶= x− ⋃︀ let− x+ = T+ inU− ⋃︀ let− x− = V− inU−

⋃︀ λx+.T− ⋃︀ T−@p V+
⋃︀ freezep (T+)
⋃︀ match−T+with (︀ boxp (x−).U−⌋︀

Positive terms:
T+,U+ ∶∶= valp (V+) ⋃︀ let+ x+ = T+ inU+ ⋃︀ let+ x− = V− inU+
⋃︀ unfreezep (T−)
⋃︀ match+T+with (︀ boxp (x−).U+⌋︀

Polarities:
ε ∶∶= + ⋃︀ −

Notations:
unboxp (V+)

ntn
= match−V+with (︀ boxp (x−).x−⌋︀

(a) Syntax of the pure polarized λ-calculus λ→⇑⇓p

letε1 x ε2 = Vε2 inTε1 ≻let Tε1(︀Vε2⇑x
ε2⌋︀

(λx+.T−)V+ ≻→ T−(︀V+⇑x
+
⌋︀

unfreezep ( freezep (T+)) ≻⇑ T+
matchε boxp (V−)with (︀ boxp (x−).Tε ⌋︀ ≻⇓ Tε (︀V−⇑x

−
⌋︀

(b) Top-level reduction

unboxp ( boxp (V−)) ≻ V−
(c) Induced top-level reductions

Negative operational contexts:
OOOOOOOOOOOOOOOOO− ∶∶= ◻−
⋃︀ OOOOOOOOOOOOOOOOO−@p V+

Positive operational contexts:
OOOOOOOOOOOOOOOOO+ ∶∶= ◻+ ⋃︀ letε x+ = OOOOOOOOOOOOOOOOO+ inUε

⋃︀ unfreezep (OOOOOOOOOOOOOOOOO−)
⋃︀ matchε OOOOOOOOOOOOOOOOO+with (︀ boxp (x−).Uε ⌋︀

Notation:
OOOOOOOOOOOOOOOOOε1↝ε2 for OOOOOOOOOOOOOOOOOε2 such that the hole it contains is ◻ε1

Tε1 ≻ T
′
ε1

OOOOOOOOOOOOOOOOOε1↝ε2Tε1 ⊳ OOOOOOOOOOOOOOOOOε1↝ε2T
′
ε1

(d) Operational contexts and reduction

Fig. 1.7. Pure polarized λ-calculus λ→⇑⇓p

λx+.T−
ntn
= λx+.T− T−@+,− V+

ntn
= T−V+

λx−.T−
ntn
= λy+.match−y+with (︀ box (x−).T−⌋︀ T−@−,− V−

ntn
= T− box (V−)

λx+.T+
ntn
= λx+. freeze (T+) T−@+,+ V+

ntn
= unfreeze (T−V+)

λx−.T+
ntn
= λy+.match−y+with (︀ box (x−). freeze (T+)⌋︀ T−@−,+ V−

ntn
= unfreeze (T− box (V−))

λx−.T+
ntn
= λy+. freeze (match+y+with (︀ box (x−).T−⌋︀) T−@−,+ V−

ntn
= unfreeze (T− box (V−))

Fig. 1.9. Encoding functions λx ε1 .Tε2 in λ
→⇑⇓

p

⋅ p ∶ Tn → T−

xn
p

def
= x−

λxn.Tnp
def
= λy+.match−y+with (︀ boxp (x−).Tnp⌋︀

Tn @n Vnp
def
= Tnp @

p boxp (Vnp)

let xn
= Vn inUnp

def
= let− x− = Vnp inUnp

Fig. 1.10. An embedding of λ→n into λ→⇑⇓p

2 λ-CALCULI WITH DATATYPES

2.1 Polarized λ-calculus with datatypes

We now extend the syntax of λ→⇑⇓p which yields λ→&⇑⊗⊕⇓
p as de-

scribed in Figure 2.1. The new supscripts are the names of the type
constructors that correspond to the expressions we added to the
calculus. We already had functions λx+.T− ∶ A+ → B−, upshifts
freezep (T+) ∶ ⇑A+ and downshifts boxp (V−) ∶ ⇓A−. We now add
positive / strict pairs (V+⊗pW+) ∶ A+ ⊗ B+; sums ιi p (V+) ∶ A+ ⊕ B+;
and negative / lazy pairs (V− &pW−) ∶ A− & B−.

⋅ p ∶ Vv → V+

xv
p

def
= x+

λxv.Tv p
def
= boxp (λx+. freezep (Tvp))

⋅ p ∶ Tv → T+

valv (Vv)
p

def
= Vv p

Tv @v Vvp
def
= unfreezep (unboxp (Tvp)@

p Vv p)

let xv
= Tv inUvp

def
= let− x+ = Tvp inUvp

Fig. 1.11. An embedding of λ→v into λ→⇑⇓p

Negative term are lazy, i.e. they will evaluate only when they
are used, while positive terms are eager and will evaluate as soon
are they are built. This is the distinction between a positive pair
(V+⊗W+) and a negative pair (V− &W−): Both components of the
pair (V+⊗W+) are already evaluated at the construction of the pair,
while the components of the pair (V−&W−)will only be evaluated if
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Positive values:
V+,W+ ∶∶= x+

⋃︀ (V+⊗pW+)
⋃︀ ι1

p
(V+) ⋃︀ ι2

p
(V+)

⋃︀ boxp (V−)

Negative values / terms:
V−,W−,T−,U− ∶∶= x− ⋃︀ let− x+ = T+ inU− ⋃︀ let− x− = T− inU−

⋃︀ λx+.T− ⋃︀ T−@p V+
⋃︀ (T− &p U−) ⋃︀ π

p
1 (T−) ⋃︀ π

p
2 (T−)

⋃︀ freezep (T+)
⋃︀ match−T+with (︀(x+⊗py+).U−⌋︀

⋃︀ match−T+with (︀ ι1
p
(x1

+
).U 1

− ⋃︀ ι2
p
(x2

+
).U 2

−
⌋︀

⋃︀ match−T+with (︀ boxp (x−).U−⌋︀

Positive terms:
T+,U+ ∶∶= V+ ⋃︀ let+ x+ = T+ inU+ ⋃︀ let+ x− = T− inU+
⋃︀ unfreezep (T−)
⋃︀ match+T+with (︀(x+⊗py+).U+⌋︀

⋃︀ match+T+with (︀ ι1
p
(x1

+
).U 1

+ ⋃︀ ι2
p
(x2

+
).U 2

+
⌋︀

⋃︀ match+T+with (︀ boxp (x−).U+⌋︀

Polarities:
ε ∶∶= + ⋃︀ −

Indices:
i ∶∶= 1 ⋃︀ 2

(a) Syntax

Positive types:
A+,B+ ∶∶= A+ ⊗ B+ ⋃︀ A+ ⊕ B+ ⋃︀ ⇓A−

Positive types:
A−,B− ∶∶= A+ → B− ⋃︀ A− & B− ⋃︀ ⇑A+

(b) Types of the polarized λ-calculus λ→&⇑⊗⊕⇓
p

matchε (V+⊗pW+)with (︀(x+⊗py+).Mε ⌋︀ ≻ Mε (︀V+⇑x
+,W+⇑x

+
⌋︀

matchε ιi
p
(V+)with (︀ ι1

p
(x1

+
).U 1

ε ⋃︀ ι2
p
(x2

+
).U 2

ε ⌋︀ ≻ U i
ε (︀V+⇑xi

+
⌋︀

matchε boxp (V−)with (︀ boxp (x−).Tε ⌋︀ ≻ Tε (︀V−⇑x
−
⌋︀

letε1 x ε2 = Vε2 inTε1 ≻ Tε1(︀Vε2⇑x
ε2⌋︀

(λx+.T−)V+ ≻ T−(︀V+⇑x
+
⌋︀

π p
i ((T

1
− &p T 2

−
)) ≻ T i−

unfreezep ( freezep (T+)) ≻ T+

(c) Top-level reduction

Negative operational contexts:
OOOOOOOOOOOOOOOOO− ∶∶= ◻−
⋃︀ OOOOOOOOOOOOOOOOO−@p V+
⋃︀ π p

1 (OOOOOOOOOOOOOOOOO−) ⋃︀ π
p
2 (OOOOOOOOOOOOOOOOO−)

Positive operational contexts:
OOOOOOOOOOOOOOOOO+ ∶∶= ◻+ ⋃︀ letε x+ = OOOOOOOOOOOOOOOOO+ inUε

⋃︀ unfreezep (OOOOOOOOOOOOOOOOO−)
⋃︀ matchε OOOOOOOOOOOOOOOOO+with (︀(x+⊗py+).Uε ⌋︀

⋃︀ matchε OOOOOOOOOOOOOOOOO+with (︀ boxp (x−).Uε ⌋︀

⋃︀ matchε OOOOOOOOOOOOOOOOO+with (︀ ι1p (x1+).U 1
ε ⋃︀ ι2

p
(x2

+
).U 2

ε ⌋︀

Notation:
OOOOOOOOOOOOOOOOOε1↝ε2 for OOOOOOOOOOOOOOOOOε2 such that the hole it contains is ◻ε1

Tε1 ≻ T
′
ε1

OOOOOOOOOOOOOOOOOε1↝ε2Tε1 ⊳ OOOOOOOOOOOOOOOOOε1↝ε2Tε1

(d) Operational contexts and reduction

Fig. 2.1. Polarized λ-calculus λ→&⇑⊗⊕⇓
p

a projection applied to it π i ((V− &W−)) is evaluated. It is common
to allow positive constructors to take terms as arguments instead
of values, for example allowing (T+⊗U+). This however means that
one has to add many more operational contexts, and pick some
arbitrary evaluation order (left-to-right or right-to-left). Instead, we
prefer to not allow (T+⊗U+) in the formal syntax and see it as a
notation for let+ x+ = T+ in let+y+ = U+ in (x+⊗y+) (for the left-to-
right variant), or let+y+ = U+ in let+ x+ = T+ in (x+⊗y+) (for the
right-to-left variant).

Of course, we have ways of delaying or forcing evaluation: shifts.
Using them, we could encode each pair using the other one as
seen in Figure 2.2. This encoding is valid when one only considers
evaluation, but not when one considers η-conversion.

2.2 Call-by-push-value
Call-by-push-value (CBPV) [11] is a well-known calculus that sub-
sumes both call-by-name and call-by-value. In this section, we de-
scribe its relation to λ→&⇑⊗⊕⇓

p .
In Figure 2.3, we recall the syntax of λ→&⇑⊗⊕⇓

p (which was given
in Figure 2.1) on the left, and of CBPV (figure 2 of [11]) on the right
(ignoring complex values for now). Terms and values that corre-
spond to each other are placed on the same line, and differences
are highlighted. There are a few minor differences when compared
with figure 2 of [11]: We only have binary sum and negative pairs,
we write (Vpv,Wpv)

pv for a pair instead of ∐︀V ,W ̃︀, and we add pv
everywhere. Through the translation described in Figure 2.4, values
of CBPVVpv correspond to positive valuesV+, and terms of CBPVTpv

correspond to negative terms. For shifts, thunkpv (Tpv) corresponds
to boxp (T−) (and its inverse forcepv (Vpv) to unfreezep (V+)

ntn
=

match−V+with (︀ boxp (x−).x−⌋︀), and returnpv (Vpv) corresponds to
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A+ ⊗ B+ ↝ ⇓ ((⇑A+)& (⇑B+))
(V+⊗W+) ↝ box (( freeze (V+) & freeze (W+)))

matchT+with (︀(x+⊗y+).Uε ⌋︀ ↝ matchT+with (︀ box (z−). let x+ = unfreeze (π 1 (z
−
)) in lety+ = unfreeze (π 2 (z

−
)) inUε ⌋︀

A− & B− ↝ ⇑ ((⇓A−)⊗ (⇓B−))
(V− &W−) ↝ freeze (( box (V−)⊗ box (W−)))
π i (V−) ↝ match unfreeze (V−)with (︀(x1

+⊗x2+). unbox (xi+)⌋︀

Fig. 2.2. Mutual expressiveness of positive and negative pairs

freezep (T+). The “inverse” of Tpv toxpv.Upv of returnpv (Vpv) corre-
sponds to let− x+ = unfreezep (T−) inU−.

The main difference between the two calculi is that λ→&⇑⊗⊕⇓
p has

positive terms while CBPV does not. The fact that one could want
to add more “values” to CBPV is acknowledged in [11], and leads
to the introduction of complex values (figure 12 of [11]) which can
be used anywhere a value could be used. Complex values are val-
ues that can be built using let-expressions and pattern-matches
on other values. Examples include the first projection of a value,
pmxpv as (︀(ypv,zpv)pv.ypv⌋︀, the result of swapping both components
of a pair pmxpv as (︀(ypv,zpv)pv. (zpv,ypv

)
pv⌋︀. We give a syntax for

a subset of complex values in Figure 2.3, and one can see that
they correspond to a subset of positive terms. Complex values in
[11] also allow let-expressions and pattern-matches deep in the
value, for example (xpv, letVpv beypv.Wpv)

pv. Here, to make the re-
semblance with our positive terms more striking, we prefer to dis-
allow this (which is why our syntax does not cover all complex
values) and think of (xpv, letVpv beypv.Wpv)

pv as being a notation
for letVpv beypv. (xpv,Wpv)

pv, just like (x+⊗p let+y+ = V+ inW+) is a
notation for let+y+ = V+ in (x+⊗py+).
Adding complex values has no effect on what computations

can be expressed, which is stated in proposition 14 of [11], and
proven using a translation from CBPV with complex values to
CBPV without complex values described in figure 13 of [11].
This translation sends computations to computations, and com-
plex values to computations that reduce to returnpv (Vpv). In our
calculus, this corresponds to sending negative terms to nega-
tive terms, and positive terms to negative terms that reduce to
freezep (V+) as follows: x+ is sent to freezep (x+), let+ x+ = T+ inU+
to let− x+ = unfreezep (T+) inU+ , match+T+with (︀(x+⊗py+).U+⌋︀
to match− unfreezep (T+)with (︀(x+⊗py+).U+⌋︀, and unfreezep (T−)
to let− x+ = unfreezep (T−) in freezep (x+). Note that in awell-typed,
strongly-normalizing, effect-free2, and closed setting, complex val-
ues reduce to (non-complex) values, and justifying that they have
no effect on the expressiveness of the calculus is therefore much
easier.
Since we can completely remove positive terms, the reader may

wonder why we have them in the first place. There are two rea-
sons. First, just like for complex values, they correspond to terms
we would like to write, and being able to write them directly is
more satisfying than having to encode them. Secondly, it allows
to have unfreezep (T−) instead of Tpv toxpv.Upv, which we believe to

2Effects are consequences of evaluating a term other than the result, for example
printing or storing a value in a mutable variable.

be slightly more primitive, and makes the corresponding L→&⇑⊗⊕⇓
p

calculus (that we will introduce in Section 3) perfectly symmetric.
The last remaining difference between the two calculi is that

CBPV has no negative variables. This is a minor difference and
there is a translation ⋅ from λ→&⇑⊗⊕⇓

p to itself without nega-
tive variables that sends x− to unboxp (x+), letε x− = V− inUε

to letε x+ = boxp (V−) inUε and matchε T+with (︀ boxp (x−).Uε ⌋︀ to
letε y+ = T+ inUε . Similarly, one could introduce computation vari-
ablesX pv in CBPV, encode them as forcepv (xpv

), and their associated
let-expressions letTpv beX pv.Upv as let thunkpv (Tpv) bexpv.Upv.

3 ABSTRACT MACHINE CALCULI

3.1 Abstract machines
Calculi presented via a natural-deduction syntax and whose reduc-
tions are defined through operational contexts tend to hide some
parts of the evaluation of real-word programming languages. Two
examples are the search for the position (in the term representing
the program) of the next redex to reduce according to the operational
reduction, and the propagation of substitutions. Abstract machines
more closely model how those are done in real-world programming
languages: An abstract machine will typically “remember” where it
is in the term, and “move” towards the next redex, and some abstract
machines have environments and closures instead of substitutions.

In this article, we will only introduce abstract machines of the first
kind. The remainder of this section takes place in the call-by-name
λ-calculus λ→n , and we will drop the n sup/subscripts. Note that after
the reduction OOOOOOOOOOOOOOOOO1OOOOOOOOOOOOOOOOO2

(λx .T)V ⊳ OOOOOOOOOOOOOOOOO1OOOOOOOOOOOOOOOOO2T(︀V⇑x ⌋︀ (where OOOOOOOOOOOOOOOOO2 ⇑= ◻), the
next reduction step can not involve OOOOOOOOOOOOOOOOO1, so that starting to search
for the next redex from the top of the term would be inefficient. A
concrete example is (((II)V 1) . . . )V k where I = λx .x . Using the
definition of the head reduction of Figure 1.1, we see that the only
way to infer that (((II)V 1) . . . )V k is reducible is to first infer that
(((II)V 1) . . . )V k−1 is and so on until we get to II which indeed
is reducible. It therefore takes a linear (in k) amount of time to
infer that (((II)V 1) . . . )V k

⊳ ((IV 1) . . . )V k . We then have to
start over: To infer that ((IV 1) . . . )V k is reducible, we need to infer
that ((IV 1) . . . )V k−1 is and so on until we get to IV 1. It again takes
a linear amount of time to infer that ((IV 1) . . . )V k

⊳ (V 1 . . . )V k :
Starting to look for the next redex to reduce from the top of the term
at each step is inefficient. In order to make this more efficient, one
can remember which term one was looking at by writing OOOOOOOOOOOOOOOOOT for
the term OOOOOOOOOOOOOOOOOT where the machine is currently looking at the subterm
T. When encountering an application, the machine moves to the left
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Positive values: Values:
V+,W+ ∶∶= x+ Vpv,Wpv ∶∶= xpv

⋃︀ (V+⊗pW+) ⋃︀ (Vpv,Wpv)
pv

⋃︀ ι1
p
(V+) ⋃︀ ι2

p
(V+) ⋃︀ (1,Vpv)

pv
⋃︀ (2,Vpv)

pv

⋃︀ boxp (V−) ⋃︀ thunkpv (Tpv)

Negative values / terms: Terms / computations:
V−,W−,T−,U− ∶∶= x− ⋃︀ let− x+ = T+ inU− ⋃︀ let− x− = T− inU− Tpv,Upv ∶∶= letVpv bexpv.Tpv

⋃︀ λx+.T− ⋃︀ T−@p V+ ⋃︀ λxpv.Tpv ⋃︀ Vpv‘Tpv

⋃︀ (T− &p U−) ⋃︀ π
p
1 (T−) ⋃︀ π

p
2 (T−) ⋃︀ λpv(︀1.T 1

pv ⋃︀ 2.T 2
pv⌋︀ ⋃︀ 1‘Tpv ⋃︀ 2‘Tpv

⋃︀ freezep (T+) ⋃︀ returnpv (Vpv) ⋃︀ Tpv toxpv.Upv

⋃︀ match−T+with (︀(x+⊗py+).U−⌋︀ ⋃︀ pmVpv as (︀(xpv,ypv
)
pv.Tpv⌋︀

⋃︀ match−T+with (︀ ι1
p
(x1

+
).U 1

− ⋃︀ ι2
p
(x2

+
).U 2

−
⌋︀ ⋃︀ pmVpv as (︀(1,x1pv)pv.T 1

pv ⋃︀ (2,x2pv)pv.T 2
pv⌋︀

⋃︀ match−T+with (︀ boxp (x−).U−⌋︀ ⋃︀ forcepv (Vpv)

Positive terms: Chosen complex values:
T+,U+ ∶∶= valp (V+) ⋃︀ let+ x+ = T+ in U+ ⋃︀ let+ x− = T− inU+ V c

pv ,W
c
pv ∶∶= Vpv ⋃︀ letV c

pv bex
pv.W c

pv

⋃︀ unfreezep (T−)

⋃︀ match+ T+ with(︀(x+⊗py+). U+ ⌋︀ ⋃︀ pmV c
pv as (︀(x

pv,ypv
)
pv.W c

pv⌋︀

⋃︀ match+ T+ with(︀ ι1p (x1+). U 1
+ ⋃︀ ι2

p
(x2

+
). U 2

+ ⌋︀ ⋃︀ pmV c
pv as (︀(1,x1pv)pv.W c ,1

pv ⋃︀ (2,x2pv)pv.W c ,2
pv ⌋︀

⋃︀ match+T+with (︀ boxp (x−).U+⌋︀

Fig. 2.3. Correspondence between the polarized λ-calculus λ→&⇑⊗⊕⇓
p (left) and CBPV→&⇑⊗⊕⇓ (right, from figures 2 and 12 of [11])

⋅ p ∶ Vpv → V+

xpv
p

def
= x+

(Vpv,Wpv)
pv

p

def
= (Vpv

p
⊗pWpv

p
)

(i,Vpv)
pv

p

def
= ιi

p
(Vpv

p
)

thunkpv (Tpv)
p

def
= boxp (Tpv

p
)

⋅ p ∶ Tpv → T−

pmVpv as (︀(xpv,ypv
)
pv.Tpv⌋︀

p

def
= match−Vpv

p
with (︀(x+⊗py+).Tpv

p
⌋︀

pmVpv as (︀(1,x1pv)pv.T 1
pv ⋃︀ (2,x2pv)pv.T 2

pv⌋︀
p

def
= match−Vpv

p
with (︀ ι1

p
(x1

+
).T 1

pv
p
⋃︀ ι2

p
(x2

+
).T 2

pv
p
⌋︀

forcepv (Vpv)
p

def
= unboxp (Vpv p

)

letVpv bexpv.Tpv
p

def
= let− x+ = Vpv p

inTpv
p

λxpv.Tpv
p

def
= λx+.Tpv

p
Vpv‘Tpv

p

def
= Tpv

p
@p Vpv p

λpv(︀1.T 1
pv ⋃︀ 2.T 2

pv⌋︀
p

def
= (T 1

pv
p
&p T 2

pv
p
)

i‘Tpv
p

def
= π p

i (Tpv
p
)

returnpv (Vpv)
p

def
= freezep (Vpv p

)

Tpv toxpv.Upv
p

def
= let− x+ = unfreezep (Tpv

p
) inUpv

p

Fig. 2.4. Translation from CBPV→&⇑⊗⊕⇓ to λ→&⇑⊗⊕⇓
p

part of the application OOOOOOOOOOOOOOOOOTV ⊳m OOOOOOOOOOOOOOOOOTV , and when it finally reaches a
λ-abstraction, it reduces OOOOOOOOOOOOOOOOO(λx .T)V ⊳r OOOOOOOOOOOOOOOOOT(︀V⇑x ⌋︀ , and then keeps
going down (if T is an application) or reducing and going up (if T is
a λ-abstraction). Note that the “move” reductions ⊳m are invisible
in the original calculus, while the “reduce” reduction ⊳r correspond

exactly to reductions in the original calculus. An example reduction
is given in the left column of Figure 3.1. The two reduction steps of
((((II)V 1)V 2) . . . )V k described above would yield the following
reduction in the abstract machine (where the second search for the

2020-05-23 11:03. Page 9 of 1–15. , Vol. 1, No. 1, Article . Publication date: May 2020.



1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

10 • Xavier Montillet

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

((λx . λy .xy)I)I ∐︀((λx . λy .xy)I)I ⋃︀ ⋆̃︀

⊳
m

⊳
m

((λx . λy .xy)I) I ∐︀(λx . λy .xy)I ⋃︀ I ● ⋆̃︀

⊳
m

⊳
m

((λx . λy .xy) I)I ∐︀λx . λy .xy ⋃︀ I ● I ● ⋆̃︀

⊳
r

⊳
r

(λy . Iy) I ∐︀λy . Iy ⋃︀ I ● ⋆̃︀

⊳
r

⊳
r

II ∐︀II ⋃︀ ⋆̃︀

⊳
m

⊳
m

I I ∐︀I ⋃︀ I ● ⋆̃︀

⊳
r

⊳
r

I ∐︀I ⋃︀ ⋆̃︀

Fig. 3.1. Example reduction in an abstract machine

next redex to reduce is immediate):

((((II)V 1)V 2) . . .)V k
⊳
k+1
m ((((I I)V 1)V 2) . . .)V k

⊳r (((I V 1)V 2) . . .)V k

⊳r ((V 1V 2) . . .)V k

Instead of OOOOOOOOOOOOOOOOOT it is common to write ∐︀T ⋃︀ OOOOOOOOOOOOOOOOÕ︀, which is often
called a configuration / command of the abstract machine. With
this notation, the reductions become ∐︀TV ⋃︀ OOOOOOOOOOOOOOOOÕ︀ ⊳m ∐︀T ⋃︀ OOOOOOOOOOOOOOOOO◻V ̃︀ and
∐︀λx .T ⋃︀ OOOOOOOOOOOOOOOOO◻V ̃︀ ⊳r ∐︀T(︀V⇑x ⌋︀ ⋃︀ OOOOOOOOOOOOOOOOÕ︀. Notice that contexts are used in
an inside-out fashion: The first part of the context the abstract
machine looks at is the innermost part. This leads to the “inside-
out” syntax for contexts: We write V ● OOOOOOOOOOOOOOOOO for OOOOOOOOOOOOOOOOO◻V and ⋆ for ◻, so
that ((◻V 1) . . . )V k

= ((◻ ◻V k ) . . .)◻V 1 is writtenV 1
● (⋯ ●

(V k
● ⋆)) where the arguments appear in the order in which they

will be (possibly) needed by the computation. With this syntax, the
reductions become

∐︀TV ⋃︀ OOOOOOOOOOOOOOOOÕ︀ ⊳m ∐︀T ⋃︀ V ●OOOOOOOOOOOOOOOOÕ︀
∐︀λx .T ⋃︀ V ●OOOOOOOOOOOOOOOOÕ︀ ⊳r ∐︀T(︀V⇑x ⌋︀ ⋃︀ OOOOOOOOOOOOOOOOÕ︀

If we replay the reduction of (λx . λy .xy)II , the right column of
Figure 3.1.

One way of thinking of the reduction in the calculus is that OOOOOOOOOOOOOOOOOT ⊳
OOOOOOOOOOOOOOOOOT ′ (where T ≻ T ′, i.e. OOOOOOOOOOOOOOOOO is chosen maximal in the decomposition)
if and only if OOOOOOOOOOOOOOOOOT ⊳∗m OOOOOOOOOOOOOOOOOT ⊳r OOOOOOOOOOOOOOOOOT ′ ⊲∗m OOOOOOOOOOOOOOOOOT ′ : We move downwards
until we reach something we can reduce, then reduce it, and move
upwards until we reach the top of the term. The “search for the
next redex” happening only once can then be seen simplifying the
reduction using the fact that ⊳m is deterministic (i.e T 1

⊲m T ⊳m T 2

implies T 1
= T 2) as shown in Figure 3.2.

3.2 Abstract machine calculi
As we have seen above, the ⊳ reduction of the abstract machine is
more precise than the one of the original calculus: The ⊳m moves
that were invisible in the calculus are now visible. Having a calcu-
lus plus an abstract machine leads to duplication of some lemmas,
and requires some other lemmas relating the two variants of many
operations (substitutions, reductions, ...) and properties (termina-
tion, closedness, ...). Fortunately, we can combine the advantages

of both the calculus (including being suited to reason about the
equational theory), and the abstract machine (including being able
to more precisely model evaluation) by representing subterms by
subcommands, which we will denote by c . Instead of moving the
focus marker ⋅ , the reduction steps ⊳r now simply removes it since
there is already another one waiting. In other words, the reduction
⊳r is now OOOOOOOOOOOOOOOOO(λx .T)V ⊳r OOOOOOOOOOOOOOOOOT(︀V⇑x ⌋︀ (instead of OOOOOOOOOOOOOOOOOT(︀V⇑x ⌋︀ ) because T
already has a focused subterm. With subterms being represented
represented as subcommands, we can define→m and→r by taking
the contextual closures of ⊳m and ⊳r . For example, (λx .xV)I will
be represented by (λx .xV )I and reduce as follows:

(λx .xV )(λy .y ) →m (λx .x V)(λy .y )
⊳
m

⊳
m

(λx .xV )(λy .y ) →m (λx .x V)(λy .y )

⊳
r

⊳
r

(λy .y )V ⊳m (λy .y )V⊳r V

In a more abstract-machine-like syntax, this would correspond to
the following:

∐︀(λx . ∐︀xV ⋃︀ ⋆̃︀)(λy . ∐︀y ⋃︀ ⋆̃︀) ⋃︀ ⋆̃︀ →m ∐︀(λx . ∐︀x ⋃︀ V ● ⋆̃︀)(λy . ∐︀y ⋃︀ ⋆̃︀) ⋃︀ ⋆̃︀

⊳
m

⊳
m

∐︀(λx . ∐︀xV ⋃︀ ⋆̃︀) ⋃︀ (λy . ∐︀y ⋃︀ ⋆̃︀) ● ⋆̃︀→m∐︀(λx . ∐︀x ⋃︀ V ● ⋆̃︀) ⋃︀ (λy . ∐︀y ⋃︀ ⋆̃︀) ● ⋆̃︀

⊳
r

⊳
r

∐︀(λy . ∐︀y ⋃︀ ⋆̃︀)V ⋃︀ ⋆̃︀ ⊳m ∐︀λy . ∐︀y ⋃︀ ⋆̃︀ ⋃︀ V ● ⋆̃︀⊳r∐︀V ⋃︀ ⋆̃︀

Notice that during a ⊳r step, the operational contexts are concate-
nated:

OOOOOOOOOOOOOOOOO1(λx .OOOOOOOOOOOOOOOOO2T )V ⊳r OOOOOOOOOOOOOOOOO1(OOOOOOOOOOOOOOOOO2T )(︀V⇑x ⌋︀ = ((OOOOOOOOOOOOOOOOO1OOOOOOOOOOOOOOOOO2)T )(︀V⇑x ⌋︀

where the concatenation OOOOOOOOOOOOOOOOO1OOOOOOOOOOOOOOOOO2 of two contexts is the
non-capture-avoiding substitution of ◻ by OOOOOOOOOOOOOOOOO2 in OOOOOOOOOOOOOOOOO1, i.e. for
OOOOOOOOOOOOOOOOO1
= ◻V 1 . . .V k and OOOOOOOOOOOOOOOOO2

= ◻W 1 . . .W l , we have OOOOOOOOOOOOOOOOO1OOOOOOOOOOOOOOOOO2
=

◻W 1 . . .W kV 1 . . .V l and the reduction above becomes:

(λx .TW 1
. . .W l)V 0 . . .V k

⊳
r

(T[︀V
0
(︀x ⌉︀W 1

)︀V 0
⇓x ⌈︀ . . .W l

)︀V 0
⇓x ⌈︀)V 1 . . .V k

In an abstract-machine-like calculus this reduction would be written:
∐︀λx . ∐︀T ⋃︀W 1

● ⋯ ●W l
● ⋆̃︀ ⋃︀ V 0

● ⋯ ●V k
● ⋆̃︀

⊳
r

∐︀T)︀V 0
⇓x ⌈︀ ⋃︀W 1

)︀V 0
⇓x ⌈︀ ● ⋯ ●W l

)︀V 0
⇓x ⌈︀ ●V 1

● ⋯ ●V k
● ⋆̃︀

Notice that if we were to think of ⋆ as a variable, then we could
write the following for the reduced command:

∐︀T ⋃︀W 1
● ⋯ ●W l

● ⋆̃︀[︀V 0
(︀x ,V 1

● ⋯ ●V k
● ⋆(︀⋆⌉︀

This observation leads to using the syntax µ<(x ● ⋆). c> instead of
λx . c , so that the reduction ⊳r becomes:

∐︀µ<(x ● ⋆). c> ⋃︀⋃︀ V ● S̃︀ ⊳r c(︀V⇑x ,S⇑⋆⌋︀

The notation µ<(x ● ⋆). c> for λx . c can be understood as stating
that λx . c pattern-matches the context. Similarly, a negative pair
(T 1 & T 2) will be written µ<(π 1 ● ⋆). c1 ⋃︀ (π 2 ● ⋆). c2> with the
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Fig. 3.2. Simplifying reductions in an abstract machine

intuition being again that (T 1&T 2) pattern matches the context just
above it, and then goes toT 1 orT 2 depending on which projection it
sees. With this intuition that terms “look at the operational context
they are evaluated in”, we add µ⋆. c with the reduction rule ∐︀µ⋆. c ⋃︀⋃︀
S̃︀ ⊳ c(︀S⇑⋆⌋︀. This allows to define the following constructions
as notations: TV ntn

= µ⋆. ∐︀T ⋃︀⋃︀ V ● ⋆̃︀ and π i (T)
ntn
= µ⋆. ∐︀T ⋃︀⋃︀ π i ● ⋆̃︀.

The calculi L→n,i and L→v,i, which are abstract-machine-like syntaxes
for λ→n and λ→v respectively are described in Figures A.1 and A.2.
The L→&⇑⊗⊕⇓

p calculus is described in Figure A.3 alongside a new
description of the syntax of λ→&⇑⊗⊕⇓

p , with the same layout to show
similarities.
The last remaining step is to generalize µ⋆. c to µα . c , i.e. allow

several stack variables. The idea is that the typing system of L→&⇑⊗⊕⇓
p

is the sequent calculus, and that in a sequentA1∧⋅ ⋅ ⋅∧An ⊢ B1∨⋅ ⋅ ⋅∨
Bm , value variables x correspond to the hypothesis, i.e. xi ∶ Ai , and
stack variables correspond to conclusions, i.e. αi ∶ Bi . The λ-calculus
is intuitionistic so that we only needed one stack variable, named ⋆,
which corresponded to the unique conclusion of the intuitionistic
sequents. Since we had two polarities, we needed to prevent having
both ⋆+ and ⋆− free at the same time, hence the cumbersome syntax
described in Figure A.3. The syntax with several stack variables is
much nicer, as show in Figure 3.3.
It is clear that L→&⇑⊗⊕⇓

p,i is a subcalculus of L→&⇑⊗⊕⇓
p , but the

description of L→&⇑⊗⊕⇓
p,i is cumbersome and therefore prefer to

define it directly as a subcalculus of L→&⇑⊗⊕⇓
p . To do so, we de-

fine the set number of occurrences of a variable x ε or α ε as fol-
lows: ⋃︀x ε1 ⋃︀yε2 = {1} if x ε1 = yε2 and {0} otherwise, and sim-
ilarly for other variables. For binders, if the variable is bound
then it is {0}: ⋃︀µ̃(︀(x+,y+). c⌋︀⋃︀x+ = {0}, and otherwise, it is the
set sum of the result for each subcommand: if yε ⇑= xi

+ then
⋂︀µ̃(︀ ι1 (x1

+
). c1 ⋃︀ ι2 (x2

+
). c2⌋︀⋂︀yε = {k + l ∶ k ∈ ⋂︀c

1
⋂︀yε ∧ l ∈ ⋂︀c

2
⋂︀yε }.

For constructors, we also take the set sum of the different com-
ponents: ⋃︀v+ ● s−⋃︀yε = {k + l ∶ k ∈ ⋃︀v+⋃︀yε ∧ l ∈ ⋃︀s−⋃︀yε }. We say that a
free variable a is used linearly in c if ⋃︀c ⋃︀a ⊆ {1}. The intuitionistic
part of the calculus is exactly the part where all stack variables are
used linearly in any command they are free in.

4 TOWARDS A STANDARD THEORY OF L
In this section, we revisit two important parts of the standard theory
of the λ-calculus (solvability, andη-conversion) in L→&⇑⊗⊕⇓

p . The goal
is to convince the reader that studying them in an abstract-machine-
like calculus makes things easier. 3

4.1 Solvability
In the call-by-name λ-calculus, some terms without normal
forms are still operationally relevant, i.e. they can be used
3More details can be found in TODO

to produce a result. For example, the Y combinator Y =

λz . (λx . z(xx ))(λx . z(xx )) has no →-normal form but Y(λx . I)
does. One formal definition of T being solvable is the following: For
any T ′, there exists a context KKKKKKKKKKKKKKKKK such that KKKKKKKKKKKKKKKKKT →∗ T ′, and it is not
the case that for allU , KKKKKKKKKKKKKKKKKU →∗ T ′. The second part of the definition
ensures that KKKKKKKKKKKKKKKKK really uses whatever is placed in the hole (which dis-
allows, for example KKKKKKKKKKKKKKKKK = let x = λy .◻ in I ), and the first part ensures
that T can be used to produce any T ′, and therefore in particular
ones that we consider to be “results”. This definition is very close4
to the (SolC) one of [7]. There are many equivalent variations of
this definition, including some that restrict the shape of contexts
to ensure that the term plugged in the hole is evaluated (therefore
removing the need for the second part of the definition), or choos-
ing a special T ′, often I . Our favorite version is the following: A
λ-terms T is solvable iff there exists a variable x , a substitution σ
and an operational context OOOOOOOOOOOOOOOOO such that OOOOOOOOOOOOOOOOOT(︀σ⌋︀ ⊳∗ x . Note that we
changed the reduction from → to ⊳, but this is equivalent thanks
to standardization (i.e. if T →∗ T ′ then there exists U such that
T ⊳∗ U (→ ∖ ⊳)∗ T ′) and the fact that there is no U such that
U (→ ∖ ⊳) x . We now define solvability in L→&⇑⊗⊕⇓

p , adapting this
last definition of solvability.

Definition 1. A command c is said to be solvable when there exists
a substitution φ (of values and stacks) such that c(︀φ⌋︀ ⊳∗ ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε .
A term tε is solvable when ∐︀tε ⋃︀⋃︀ ⋆ε ̃︀ε is, and an evaluation context
eε is solvable when ∐︀x ε ⋃︀⋃︀ eε ̃︀ε is.

Note that all positive values are solvable: ∐︀V+ ⋃︀⋃︀

⋆
+
̃︀
+
(︀µ̃x+. ∐︀yε ⋃︀⋃︀ ⋆ε ̃︀ε ⇑⋆+⌋︀ = ∐︀V+ ⋃︀⋃︀ µ̃x

+. ∐︀yε ⋃︀⋃︀ ⋆ε ̃︀ε ̃︀+ ⊳ ∐︀yε ⋃︀⋃︀ ⋆ε ̃︀ε .
The intuition behind the correspondence between this definition
and the one in the λ-calculus is that φ is the value substitution
σ extended by ⋆ε ↦ sε with sε corresponding to the operational
context OOOOOOOOOOOOOOOOO. This definition is the right one:

Lemma 2. A command c is solvable if and only if for any c′, there
exists kkkkkkkkkkkkkkkkk such that kkkkkkkkkkkkkkkkkc ⊳∗ c′ and it is not the case that for alld , kkkkkkkkkkkkkkkkkd ⊳∗ c′.

The ⇒ half of the proof is done by transforming φ into a
context by combining contexts of the shape ∐︀µ⋆ε .◻ ⋃︀⋃︀ sε ̃︀ε and
∐︀vε ⋃︀⋃︀ µ̃x

ε .◻̃︀ε , and taking d to be any diverging command. The⇐
is a bit trickier. First, we extend reductions to contexts in such a way
that if kkkkkkkkkkkkkkkkk ⊳ k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ then kkkkkkkkkkkkkkkkkc ⊳ kkkkkkkkkkkkkkkkk′ c . There are several ways of achieving
this, and all resolve around how ◻(︀φ⌋︀ is defined, the idea being that
we somehow have to record the substitution on the hole so that it
can later be applied to the term we plug. This can, for example, be
done by adding explicit substitutions [6]. For our uses, a slightly
simpler approach works: changing the syntax of contexts so that
every hole ◻φ comes with a substitution φ (and defining ◻ as a
notation for when φ is the identity), and taking ◻φ (︀ψ ⌋︀ def

= ◻
ψ ○φ and

4The only difference being that they quantify over→-normal T ′ . Both definitions are
still equivalent: If one can reach I then can reach any T by replacing KKKKKKKKKKKKKKKKK by KKKKKKKKKKKKKKKKKT .
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v+ ∶∶= x+ s+, e+ ∶∶= α+ ⋃︀ µ̃x+. c
⋃︀ (v+,w+) ⋃︀ µ̃(︀(x+,y+). c⌋︀

⋃︀ ι1 (v+) ⋃︀ ι2 (v+) ⋃︀ µ̃(︀ ι1 (x1
+
). c1 ⋃︀ ι2 (x2

+
). c2⌋︀

⋃︀ {v−} ⋃︀ µ̃{x−}. c

v−, t− ∶∶= x− ⋃︀ µα−. c s− ∶∶= α−

⋃︀ µ<(x+ ● ⋆−). c> ⋃︀ v+ ● s−
⋃︀ µ<(π 1 ● ⋆−). c1 ⋃︀ (π 2 ● ⋆−). c2> ⋃︀ π 1 ● s− ⋃︀ π 2 ● s−
⋃︀ µ<{⋆+}. c> ⋃︀ {s+}

t+ ∶∶= µα+. c e− ∶∶= µ̃x−. c

c ∶∶= ∐︀t− ⋃︀⋃︀ e−̃︀
−
⋃︀ ∐︀t+ ⋃︀⋃︀ e+̃︀

+

Fig. 3.3. The L→&⇑⊗⊕⇓
p calculus

◻
φ t

def
= t(︀φ⌋︀. We also extend the definition of plugging so that it

places the term in all holes (in case the original hole got duplicated
by a reduction). Going back to the proof of the⇐ direction, by tak-
ing c′ = ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε , we get that kkkkkkkkkkkkkkkkkc ⊳∗ ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε and there exists d
such that we do not have kkkkkkkkkkkkkkkkkd ⊳∗ ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε . We can not have kkkkkkkkkkkkkkkkk ⊳ω
because otherwise we would have kkkkkkkkkkkkkkkkkc ⊳ω . Let k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ be the normal form
of kkkkkkkkkkkkkkkkk: kkkkkkkkkkkkkkkkk ⊳∗ k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ ⇑⊳. We now show that we necessarily have k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ = ◻φ ,
so that we can conclude that c(︀φ⌋︀ ⊳∗ ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε . The only other
possible shape for k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ is k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ = ∐︀ttttttttttttttttt ⋃︀⋃︀ eeeeeeeeeeeeeeeeẽ︀ε . Since it is not a redex, either
it is a clash, or at least one of the two sides is a variable. If both
sides are variables, i.e. k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ = ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε (which is possible if the hole
was in an erased subterm), then kkkkkkkkkkkkkkkkkd = ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε which is absurd.
Otherwise, k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’c ⇑⊳ and k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’c ⇑= ∐︀x ε ⋃︀⋃︀ ⋆ε ̃︀ε which is absurd. Note that
replaying this argument in a natural-deduction-style calculus would
be much harder: notations are less convenient as instead of having
c(︀φ⌋︀, one would have T(︀σ⌋︀#»

V ; and the case analysis on the shape of
k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’k’ would be much more complicated.

A natural question at this point is: Do the embeddings presented
in earlier sections preserve solvability? Note that even for embed-
dings that behave well with respect to the operational reduction, the
strong reduction, substitutions and plugging, this question is still
valid: they are not surjective, and since there are more contexts in
the target, it could very well be the case that some of the extra con-
texts make a term operationally relevant. For the embedding of λn in
λp of Figure 1.10, this does not happen: The only extra freedom that
the contexts get is the ability to give as argument to functions a term
that is not inside a box, but since functions match on it immediately,
giving them anything else yields a clash. For the embedding of λv
in λp of Figure 1.11 however, solvability is not preserved: λxv.Ωv is
not solvable but λxv.Ωvp = box

p
(λx+. freezep (Ωvp)) is because it is

a positive value. In fact,Tvp is solvable if and only ifTv is potentially
valuable.

The problem is that we translatedAv→Bv as ⇓ (Avp→⇑Bv), i.e. a
positive type. It could be tempting to sendAv→Bv to ⇓Avp→⇑⇓Bvp,
however while λxv.Ωvp = λx

+. freezep ( boxp ( . . . )) is no longer
positive, it is still solvable. The problem is more general that just
having the function in box: If there is a box in the translation of a
function λxv.Tvp that is accessible without evaluating the body of
the function, then there is a context that just extracts this box, and

⋅ p ∶ Vv → V−

xv
p

def
= x−

λxv.Tv p
def
= λy−. unboxp (unfreezep (Tvp))

⋅ p ∶ Tv → T−

valv (Vv)
p

def
= freezep ( boxp (Vv p))

Tv @v Vvp
def
= unboxp (unfreezep (Tvp))@

−,− Vv p

let xv
= Tv inUvp

def
= matchp unfreezep (Tvp)with (︀ box

p
(x−).Uvp⌋︀

Fig. 4.1. Another translation from λv to λp

the translation of the function is therefore solvable. The solution
is to send Av → Bv to ⇑⇓ (⇓Avp → Bvp) as shown in Figure 4.1. In
this translation, we send values to fully evaluated negative terms,
i.e. variables or functions, and terms to negative terms that evaluate
to a term of the shape freezep ( boxp (V−)). Since it is the function
that forces the evaluation of its body, and not our translation of
application, no context will be able to use a function without eval-
uating its body. Once we unfreezep and unboxp the result of this
translation, we get what we wanted: Tv is solvable if and only if
unboxp (unfreezep (Tvp)) is.
Another good property of Lp to study solvability is that it was

built with effects in mind. We conjecture that this allows to reconcile
both view of solvability presented in [7]. This paper argues that op-
erational relevance should be defined with respect to open contexts,
and that stuck terms should be considered results. In the call-by-
name λ-calculus this distinction does not matter since the only stuck
terms are solvable. For example,U def

= λxv. letyv
= xvIv inδvδv is now

considered solvable, while λxv.δvδv still is not, so that those to terms
are no longer considered equivalent. Indeed, even though when ap-
plied to a closed value, both terms will reduce to δvδv and therefore
diverge, applying them to an open value (for example a variable zv)
will distinguish them:Uzv converges while (λxv.δvδv)z

v diverges.
Though the translation of Figure 4.1, both are unsolvable. How-
ever, if we add effects to the language it becomes clear they they
should be distinguished. For example, we we add exceptions to the
language (i.e. add throw+ (”text”) to T+ and throw− (”text”) to T−),
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we could applyU p to throw
−
(”The variable x is in head position!”)

and catch this error with the surrounding context. Note that in the
classical variant of Lp, they can also be distinguished by applying
them to µα−. ∐︀x ε ⋃︀⋃︀ β ε ̃︀ε .

More generally, we conjecture that most variants of solvability for
pure calculi can be encoded in Lp extended by some effect, as it gives
many possibilities for tweaking the translation to prevent unwanted
observations / to allowmore observations. The rest of this paragraph
is to be understood as raw untested intuition, and the reader should
read the following sentences as if they had “maybe” or “perhaps”
inserted everywhere. Allowing variables to be effectful could be
done by encoding them as negative variables, while encoding them
as positive variables prevents this. Forcing something to be solvable
can be done by placing it in boxp. The distinction between lazy /
weak calculi (i.e. between those that use weak head reduction as
operational reduction) and strong calculi (i.e. those that use head
reduction as operational reduction) can be done by placing a freezep
under λ-abstractions that gives the context the choice between
reducing the body or not after giving the argument.
We have extended an operational characterization of solvability

in L in a to-be-resubmitted paper (link).

4.2 Dynamically typed L and η-conversion
The thing that allows to use η-conversion in the untyped λ-calculus
is that everything is a function. However, once one adds other
datatypes to the calculus, for example pairs, sums or boolean,
the untyped calculus becomes much less well-behaved. The rea-
son for this is that clashes, i.e. the interaction of two construc-
tors that were not supposed to interact, appear. Examples in-
clude match ι1 (V)with (︀(x⊗y).T⌋︀, match λx .Twith (︀(x⊗y).U⌋︀
and π 1 (λx .T). These clashes considerably complicate the study
of the untyped calculus, for example invalidating η-conversion:
π 1 ((V &W)) is fine but π 1 (λx . (V &W)x ) is a clash5. Indeed, most
calculi with datatypes other than functions restrict η-conversion to
typed terms.

Most dynamically typed programming languages allow to match
over different constructors, even if they are of different types. For
example, one can write matchTwith (︀(x⊗y).U 1

⋃︀ ι1 (z).U
2⌋︀. No-

tice that if one replaces all the different µ̃s by a big µ̃ over all positive
value constructors, then there can no longer be clashes in positive
commands:

µ̃(︀(x1
+
,y1

+
). c1 ⋃︀ ι1 (x2

+
). c2 ⋃︀ ι2 (x3

+
). c3 ⋃︀ {x−}. c4⌋︀

Dually, replacing the µs by a single big µ removes clashes in negative
commands:

µ<(x+ ● ⋆−). c1 ⋃︀ (π 1 ● ⋆−). c2 ⋃︀ (π 2 ● ⋆−). c3 ⋃︀ {⋆+}. c4>
In a λ-calculus-like syntax, this corresponds to no longer having
functions λx .T, negative pairs (T & U) or upshifts freeze (T), but
instead a combination of the three that will compute depending on
how it is used. Note that with the CBPV syntax, combining functions
5For this specific case of the interaction between functions and lazy pairs, it has been
shown [18] that one can safely make constructors that should not interact just cross
each other, i.e. π 1 (λx .T)↝ λx . π 1 (T). However, while this reduction is interesting
because it allows to prove that adding pairs leads to a conservative extension, it is
unlikely that this is a reduction that we want in our operational semantics, and we are
not aware of any similar results for other datatypes.

and negative pairs looks nearly natural: λxpv.Tpv combined with
λpv(︀1.U 1

pv ⋃︀ 2.U 2
pv⌋︀ becomes λpv(︀xpv.Tpv ⋃︀ 1.U 1

pv ⋃︀ 2.U 2
pv⌋︀.

In addition to making clashes disappear, this makes η-conversion
valid again: η-expanding in ∐︀µ<(π 1 ● ⋆−). c1 ⋃︀ (π 2 ● ⋆−). c2> ⋃︀⋃︀ π 1 ●
⋆
−̃︀
− yielded ∐︀µ<(x+ ● ⋆−). ∐︀µ<(π 1 ● ⋆−). c1 ⋃︀ (π 2 ● ⋆−). c2> ⋃︀⋃︀ x+ ●

⋆
−̃︀
−> ⋃︀⋃︀ π 1 ● ⋆−̃︀− which is a clash, but with the η-expansion of the

dynamically-typed calculus, all possible stacks are handled so we
no longer risk creating clashes!
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Terms / values: Stacks:
tn,un,vn,wn ∶∶= xn

⋃︀ µ⋆n. cn sn ∶∶= ⋆
n

⋃︀ µ<(xn
● ⋆

n
). cn> ⋃︀ vn ● sn

Commands: Evaluation contexts:
cn ∶∶= ∐︀tn ⋃︀⋃︀ eñ︀

n en ∶∶= sn ⋃︀ µ̃x
n. cn

(a) Syntax

∐︀µ⋆n. cn ⋃︀⋃︀ sñ︀
n
⊳ cn(︀sn⇑⋆

n
⌋︀

∐︀vn ⋃︀⋃︀ µ̃x
n. cñ︀

n
⊳ cn(︀vn⇑x

n
⌋︀

∐︀µ<(xn
● ⋆

n
). cn> ⋃︀⋃︀ vn ● sñ︀

n
⊳ cn(︀vn⇑x

n, sn⇑⋆
n
⌋︀

(b) Operational reduction

Fig. A.1. Pure call-by-name L-calculus: L→n

Values: Stacks / evaluation contexts:
vv,wv ∶∶= xv sv, ev ∶∶= ⋆

v

⋃︀ µ<(xv
● ⋆

v
). cv> ⋃︀ vv ● sv

Terms: Commands:
tn,un ∶∶= vv ⋃︀ µ⋆

n. cn cv ∶∶= ∐︀tv ⋃︀⋃︀ eṽ︀
v

(a) Syntax

∐︀µ⋆v. cv ⋃︀⋃︀ sṽ︀
v
⊳ cv(︀sv⇑⋆

v
⌋︀

∐︀vv ⋃︀⋃︀ µ̃x
v. cṽ︀

n
⊳ cv(︀vv⇑x

v
⌋︀

∐︀µ<(xv
● ⋆

v
). cv> ⋃︀⋃︀ vv ● sṽ︀

n
⊳ cv(︀vv⇑x

v, sv⇑⋆
v
⌋︀

(b) Operational reduction

Fig. A.2. Pure call-by-value L-calculus: L→v
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V+ ∶∶= x+ S+↝+,E+↝+ ∶∶= ◻+ S+↝−,E+↝− ∶∶=

⋃︀ (V+⊗pW+) ⋃︀ match+ ◻+with (︀(x+⊗py+).T+⌋︀ ⋃︀ match− ◻+with (︀(x+⊗py+).T−⌋︀

⋃︀ ι1
p
(V+) ⋃︀ ι2

p
(V+) ⋃︀ match+ ◻+with (︀ ι1p (x1+).T 1

+ ⋃︀ ι2
p
(x2

+
).T 2

+
⌋︀ ⋃︀ match− ◻+with (︀ ι1p (x1+).T 1

− ⋃︀ ι2
p
(x2

+
).T 2

−
⌋︀

⋃︀ boxp (V−) ⋃︀ match+ ◻+with (︀ boxp (x−).T+⌋︀ ⋃︀ match− ◻+with (︀ boxp (x−).T−⌋︀
⋃︀ let+ x+ = ◻+ inN+ ⋃︀ let− x+ = ◻+ inT−

V−,T− ∶∶= x− ⋃︀ E−↝−T− ⋃︀ E+↝−T+ S−↝+ ∶∶= S−↝− ∶∶= ◻−
⋃︀ λx+.T− ⋃︀ S−↝+◻−V+ ⋃︀ S−↝−◻−V+
⋃︀ (T 1

− &p T 2
−
) ⋃︀ S−↝+π

p
1 ( ◻− ) ⋃︀ S−↝+π

p
2 ( ◻− ) ⋃︀ S−↝−π

p
1 ( ◻− ) ⋃︀ S−↝−π

p
2 ( ◻− )

⋃︀ freezep (T+) ⋃︀ S+↝+ unfreezep ( ◻− ) ⋃︀ S+↝− unfreezep ( ◻− )

T+,U+ ∶∶= E−↝+T− ⋃︀ E+↝+T+ E−↝+ ∶∶= let+ x− = ◻− inU+ E−↝− ∶∶= let− x− = ◻− inU−
(a) The λ→&⇑⊗⊕⇓

p calculus

v+ ∶∶= x+ s+↝+, e+↝+ ∶∶= ⋆
+
⋃︀ µ̃x+. c↝+ s+↝−, e+↝− ∶∶= µ̃x+. c↝−

⋃︀ (v+,w+) ⋃︀ µ̃(︀(x+,y+). c↝+⌋︀ ⋃︀ µ̃(︀(x+,y+). c↝−⌋︀

⋃︀ ι1 (v+) ⋃︀ ι2 (v+) ⋃︀ µ̃(︀ ι1 (x1
+
). c1↝+ ⋃︀ ι2 (x2

+
). c2↝+⌋︀ ⋃︀ µ̃(︀ ι1 (x1

+
). c1↝− ⋃︀ ι2 (x2

+
). c2↝−⌋︀

⋃︀ {v−} ⋃︀ µ̃{x−}. c↝+ ⋃︀ µ̃{x−}. c↝−

v−, t− ∶∶= x− ⋃︀ µ⋆−. c↝− s−↝+ ∶∶= s−↝− ∶∶= ⋆
−

⋃︀ µ<(x+ ● ⋆−). c↝−> ⋃︀ v+ ● s−↝+ ⋃︀ v+ ● s−↝−
⋃︀ µ<(π 1 ● ⋆−). c1↝− ⋃︀ (π 2 ● ⋆−). c2↝−> ⋃︀ π 1 ● s−↝+ ⋃︀ π 2 ● s−↝+ ⋃︀ π 1 ● s−↝− ⋃︀ π 2 ● s−↝−
⋃︀ µ<{⋆+}. c↝+> ⋃︀ {s+↝+} ⋃︀ {s+↝−}

t+ ∶∶= µ⋆+. c↝+ e−↝+ ∶∶= µ̃x−. c↝+ e−↝− ∶∶= µ̃x−. c↝−

c↝+ ∶∶= ∐︀t− ⋃︀⋃︀ e−↝+̃︀
−
⋃︀ ∐︀t+ ⋃︀⋃︀ e+↝+̃︀

+ c↝− ∶∶= ∐︀t− ⋃︀⋃︀ e−↝−̃︀
−
⋃︀ ∐︀t− ⋃︀⋃︀ e−↝−̃︀

−

(b) The L→&⇑⊗⊕⇓
p calculus

Fig. A.3. The λ→&⇑⊗⊕⇓
p and L→&⇑⊗⊕⇓

p calculi
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