
Outline Background Contributions Conclusion

Open Call-By-Push-Value
M2 Internship

Xavier MONTILLET

under the supervision of

Guillaume MUNCH-MACCAGNONI

22nd June 2017

1 / 18

Outline Background Contributions Conclusion

Outline

Goal

A system that:

1. Expresses computations of higher-order functions and sums

2. Is compatible with the presence of effects

3. Subsumes Call-By-Value and Call-By-Name

4. Has a nice rewriting theory

Outline:
I Background

I λ-calculus, evaluation strategies (CBN, CBV)
I Abstract machines
I Call-By-Push-Value (CBPV): 1, 2 and 3
I Intuitionistic sequent calculus with evaluation order

(
LJηp

)
: 4

I Contributions
I Simulation of CBPV by LJη

p
I Weak reduction in LJη

p
2 / 18

Outline Background Contributions Conclusion

λ-calculus

I Represents computations with higher-order functions
I Variable: x
I Abstraction: λx.t
I Application: f a

I Head reduction: (λx.t)u �β t
[
u/x
]

I Weak reduction:
I Why:

I Head reduction gets stuck when it should not: ((λx.x)u1) u2

I Strong reduction breaks termination

I How: Reduce everywhere except under abstractions
I Not well-behaved: normal forms (≈ results) are not unique

3 / 18

Outline Background Contributions Conclusion

λ-calculus
Call-By-Name

I Call-By-Name (CBN):
I No reduction under abstractions and of the argument of an application
I ≈ Lazy (Haskell)

I Krivine machine: Moves focus explicitly
I Term represented by the subterm which is focused and a context

containing the rest: 〈t || k〉 ≈ k
[

t
]

I Transitions:
I On an application, move the focus to the function:

k
[

f a
]
I k

[
f a
]

I On an abstraction, apply it to the argument given by the context:

k
[
λx.t u

]
I k

[
t
[
u/x
]]

4 / 18

Outline Background Contributions Conclusion

λ-calculus
Call-By-Value

I Values:
I Variable: x
I Abstraction: λx.t

I Call-By-Value (CBV):
I Restricted head reduction: Only reduce when the argument is a value:

(λx.t)v �β t
[

v /x
]

I No reduction under abstractions
I ≈ Eager (OCaml)

I Two deterministic subreductions:
I Left-to-right (reduce function first)
I Right-to-left (reduce argument first)

I Abstract machine: Moves focus explicitely

5 / 18

Outline Background Contributions Conclusion

λ-calculus
Open Call-By-Value

I Inert terms are normal but not values: Variable applied to some
arguments: i ::= xt1. . .tn

I Stuck redexes: Function applied to inert term: (λx.t)i
I Unexpected behaviours: A function that ignores its argument and

returns a diverging term, applied to an inert term: (λx.Ω)i
I Is a normal form
I Diverges no matter what closed terms are substituted for variables

I Solutions are known
I Some involve commutation rules such as:

π1

 pm t as∣∣ ι1 (x) 7→ u1∣∣ ι2 (x) 7→ u2

 ;

 pm t as∣∣ ι1 (x) 7→ π1u1∣∣ ι2 (x) 7→ π1u2

6 / 18

Outline Background Contributions Conclusion

λ-calculus
Effects

I η-conversion for functions: f ≈η λx.f x whenever f is of functional
type

I In the presence of effects:
I Satisfied in CBN
I Not satisfied in CBV: η-conversion allows to replace an arbitrary

function by a value

7 / 18

Outline Background Contributions Conclusion

λ-calculus
Effects

I η-conversion for booleans:
t
[
u/x
]
≈η if u then t

[
true/x

]
else t

[
false/x

]
whenever u is of

boolean type
I “A boolean can be evaluated at any given time”

I In the presence of effects:
I Satisfied neither in CBV nor in CBN

I Restricted to values: t
[
v/x
]
≈η if v then t

[
true/x

]
else t

[
false/x

]
I Satisfied in CBV
I Not satisfied in CBN: We recover the unrestricted η-conversion using

the restricted version with v = x and applying the substitution
[
u/x
]

8 / 18

Outline Background Contributions Conclusion

Call-By-Push-Value

I Why:
I Subsumes both Call-By-Value and Call-By-Name
I All types behave well, even in the presence of effects

I How:
I Terms are split into values W and computations M:

I “A value is, a computation does” (Levy)
I Values≈ terms built from variables and constructors of

pattern-matchable types (for example (y, ()))
I Computations≈ everything else (all destructors, and constructors for

functions...)
I thunk M ≈ λ().M and force W ≈ W()

I Reductions defined on configurations: 〈M || K 〉

9 / 18

Outline Background Contributions Conclusion

LJηp

I Why:
I Nice rewriting theory (two constructions per type, HORS, can define

weak and strong reductions)
I Commutation rules are “for free”

I How:
I Intuitionistic sequent calculus with evaluation order
I Reduction defined on polarised commands 〈t || e〉ε
I Subterms also represented by commands; Can define strong and

weak reduction
I Polarity determines the strategy locally: ε = − means CBN and
ε = + means CBV

I A term constructor µ?.c:

I Moves focus: 〈µ?.c || S〉 �µ c
[
S/?
]
, i.e. S

[
µ?.c

]
� S [c]

I Allows to define a term by its behaviour in a given context: If we want
〈f a || S〉 � 〈f || S [�a]〉, we can define application by
f a := µ?.〈f || ? [�a]〉

10 / 18

Outline Background Contributions Conclusion

Simulation of CBPV by LJηp
Translation and simulation

I Translation (macro expressible):
I · W

+
: W → V+, · M

−
: M→ V− and · K

−
: K → S

I 〈M || K 〉
E

:=
〈

M
M

−

∣∣∣∣∣∣ K
K

−

〉
−

I In CBPV, K
[

pm () as ().M
]
� K [M] while in LJηp ,

k
[

pm () as ().t
]
� k

[
pm () as ().t

]
� k [t]

; E :=

{
E if E ��µ

c′ if E �µ c′ and whenever E � E ′, c′ 6= E ′

Proposition (Simulation)

If E1 � E2 then E1 �+ E2 .

Proposition

E is a normal form if and only if E is a �-normal form.

11 / 18

Outline Background Contributions Conclusion

Simulation of CBPV by LJηp
Translation and simulation

Proposition (Simulation)

If E1 � E2 then E1 �+ E2 .

Proposition

E is a normal form if and only if E is a �-normal form.

Corollary

If E1 � c2, then there exist some E3 so that E1 � E3 and c2 �∗ E3 .

I E1 �+ E2 if and only if E1 �+ E2 .

I E2 is a normal form of E1 if and only if E2 is a�-normal form of E1 .

I E is normalising if and only if E is �-normalising.

12 / 18

Outline Background Contributions Conclusion

Simulation of CBPV by LJηp
Type preservation

Proposition

If Γ ` M : B and Γ | B ` K : C, then 〈M || K 〉 :
(

Γ
+
` ? : C

−

)
.

13 / 18

Outline Background Contributions Conclusion

Simulation of CBPV by LJηp
Type preservation

Definition

A configuration E (resp. command c) is potentially reducible if there is a
substitution σ : x → W (resp. σ : x → V) and a stack K (resp. S) so that
E
[
σ,K /nil

]
(resp. c

[
σ,S/?

]
) is not normal.

Remark

Potentially reducible normal forms correspond to “good” normal form.

Example

〈pm () as (x1, x2).M || K 〉 is not potentially reducible but 〈force x || K [�W]〉
is because
〈force thunk (λy .t) || K [�W]〉 � 〈λy .t || K [�W]〉 �

〈
t
[
W/y

] ∣∣∣∣K〉.
Proposition

If E is a potentially reducible normal form then so is E .
14 / 18

Outline Background Contributions Conclusion

Weak reduction in LJηp

I Translation from (non-deterministic) CBV to LJηp :
I Left-to-right: “Evaluate f and bind xf to the result, evaluate a bind xa to

the result, reduce xf xa”
I Right-to-left: Evaluate a before f

I Weak (non-deterministic) CBV reduction is not sent on head reduction
by the reduction:

I In the left to right translation, a � a′ does not imply f a � f ′a

I In the right to left translation, f � f ′ does not imply f a � f a′

I On open terms, weak left-to-right CBV reduction is not sent on head
reduction.

15 / 18

Outline Background Contributions Conclusion

Weak reduction in LJηp

Warning

In this section, we consider LJηp without sums.

Definition

The weak reduction→ on LJηp is defined as the closure of the head
reduction � by all constructors except negative covariable binders (µ?−.c,
µ(x · ?).c, µ<?.c1 ; ?.c2> and µ{?}.c).

Lemma

V��→, i.e. V is a normal form with respect to→.

Lemma

If S → S′, then c
[
S/?

]
→ c

[
S′/?

]
.

16 / 18

Outline Background Contributions Conclusion

Weak reduction in LJηp

Proposition

The weak reduction→ is uniformly confluent1.

Corollary

The weak reduction→ is confluent.

Proposition

For any closed command c, c is strongly→-normalising if and only if it is
strongly �-normalising.

1If cl ← c → cr with cl 6= cr , then there is some clr so that cl → clr ← cr
17 / 18

Outline Background Contributions Conclusion

Conclusion

I Translation from CBPV to LJηp
I Macro-expressible
I Is a simulation
I Preserves (“good”) normal forms
I Preserves typing judgements

I Weak reduction in LJηp :
I CBV and CBN are macro-expressible in LJηp
I Works for non-deterministic CBV
I Works on open terms

18 / 18

	Outline
	Background
	-calculus
	Call-By-Push-Value
	LJp

	Contributions
	Simulation of CBPV by LJp
	Weak reduction in LJp

	Conclusion

