Open Call-By-Push-Value

M2 Internship

Xavier MONTILLET

under the supervision of

Guillaume MUNCH-MACCAGNONI

22nd June 2017

Outline

Goal

A system that:

- 1. Expresses computations of higher-order functions and sums
- 2. Is compatible with the presence of effects
- 3. Subsumes Call-By-Value and Call-By-Name
- 4. Has a nice rewriting theory

Outline:

- Background
 - λ -calculus, evaluation strategies (CBN, CBV)
 - Abstract machines
 - Call-By-Push-Value (CBPV): 1, 2 and 3
 - Intuitionistic sequent calculus with evaluation order $(\mathbf{LJ}_{\rho}^{\eta})$: 4
- Contributions
 - Simulation of CBPV by $\mathbf{L} \mathbf{J}_{p}^{\eta}$
 - Weak reduction in LJ^η_ρ

λ -calculus

Represents computations with higher-order functions

- Variable: x
- Abstraction: λx.t
- Application: fa
- Head reduction: $(\lambda x.t)u \triangleright_{\beta} t[u/x]$
- Weak reduction:
 - Why:
 - Head reduction gets stuck when it should not: $((\lambda x.x)u_1)u_2$
 - Strong reduction breaks termination
 - How: Reduce everywhere except under abstractions
 - Not well-behaved: normal forms (\approx results) are not unique

Outline	0000000	Contributions 000000	Conclusion
λ -calculus _{Call-By-Name}			

- Call-By-Name (CBN):
 - No reduction under abstractions and of the argument of an application
 - ► ≈ Lazy (Haskell)
- Krivine machine: Moves focus explicitly
 - ► Term represented by the subterm which is focused and a context containing the rest: $\langle t \parallel k \rangle \approx k \left[\begin{matrix} t \\ t \end{matrix} \right]$
 - Transitions:
 - On an application, move the focus to the function:

$$k\left[fa \right] \blacktriangleright k\left[fa \right]$$

On an abstraction, apply it to the argument given by the context:

$$k\left[\left[\lambda x.t\right]u\right] \blacktriangleright k\left[\left[t\left[u/x\right]\right]\right]$$

\sim		

λ -calculus Call-By-Value

Values:

- Variable: x
- Abstraction: λx.t
- Call-By-Value (CBV):
 - ► Restricted head reduction: Only reduce when the argument is a value: $(\lambda x.t) \mathbf{v} \triangleright_{\beta} t \left[\mathbf{v} / x \right]$
 - No reduction under abstractions
 - \approx Eager (OCaml)
- Two deterministic subreductions:
 - Left-to-right (reduce function first)
 - Right-to-left (reduce argument first)
- Abstract machine: Moves focus explicitely

Outline	Background 00000000	Contributions 000000	Conclusion
λ -calculus Open Call-By-Value			

- Inert terms are normal but not values: Variable applied to some arguments: i ::= xt₁...t_n
- Stuck redexes: Function applied to inert term: $(\lambda x.t)i$
- Unexpected behaviours: A function that ignores its argument and returns a diverging term, applied to an inert term: (λx.Ω)i
 - Is a normal form
 - Diverges no matter what closed terms are substituted for variables
- Solutions are known
 - Some involve commutation rules such as:

$$\pi_1 \left(\begin{array}{c} \mathsf{pm}\,t\,\mathsf{as} \\ \left| \begin{array}{c} \iota_1\left(x\right) \mapsto u_1 \\ \iota_2\left(x\right) \mapsto u_2 \end{array} \right) \end{array} \sim \left(\begin{array}{c} \mathsf{pm}\,t\,\mathsf{as} \\ \left| \begin{array}{c} \iota_1\left(x\right) \mapsto \pi_1 u_1 \\ \iota_2\left(x\right) \mapsto \pi_1 u_2 \end{array} \right) \end{array} \right)$$

 λ -calculus

- ▶ η -conversion for functions: $f \approx_{\eta} \lambda x.fx$ whenever f is of functional type
- In the presence of effects:
 - Satisfied in CBN
 - \blacktriangleright Not satisfied in CBV: $\eta\text{-conversion}$ allows to replace an arbitrary function by a value

Effects

 λ -calculus

- - η-conversion for booleans: t[u/x] ≈_η if u then t[true/x] else t[false/x] whenever u is of boolean type
 - "A boolean can be evaluated at any given time"
 - In the presence of effects:
 - Satisfied neither in CBV nor in CBN
 - ► Restricted to values: $t[v/x] \approx_{\eta} \text{ if } v \text{ then } t[\text{true}/x] \text{ else } t[\text{false}/x]$
 - Satisfied in CBV
 - Not satisfied in CBN: We recover the unrestricted η-conversion using the restricted version with v = x and applying the substitution [u/x]

Call-By-Push-Value

Why:

- Subsumes both Call-By-Value and Call-By-Name
- All types behave well, even in the presence of effects
- How:
 - Terms are split into values W and computations M:
 - "A value is, a computation does" (Levy)
 - Values ≈ terms built from variables and constructors of pattern-matchable types (for example (y, ()))
 - \blacktriangleright Computations \approx everything else (all destructors, and constructors for functions...)
 - thunk $M \approx \lambda().M$ and force $W \approx W()$
 - Reductions defined on configurations: $\langle M \parallel K \rangle$

 $\mathbf{L}\mathbf{J}_{n}^{\prime\prime}$

Why:

- Nice rewriting theory (two constructions per type, HORS, can define weak and strong reductions)
- Commutation rules are "for free"
- How:
 - Intuitionistic sequent calculus with evaluation order
 - Reduction defined on polarised commands $\langle t \parallel e \rangle^{\varepsilon}$
 - ► Subterms also represented by commands ~→ Can define strong and weak reduction
 - ▶ Polarity determines the strategy locally: $\varepsilon = -$ means CBN and
 - $\varepsilon = + \operatorname{means} \operatorname{CBV}$
 - A term constructor µ★.c:
 - Moves focus: $\langle \mu \star . c \| S \rangle \rhd_{\mu} c [S/\star]$, i.e. $S [\mu \star . c] \rhd S [c]$
 - Allows to define a term by its behaviour in a given context: If we want $\langle fa \parallel S \rangle \rhd \langle f \parallel S [\Box a] \rangle$, we can define application by $fa := \mu \star . \langle f \parallel \star [\Box a] \rangle$

Background

000000

Conclusion

Simulation of CBPV by $\mathbf{L} \mathbf{J}_{m{ ho}}^\eta$

Translation and simulation

ľ

Proposition (Simulation)

If $E_1 \triangleright E_2$ then $\begin{bmatrix} \overline{E_1} \end{bmatrix} \triangleright^+ \begin{bmatrix} \overline{E_2} \end{bmatrix}$.

Proposition

E is a normal form if and only if $\begin{bmatrix} E \end{bmatrix}$ is a \triangleright -normal form.

Background

Contributions

Simulation of CBPV by $\mathbf{L} \mathbf{J}_{p}^{\eta}$

Translation and simulation

Proposition (Simulation)

If $E_1 \triangleright E_2$ then $\begin{bmatrix} E_1 \end{bmatrix} \triangleright^+ \begin{bmatrix} E_2 \end{bmatrix}$.

Proposition

E is a normal form if and only if $\begin{bmatrix} E \end{bmatrix}$ is a \triangleright -normal form.

Corollary

- If $\begin{bmatrix} \bar{E}_1 \end{bmatrix} \triangleright c_2$, then there exist some E_3 so that $E_1 \triangleright E_3$ and $c_2 \triangleright^* \begin{bmatrix} \bar{E}_3 \end{bmatrix}$.
 - $E_1 \triangleright^+ E_2$ if and only if $\begin{bmatrix} \bar{E}_1 \end{bmatrix} \triangleright^+ \begin{bmatrix} \bar{E}_2 \end{bmatrix}$.
 - E_2 is a normal form of E_1 if and only if E_2^{-1} is a \triangleright -normal form of E_1^{-1} .
 - *E* is normalising if and only if $\begin{bmatrix} \bar{E} \end{bmatrix}$ is \triangleright -normalising.

Outline

Background

Contributions

Conclusion

Simulation of CBPV by $\mathbf{L} \mathbf{J}_{\boldsymbol{ ho}}^{\eta}$

Type preservation

Proposition If $\Gamma \vdash M : \underline{B}$ and $\Gamma \mid \underline{B} \vdash K : \underline{C}$, then $\left[\langle M \parallel K \rangle \right] : \left(\left[\Gamma \right]_{+} \vdash \star : \underline{C} \right] \right)$.

Simulation of CBPV by $\mathbf{L} \mathbf{J}_{p}^{\eta}$

Type preservation

Definition

A configuration *E* (resp. command *c*) is potentially reducible if there is a substitution $\sigma : x \to W$ (resp. $\sigma : x \to V$) and a stack *K* (resp. *S*) so that $E[\sigma, K/\text{nil}]$ (resp. $c[\sigma, S/\star]$) is not normal.

Remark

Potentially reducible normal forms correspond to "good" normal form.

Example

 $\langle \text{pm}() \text{ as } (x_1, x_2).M \parallel K \rangle$ is not potentially reducible but $\langle \text{force } x \parallel K [\Box W] \rangle$ is because $\langle \text{force thunk} (\lambda y.t) \parallel K [\Box W] \rangle \rhd \langle \lambda y.t \parallel K [\Box W] \rangle \rhd \langle t [W/y] \parallel K \rangle.$

Proposition

If E is a potentially reducible normal form then so is $\begin{bmatrix} E \end{bmatrix}$.

Weak reduction in $\mathbf{L} \mathbf{J}^\eta_{m{ ho}}$

- Translation from (non-deterministic) CBV to $LJ^{\eta}_{
 m p}$:
 - Left-to-right: "Evaluate f and bind x_f to the result, evaluate a bind x_a to the result, reduce x_fx_a"
 - Right-to-left: Evaluate a before f
- Weak (non-deterministic) CBV reduction is not sent on head reduction by the reduction:
 - ▶ In the left to right translation, $a \triangleright a'$ does not imply $fa \triangleright f'a$
 - ▶ In the right to left translation, $f \triangleright f'$ does not imply $fa \triangleright fa'$
- On open terms, weak left-to-right CBV reduction is not sent on head reduction.

Weak reduction in $\mathbf{L} \mathbf{J}_{p}^{\eta}$

Warning

In this section, we consider $LJ^\eta_{
m p}$ without sums.

Definition

The weak reduction \rightarrow on $\mathbf{LJ}_{\rho}^{\eta}$ is defined as the closure of the head reduction \triangleright by all constructors except negative covariable binders ($\mu \star^{-}.c$, $\mu(x \cdot \star).c$, $\mu < \star.c_1$; $\star.c_2 >$ and $\mu\{\star\}.c$).

Lemma

 $V \rightarrow$, i.e. V is a normal form with respect to \rightarrow .

Lemma

If
$$S \to S'$$
, then $c[S/\star] \to c[S'/\star]$.

Weak reduction in $\mathbf{L} \mathbf{J}_{p}^{\eta}$

Proposition

The weak reduction \rightarrow is uniformly confluent¹.

Corollary

The weak reduction \rightarrow is confluent.

Proposition

For any closed command c, c is strongly \rightarrow -normalising if and only if it is strongly \triangleright -normalising.

¹ If $c_l \leftarrow c \rightarrow c_r$ with $c_l \neq c_r$, then there is some c_{lr} so that $c_l \rightarrow c_{lr} \leftarrow c_r$

Conclusion

• Translation from CBPV to $\mathbf{L} \mathbf{J}_{p}^{\eta}$

- Macro-expressible
- Is a simulation
- Preserves ("good") normal forms
- Preserves typing judgements
- Weak reduction in LJ^η_ρ:
 - CBV and CBN are macro-expressible in LJ^η_ρ
 - Works for non-deterministic CBV
 - Works on open terms