Open Call-By-Push-Value
M2 Internship

Xavier MONTILLET
under the supervision of
Guillaume MUNCH-MACCAGNONI

22nd June 2017

Outline

A system that:

1. Expresses computations of higher-order functions and sums
2. Is compatible with the presence of effects
3. Subsumes Call-By-Value and Call-By-Name

4. Has a nice rewriting theory

Outline:
» Background
» \-calculus, evaluation strategies (CBN, CBV)
» Abstract machines
» Call-By-Push-Value (CBPV): 1,2 and 3
> Intuitionistic sequent calculus with evaluation order (LJ}): 4
> Contributions
> Simulation of CBPV by LJ
> Weak reduction in LJ;)

®00000

\-calculus

> Represents computations with higher-order functions
» Variable: x
> Abstraction: Ax.t
> Application: fa
> Head reduction: (Ax.t)u >4 t[u/x]
» Weak reduction:
> Why:
> Head reduction gets stuck when it should not: ((Ax.x)u;) tz
> Strong reduction breaks termination

» How: Reduce everywhere except under abstractions
» Not well-behaved: normal forms (= results) are not unique

O@0000

A-calculus
Call-By-Name

> Call-By-Name (CBN):
» No reduction under abstractions and of the argument of an application
» =~ Lazy (Haskell)

» Krivine machine: Moves focus explicitly

» Term represented by the subterm which is focused and a context

containing the rest: (t || k) ~ k [[t]]
» Transitions:

> On an application, move the focus to the function:

k [] > k [a}

> On an abstraction, apply it to the argument given by the context:

k[u} > k[t{u/x] }

[e]e] le]ele]

A-calculus
Call-By-Value

>

Values:
» Variable: x
> Abstraction: Ax.t
Call-By-Value (CBV):
> Restricted head reduction: Only reduce when the argument is a value:
(Ax.t)v >4 t[v/x]
» No reduction under abstractions
» =~ Eager (OCaml)

v

v

Two deterministic subreductions:

> Left-to-right (reduce function first)
> Right-to-left (reduce argument first)

v

Abstract machine: Moves focus explicitely

[e]e]e] lole]

A-calculus
Open Call-By-Value

> Inert terms are normal but not values: Variable applied to some
arguments: i = xt.. .1,
» Stuck redexes: Function applied to inert term: (Ax.t)i
» Unexpected behaviours: A function that ignores its argument and
returns a diverging term, applied to an inert term: (Ax.Q)i
> Is a normal form
» Diverges no matter what closed terms are substituted for variables
> Solutions are known
» Some involve commutation rules such as:

pmtas pmtas
e 1y (x) = ~ 1y (x) = Uy
Lo (X) = Us Lo (X) = Ty Us

0O000e0

A-calculus
Effects

> 1)-conversion for functions: f ~, Ax.fx whenever f is of functional
type
> In the presence of effects:
» Satisfied in CBN

> Not satisfied in CBV: n)-conversion allows to replace an arbitrary
function by a value

O0000e

A-calculus
Effects

» 1-conversion for booleans:
t{u/x] A, if uthen t[true/x] else t[false/ x| whenever u s of
boolean type

> “A boolean can be evaluated at any given time”

> In the presence of effects:
» Satisfied neither in CBV nor in CBN

> Restricted to values: t[v/x] ~, if vthen t[true/x] else t[false /x|
» Satisfied in CBV

> Not satisfied in CBN: We recover the unrestricted 7)-conversion using
the restricted version with v = x and applying the substitution [u/x]

Call-By-Push-Value

> Why:
» Subsumes both Call-By-Value and Call-By-Name
» All types behave well, even in the presence of effects

> How:
» Terms are split into values W and computations M:

> “Avalue is, a computation does” (Levy)

> Values =~ terms built from variables and constructors of
pattern-matchable types (for example (y, ()))

> Computations ~= everything else (all destructors, and constructors for
functions...)

> thunk M = A().M and force W ~ W()

» Reductions defined on configurations: (M || K)

> Why:
> Nice rewriting theory (two constructions per type, HORS, can define
weak and strong reductions)
» Commutation rules are “for free”

> How:

> Intuitionistic sequent calculus with evaluation order

» Reduction defined on polarised commands (t | e)*

» Subterms also represented by commands ~+ Can define strong and
weak reduction

» Polarity determines the strategy locally: € = — means CBN and
€ = + means CBV

» A term constructor jux.c:

> Moves focus: (ux.c| S) >, c[S/+],ie. S [] > S|c]

> Allows to define a term by its behaviour in a given context: If we want
(fa| S) > (f| S[Oa]), we can define application by
fa = px.(f | x[Oa])

10/18

Simulation of CBPV by LJ}]

Translation and simulation

» Translation (macro expressible):
K
» W=V [M= Voand[K= S

M|k = (] |[&])
> In CBPV,K[pm()as().M} > K [M] while in LJ,
k { pm () as ()t} > k [pmas ()t] > ki
o~ (Bl — E] it[E]s,
--- c n‘D ¢’ and whenever E > E', ¢ ;é

Proposition (Simulation)

IfE; > Ep thenw E1 1> E2 I

Proposition

5
|
)

E is a normal form if and only if! E ! is a ©> -normal form.

11/18

Simulation of CBPV by LJ}]

Translation and simulation

Proposition (Simulation)

IFE, > E, then[é] >+ [ézj.

Proposition

E is a normal form if and only if [E] is a >>-normal form.

Corollary
/f[l:ﬂj D> ¢y, then there exist some E; so that Ey > E; and ¢, >* [1:23].

» E, >" E; ifand only if[é] > [éz}
» E, is a normal form of E; if and only if [ég] is a > -normal form of [1:21]

» E is normalising if and only if [I;:j is > -normalising.

12/18

Simulation of CBPV by LJ}]

Type preservation

13/18

Simulation of CBPV by LJ}]

Type preservation

Definition
A configuration E (resp. command c) is potentially reducible if there is a

substitution o : x — W (resp. o : x — V) and a stack K (resp. S) so that
E[o, K/nil] (resp. c[o, S/*]) is not normal.

Remark

Potentially reducible normal forms correspond to “good” normal form.

Example

(pm () as (x1, x2).M | K) is not potentially reducible but (force x || K [CJW])
is because

(force thunk (Ay.t) | K [OW]) > (Ay.t | K [OW]) > (t[W/y] | K).

Proposition

If E is a potentially reducible normal form then so is [Ej

14/18

Weak reduction in LJZ

» Translation from (non-deterministic) CBV to LJZ:

> Left-to-right: “Evaluate f and bind x; to the result, evaluate a bind x, to
the result, reduce x;x,”
» Right-to-left: Evaluate a before f

» Weak (non-deterministic) CBV reduction is not sent on head reduction
by the reduction:

> In the left to right translation, E] > does not imply >
> In the right to left translation, > does not imply >

> On open terms, weak left-to-right CBV reduction is not sent on head
reduction.

15/18

Weak reduction in LJZ

Warning

In this section, we consider LJZ without sums.

Definition

The weak reduction — on LJZ is defined as the closure of the head
reduction > by all constructors except negative covariable binders (px.c,
p(x - %).c, p<x.cy;*.co>and p{*}.c).

Lemma

V=¥, i.e. V is a normal form with respect to —.

Lemma
IfS — 8, then c[S/x] — ¢c[S'/+].

16/18

Weak reduction in LJZ

Proposition

The weak reduction — is uniformly confluent' .

Corollary

The weak reduction — is confluent.

Proposition

For any closed command c, c is strongly — -normalising if and only if it is
strongly > -normalising.

e+ ¢ — ¢ withg # ¢, then there is some ¢, so that ¢, — ¢, < ¢
17/18

Conclusion

» Translation from CBPV to LJZ
» Macro-expressible
> Is a simulation
> Preserves (“good”) normal forms
> Preserves typing judgements

» Weak reduction in LJZ:

» CBV and CBN are macro-expressible in LJ
» Works for non-deterministic CBV
» Works on open terms

18/18

	Outline
	Background
	-calculus
	Call-By-Push-Value
	LJp

	Contributions
	Simulation of CBPV by LJp
	Weak reduction in LJp

	Conclusion

