Open Call-By-Push-Value

M2 Internship

Xavier Montillet
under the supervision of
Guillaume Munch-MACCAGNONI

22nd June 2017

Outline

Goal

A system that:

1. Expresses computations of higher-order functions and sums
2. Is compatible with the presence of effects
3. Subsumes Call-By-Value and Call-By-Name
4. Has a nice rewriting theory

Outline:

- Background
- λ-calculus, evaluation strategies (CBN, CBV)
- Abstract machines
- Call-By-Push-Value (CBPV): 1, 2 and 3
- Intuitionistic sequent calculus with evaluation order $\left(\mathbf{L} \mathbf{J}_{p}^{\eta}\right)$: 4
- Contributions
- Simulation of CBPV by $\mathbf{L} \mathbf{J}_{p}^{\eta}$
- Weak reduction in $\mathbf{L} \mathbf{J}_{p}^{\eta}$

λ-calculus

- Represents computations with higher-order functions
- Variable: x
- Abstraction: $\lambda x . t$
- Application: fa
- Head reduction: $(\lambda x . t) u \triangleright_{\beta} t[u / x]$
- Weak reduction:
- Why:
- Head reduction gets stuck when it should not: $\left((\lambda x \cdot x) u_{1}\right) u_{2}$
- Strong reduction breaks termination
- How: Reduce everywhere except under abstractions
- Not well-behaved: normal forms (\approx results) are not unique

λ-calculus

Call-By-Name

- Call-By-Name (CBN):
- No reduction under abstractions and of the argument of an application
- \approx Lazy (Haskell)
- Krivine machine: Moves focus explicitly
- Term represented by the subterm which is focused and a context containing the rest: $\langle t \| k\rangle \approx k \boxed{t}$
- Transitions:
- On an application, move the focus to the function:

$$
k[\boxed{f a}]>k[\boxed{f} a]
$$

- On an abstraction, apply it to the argument given by the context:

$$
k[\boxed{\lambda x . t} u] \triangleright k[t[u / x]
$$

λ-calculus

Call-By-Value

- Values:
- Variable: x
- Abstraction: $\lambda x . t$
- Call-By-Value (CBV):
- Restricted head reduction: Only reduce when the argument is a value: $(\lambda x . t) v \triangleright_{\beta} t[v / x]$
- No reduction under abstractions
- \approx Eager (OCaml)
- Two deterministic subreductions:
- Left-to-right (reduce function first)
- Right-to-left (reduce argument first)
- Abstract machine: Moves focus explicitely

λ-calculus

- Inert terms are normal but not values: Variable applied to some arguments: $i::=x t_{1} \ldots t_{n}$
- Stuck redexes: Function applied to inert term: $(\lambda x . t) i$
- Unexpected behaviours: A function that ignores its argument and returns a diverging term, applied to an inert term: $(\lambda x . \Omega) i$
- Is a normal form
- Diverges no matter what closed terms are substituted for variables
- Solutions are known
- Some involve commutation rules such as:

λ-calculus

Effects

- η-conversion for functions: $f \approx_{\eta} \lambda x . f x$ whenever f is of functional type
- In the presence of effects:
- Satisfied in CBN
- Not satisfied in CBV: η-conversion allows to replace an arbitrary function by a value

λ-calculus

Effects

- η-conversion for booleans:
$t[u / x] \approx_{\eta}$ if u then $t[$ true $/ x]$ else $t[$ false $/ x]$ whenever u is of boolean type
- "A boolean can be evaluated at any given time"
- In the presence of effects:
- Satisfied neither in CBV nor in CBN
- Restricted to values: $t[v / x] \approx_{\eta}$ if v then $t[$ true $/ x]$ else $t[$ false $/ x]$
- Satisfied in CBV
- Not satisfied in CBN: We recover the unrestricted η-conversion using the restricted version with $v=x$ and applying the substitution $[u / x]$

Call-By-Push-Value

- Why:
- Subsumes both Call-By-Value and Call-By-Name
- All types behave well, even in the presence of effects
- How:
- Terms are split into values W and computations M :
- "A value is, a computation does" (Levy)
- Values \approx terms built from variables and constructors of pattern-matchable types (for example $(y,())$)
- Computations \approx everything else (all destructors, and constructors for functions...)
- thunk $M \approx \lambda() \cdot M$ and force $W \approx W()$
- Reductions defined on configurations: $\langle M \| K\rangle$

$\mathbf{L J}_{\rho}^{\eta}$

- Why:
- Nice rewriting theory (two constructions per type, HORS, can define weak and strong reductions)
- Commutation rules are "for free"
- How:
- Intuitionistic sequent calculus with evaluation order
- Reduction defined on polarised commands $\langle t \| e\rangle^{\varepsilon}$
- Subterms also represented by commands \sim Can define strong and weak reduction
- Polarity determines the strategy locally: $\varepsilon=-$ means CBN and $\varepsilon=+$ means CBV
- A term constructor $\mu \star . c$:
- Moves focus: $\langle\mu \star . c \| S\rangle \triangleright_{\mu} c[S / \star]$, i.e. $S[\mu \star . c] \square S[c]$
- Allows to define a term by its behaviour in a given context: If we want $\langle f a \| S\rangle \triangleright\langle f \| S[\square a]\rangle$, we can define application by $f a:=\mu \star .\langle f \| \star[\square a]\rangle$

Simulation of CBPV by $\mathbf{L J}{ }_{p}^{\eta}$

Translation and simulation

- Translation (macro expressible):

- $\langle M \| K\rangle{ }^{\mathrm{E}}:=\left\langle M_{-}^{\mathrm{M}} \| \operatorname{K}_{-}^{\mathrm{k}}\right\rangle-$
\checkmark In CBPV, $K[\operatorname{pm}()$ as ().M $] \triangleright K[M]$ while in $\mathbf{L} \mathbf{J}_{p}^{\eta}$,
$k[\operatorname{pm}()$ as ().t $] \triangleright k[\operatorname{pm}()$ as ().t] $\triangleright k[t]$

$$
\sim\left[\begin{array}{|c}
E \\
\hline
\end{array}:= \begin{cases}\boxed{E} & \text { if } \bar{E} \triangleright_{\mu} \\
c^{\prime} & \text { if } \bar{E} \triangleright_{\mu} c^{\prime} \text { and whenever } E \triangleright E^{\prime}, c^{\prime} \neq E^{\prime}\end{cases}\right.
$$

Proposition (Simulation)
If $E_{1} \triangleright E_{2}$ then $\left.\left\ulcorner\bar{E}_{1}\right\urcorner D^{+} \stackrel{\ulcorner }{\left[\bar{E}_{2}\right\urcorner}\right\rfloor$.

Proposition

E is a normal form if and only if $\lceil[\bar{E}\rfloor$ is $a \triangleright$-normal form.

Simulation of CBPV by $\mathbf{L J} J_{p}^{\eta}$

Translation and simulation

Proposition (Simulation)

$$
\text { If } \left.E_{1} \triangleright E_{2} \text { then }\left\ulcorner\overline{E_{1}}\right\urcorner \triangleright+: \overline{E_{2}}\right\urcorner .
$$

Proposition

E is a normal form if and only if $\lceil\stackrel{\bar{E}}{\llcorner }]$ is a D-normal form.

Corollary

- $E_{1} \triangleright^{+} E_{2}$ if and only if $\stackrel{\ulcorner }{\ulcorner } \bar{E}_{1}^{\top} \cdot \triangleright^{+}\left[\bar{E}_{2}\right\urcorner_{-}$.
- E_{2} is a normal form of E_{1} if and only iff $\left\ulcorner\bar{E}_{2}\right\urcorner$ is a \triangleright-normal form of $\left.\stackrel{\ulcorner }{\ulcorner } \bar{E}_{1}\right\urcorner$.
- E is normalising if and only if $\left\lceil_{\llcorner }^{\ulcorner } \bar{E}\right]$ is \triangleright-normalising.

Simulation of CBPV by $\mathbf{L J} J_{p}^{\eta}$

Type preservation

Proposition

If $\Gamma \vdash M: \underline{B}$ and $\Gamma \mid \underline{B} \vdash K: \underline{C}$, then $\stackrel{\Gamma}{\langle M \| \bar{M} \bar{K}\rangle} \cdot:\left(\Gamma_{-} \vdash \star: \underline{C}\right)$.

Simulation of CBPV by $\mathbf{L J} J_{p}^{\eta}$

Type preservation

Definition

A configuration E (resp. command c) is potentially reducible if there is a substitution $\sigma: \mathbb{x} \rightarrow \mathbb{W}$ (resp. $\sigma: \mathbb{x} \rightarrow \mathbb{V}$) and a stack K (resp. S) so that $E[\sigma, K /$ nil $]$ (resp. $c[\sigma, S / \star])$ is not normal.

Remark

Potentially reducible normal forms correspond to "good" normal form.

Example

$\left\langle\mathrm{pm}()\right.$ as $\left.\left(x_{1}, x_{2}\right) \cdot M \| K\right\rangle$ is not potentially reducible but \langle force $x \| K[\square W]\rangle$ is because \langle force thunk $(\lambda y . t) \| K[\square W]\rangle \triangleright\langle\lambda y . t \| K[\square W]\rangle \triangleright\langle t[W / y] \| K\rangle$.

Proposition

If E is a potentially reducible normal form then so is $\left[\begin{array}{l}{[} \\ \hline\end{array}\right.$.

Weak reduction in $\mathbf{L J}{ }_{p}^{\eta}$

- Translation from (non-deterministic) CBV to $\mathbf{L J} \mathbf{J}_{p}^{\eta}$:
- Left-to-right: "Evaluate f and bind x_{f} to the result, evaluate a bind x_{a} to the result, reduce $x_{f} x_{a}{ }^{\prime \prime}$
- Right-to-left: Evaluate a before f
- Weak (non-deterministic) CBV reduction is not sent on head reduction by the reduction:
- In the left to right translation,
- In the right to left translation, $\bar{f} \triangleright f^{\prime}$ does not imply $f a \triangleright f a^{\prime}$
- On open terms, weak left-to-right CBV reduction is not sent on head reduction.

Weak reduction in $\mathbf{L} \mathbf{J}_{p}^{\eta}$

Warning

In this section, we consider $\mathbf{L} \mathbf{J}_{p}^{\eta}$ without sums.

Definition

The weak reduction \rightarrow on $\mathbf{L} \mathbf{J}_{p}^{\eta}$ is defined as the closure of the head reduction \triangleright by all constructors except negative covariable binders ($\mu \star^{-} . c$, $\mu(x \cdot \star) . c, \mu<\star \cdot c_{1} ; \star \cdot c_{2}>$ and $\left.\mu\{\star\} . c\right)$.

Lemma

V_{\nearrow}, i.e. V is a normal form with respect to \rightarrow.

Lemma

If $S \rightarrow S^{\prime}$, then $c[S / \star] \rightarrow c\left[S^{\prime} / \star\right]$.

Weak reduction in $\mathbf{L J} \mathbf{J}_{p}^{\eta}$

Proposition

The weak reduction \rightarrow is uniformly confluent ${ }^{1}$.

Corollary

The weak reduction \rightarrow is confluent.

Proposition

For any closed command c, c is strongly \rightarrow-normalising if and only if it is strongly \triangleright-normalising.

[^0]
Conclusion

- Translation from CBPV to $\mathbf{L} \mathbf{J}_{p}^{\eta}$
- Macro-expressible
- Is a simulation
- Preserves ("good") normal forms
- Preserves typing judgements
- Weak reduction in $\mathbf{L} \mathbf{J}_{p}^{\eta}$:
- CBV and CBN are macro-expressible in $\mathbf{L} \mathbf{J}_{p}^{\eta}$
- Works for non-deterministic CBV
- Works on open terms

[^0]: ${ }^{1}$ If $c_{l} \leftarrow c \rightarrow c_{r}$ with $c_{l} \neq c_{r}$, then there is some $c_{l r}$ so that $c_{l} \rightarrow c_{l r} \leftarrow c_{r}$

