
Open call-by-push-value
M2 Internship

Xavier MONTILLET
under the supervision of

Guillaume Munch-Maccagnoni

13th June 2017

Call-By-Push-Value (CBPV) is a model of computation that allows to reconcile
the Call-By-Name (CBN) and Call-By-Value (CBV) evaluation strategies on closed
terms. Unfortunately, its extension to open terms faces the same problems as CBV:
some redexes get stuck. Several solutions have been presented for CBV but not for
CBPV. We show that a representative fragment of LJηp (a polarised intuitionnistic
abstract-machine-like calculi) is equivalent to CBPV on closed terms, and equip it
with a notion of weak reduction on open terms.

Introduction

Call-By-Push-Value (CBPV) is the right way to reconcile the Call-By-Name (CBN) and Call-
By-Value (CBV) evaluation strategies, and therefore to describe sums (that behave well in CBV
but not in CBN) in the presence of higher-order functions (that behave well in CBN but not in
CBV).

LJηp is a polarised intuitionistic abstract-machine-like calculi with explicit evaluation order.
The relationship between CBPV and LJηp in terms of models is given in [CFM16]. In this

report, we show that CBPV can be encoded in LJηp from a computational point of view. We also
define a notion of weak reduction on LJηp.
More precisely, we give a macro-expressible translation from CBPV to LJηp, and prove that

it is a simulation and preserves normal forms. We define a weak reduction on LJηp (without
sums) strictly stronger than head reduction and prove that it is confluent and that it has the same
strongly-normalising closed terms as the head reduction.

1

t, u, r, f , g, a, b ::= term∣∣ x, y, z variable∣∣ λx.t abstraction∣∣ tu application
(a) Syntax

beta�β

(λx.t)u �β t
[
u / x

]
(b) Head β-reduction

beta⇒β
(λx.t)u⇒β t

[
u / x

] t⇒β t
′

lam⇒β
λx.t⇒β λx.t

′

t⇒β t
′

app
⇒β
ltu⇒β t

′u

u⇒β u
′

app
⇒β
r

tu⇒β tu
′

(c) Strong β-reduction

beta→β
(λx.t)u→β t

[
u / x

] t→β t
′

app
→β
ltu→β t

′u

u→β u
′

app
→β
r

tu→β tu
′

(d) Weak β-reduction

Figure 1.1: λ-calculus

1. Background

1.1. λ-calculus

The λ-calculus is a well-known minimalist abstract system due to Alonzo Church that can be
used to describe computations. Its syntax and reduction rules are recalled in figure 1.1. For
example, the identity function is written as λx.x. I will be denoted by I .
Remark 1.1. Whenever giving a (context-free) grammar, such as in figure 1.1, we will place
several symbols instead of a single non-terminal one on the left of ::=. Those will be the names
given to the meta-variables for terms generated by the corresponding non-terminal symbol. The
set of all such terms will be denoted by the first symbol in blackboard bold font. So that t and u
are meta-variables ranging over the set t of λ-terms.

A unique set x of variables will be used for all languages considered. By t
[
u / x

]
, we denote

the result of the capture-avoiding substitution of x by u in t. If σ : x → t is a substitution,
we write t[σ] for the result of the capture-avoiding substitution of each variable x ∈ x by
σ(x) in t. The symbol � is a distinguished variable that will denote a hole in a term. A term
with a single occurrence of � will be called a context or a term with a hole. If t is a context,
then t[u] is the result of the non capture-avoiding substitution of � by u in t. For example,
(λx.y)

[
x / y

]
= λx.y 6= λx.x = (λx.�)[x].

Several head reductions denoted by � (with some indices) will be considered. In each case,
⇒ (with the same indices) will denote the compatible closure of �.

If color is available, meta-variables, such as t, will be in blue while syntax, such as λ, will be in
green. The rest (including parentheses to remove ambiguity, constants, substitution at the meta
level, reductions) will be in black. The notations remain non-ambiguous in the absence colour.

2

(λx.λy.x)((λz.z)a)
v→β (λx.λy.x)a

n→
β

v→
β

λy.(λz.z)a ⇒β λy.a� �→
β

� �→
β

Figure 1.2: Non-uniqueness of normal forms for
weak β-reduction

In (most) popular programming languages,
the body of a function is only used when the
function is applied. To more precisely model
the operational semantics of such languages,
we define weak β-reduction →β by remov-
ing the lam rule (see figure 1.1d). Unfortu-
nately, weak reduction does not have unique-
ness of normal forms (and is therefore not
confluent), which means that a “computation”
(represented by a term t) can have two differ-
ent “results” (represented by two distinct nor-
mal forms��←βr1 ←∗β t→∗β r2��→β), as can be seen in figure 1.2.
This lack of uniqueness (of normal forms) leads to the study of two restrictions of weak reduc-

tion that have uniqueness of normal forms (because they are confluent): Call-By-Name (CBN)
and Call-By-Value (CBV). CBN corresponds (loosely) to the evaluation strategy of lazy lan-
guages such as Haskell, while CBV corresponds to that of eager languages such as OCaml.

1.1.1. Call-By-Name

t �β t
′

beta
n→β

t
n→β t

′

t
n→β t

′

app
n→β
ltu

n→β t
′u

Figure 1.3: Call-By-Name weak β-reduction

Call-By-Name is a restriction ofweakβ-reduction
that ensures that the argument of an applica-
tion is never reduced, i.e., that the appr rule is
removed (see figure 1.3). This corresponds to
a lazy behaviour: an argument that is not used
will never be computed.
Another description of Call-By-Name, closer

to an operational semantics, is given by an abstract machine: the Krivine machine [Kri07]. In an
abstract machine, a term t is represented by a configuration 〈u || k〉 where u is a term and k is a
context so that t = k[u]. The several representation of a term t allow to specify which subterm
u the machine is currently working on. A configuration can also be represented as a term with
a box around u, i.e., k[u] represents 〈u || k〉. For example, the configuration

〈
fa1

∣∣∣∣ (�a2)a3〉
represents fa1 a2a3 while 〈fa1a2 ||�a3〉 represents fa1a2 a3.

k ::= context∣∣ ? the empty context∣∣ a · k the context k[�a]

(a) Syntax

〈fa || k〉
n
I 〈f || a · k〉 (app

n
I
l)

〈λx.t || a · k〉
n
I

〈
t
[
a / x

] ∣∣∣∣k〉 (beta
n
I)

(b) Reductions

Figure 1.4: Krivine abstract machine (CBN)

The abstract machine starts in 〈t ||�〉,
meaning that it starts with the focus on the
whole term, and then keeps applying its two
reduction rules. The first one corresponds to
going up the rule appl: If the focused term is
an application fa , it moves the focus to the
left part f a. The second rule corresponds to
a β-reduction step, and therefore to the rule
beta: λx.t u becomes t

[
u / x

]
.

While the representation of a term t as a
term with a box k[u] works well for the
first abstract machines we will present, it can

3

not be (easily) extended to LJηp. We therefore
henceforth use the representation of a term t as
a configuration 〈u || k〉. Under this representation, the two rules become 〈fa || k〉

n
I 〈f || k[�a]〉

and 〈λx.t || k[�a]〉
n
I
〈
t
[
a / x

] ∣∣∣∣k〉. In both cases, the machine has to look deep in the context
to move / find the argument a, as shown by the following example:

〈
λx.t

∣∣∣∣ ((�a1)a2)a3〉 n
I〈

t
[
a1 / x

] ∣∣∣∣ (�a2)a3〉. This is because the machine looks at the first constructors inside and
outside of the box, and while the first constructor of the term is easily accessible, the hole� and
the constructor just above it may be deep in the context. For this reason, contexts are represen-
ted inside-out using the notation a · k for k[�a]. In the case of the Krivine machine, the only
contexts that are needed are of the form ((�a1). . .)al and will be written as a1 · (. . . · (al · ?)).
Note that ? represents the outside of the context. Munch-Maccagnoni and Scherer explain how
this is related to continuation-passing style and defunctionalisation in [MS15].

1.1.2. Call-By-Value

beta
v
�β

(λx.t)v
v
�β t

[
v / x

]
(a) Head βv-reduction

t
v
�β t

′

beta
v→β

t
v→β t

′

t
v→β t

′

app
v→β
ltu

v→β t
′u

v ::= x
∣∣ λx.t value u

v→β u
′

app
v→β
r

tu
v→β tu

′

(b) CBV weak β-reduction

Figure 1.5: CBV β-reductions

Call-By-Value is a restriction ofweakβ-reduction
that ensures that only “simple” terms named
values can be substituted for variables, i.e.,
that restricts the rule beta to applications of
the form fv where v is a value (see fig-
ure 1.5b). This corresponds to an eager be-
haviour: in an application fa, the argument a
is computed before being given to the function
f , even if the function does not use it.
Two deterministic variants of Call-By-

Value are left-to-right where the function is
evaluated before its argument (i.e. appr is re-
stricted to the case where t is a value), or right-
to-left where the argument is evaluated before
the function (i.e. appl is restricted to the case
where u is a value).

k ::= context∣∣ ? the empty context∣∣ a · k the context k[�a]∣∣ f � k the context k[f�]

(a) Syntax

〈fa || k〉
v
I
〈
a

∣∣∣∣f � k〉 (app
v
I
r)

〈v || f � k〉
v
I
〈
f

∣∣∣∣ v · k
〉

(app
v
I
l)

〈λx.t || a · k〉
v
I
〈
t
[
a / x

] ∣∣∣∣ k
〉

(beta
v
I)

(b) Reductions

Figure 1.6: Abstract machine (CBV, left-to-right)

Both left-to-right and right-to-left Call-By-
Value can be described by abstract machines.
In both cases, the context f � k representing
k[f�] has to be introduced. The rules in fig-
ure 1.6 describe the behaviour of the machine.
Its behaviour when encountering an applica-
tion is described in figure 1.7.

An additional difficulty ariseswhen looking
at CBV on open terms: some normal forms,

4

〈fa || k〉
v
I
〈
a

∣∣∣∣f � k〉 Push the function in the context
v
I
∗ 〈
v

∣∣∣∣f � k〉 Reduce the argument until it becomes a value
v
I
〈
f

∣∣∣∣ v · k
〉

Pop the function from the context and push the argument
v
I
∗ 〈
λx.t

∣∣∣∣ v · k
〉

Reduce the function until it becomes an abstraction
v
I
〈
t
[
v / x

] ∣∣∣∣ k
〉

β-reduction

Figure 1.7: Abstract machine (CBV, left-to-right) - Example

called inert1 i ::= xt1. . .tn, are not values.
This makes some redex (those of the form
fi) stuck, which in turn cause unexpected be-
haviours: If Ω is a closed diverging term,
(λx.Ω)i is a normal form (and therefore con-
verges) but for any substitution σ sending the
open variables of (λx.Ω)i on closed terms, (λx.Ω)i[σ] diverges. These problems spread to
strong Call-By-Value because when reducing under an abstraction, some variables are (locally)
free. Several (equivalent) solutions are known [AG16].

1.2. Effects

In the presence of effects, functions are well-behaved in Call-By-Name but not in Call-By-Value:
the η-conversion for functions, f ≈η λx.fx whenever f is of functional type, is not satisfied.
The problem is that it allows to replace a term f that may not be a value by a value λx.fx,
which, in CBV, affects the order of evaluation. For example, given two functions f1 and f2, in the
application f1f2, we can force f1 (resp. f2) to be evaluated to a value by using η-conversion for f2
(resp. f1): f1f2 ≈η f1(λy.f2y)

v→
∗
β v1(λy.f2y) (resp. f1f2 ≈η (λy.f1y)f2

v→
∗
β (λy.f2y)v2).

In the case where those two functions print different things before becoming values, this gives two
different behaviours of two η-convertible terms. An example where fi := print “i”;λxi.xi prints
“i” and then become the identity is given in figure 1.8. Note that the two terms may not even
print the same things in different order: If f1 drops its argument, the “2” will never get printed
in the left branch. In Call-By-Name, the argument a of an application fa is never reduced and
the effect triggered by the evaluation of f will therefore always happen before everything else,
including effects triggered by evaluating a.
In the presence of effects, the η-conversion for booleans, if x is free of type bool in t then

t
[
u / x

]
≈η ifu then t

[
true / x

]
else t

[
false / x

]
, holds neither in CBN nor in CBV. This is

expected because it says that a boolean can be evaluated at any time, which can change the
observable behaviour if the boolean triggers effects. In CBV, this can be fixed by restricting the
rule to the cases where u is normal (because then, evaluating it does nothing), which includes
the cases where u is a variable y: t

[
y / x

]
≈η if y then t

[
true / x

]
else t

[
false / x

]
. Indeed, y

1Following the terminology of [AG16]

5

(print “1”; f1)(print “2”; f2)

≈ η ≈
η

(print “1”; f1)(λx.(print “2”; f2)x) (λx.(print “1”; f1)x)(print “2”; f2)“1”
� “2

”
�

f1(λx.(print “2”; f2)x) (λx.(print “1”; f1)x)f2

Figure 1.8: η-conversion does not hold for functions in CBV

k
[
(print “1”;x)

[
y / x

]]
≈η k

[
if y then ((print “1”;x)

[
true / x

]
) else ((print “1”;x)

[
false / x

]
)
]

def
= def
=

k
[
(print “1”; y)

]
k
[
if y then (print “1”; true) else (print “1”; false)

]

� �

print “1”; print “2”; b if (print “2”; b) then (print “1”; true) else (print “1”; false)“1”
� “
2”
�

print “2”; b if b then (print “1”; true) else (print “1”; false)

where k := letx be (print “2”; b).�

Figure 1.9: η-conversion does not hold for booleans in CBN

will always be replaced by a value which can not trigger an effect. This still does not work in
CBN because the variable y could be replaced by a boolean triggering an effect, for example by
placing the term in the context k := letx be (print “2”; b).� as in figure 1.9.

The drive to reconcile the behaviour with respect to η-conversion of positive types such as
booleans and that of negative types such as functions led to the study of polarised systems
[DJS97] mixing aspects of CBN and CBV, which in the intuitionistic case [LM07] was shown
[CFM16] to be closely related to Call-By-Push-Value as introduced next.

1.3. Call-by-push-value

Call-by-push-value, introduced by Levy [Lev04], subsumes both Call-By-Value and Call-By-
Name. Terms are split into values (denoted byW) and computations (denoted byM), according
to the slogan “A value is, a computation does” (Levy).
Values W include variables x and constructors of some pattern-matchable type applied to

values (such as the unique element of unit (), or a pair (W1,W2)). Computation include all the
remaining usual constructions, including let expressions, pattern matches, and constructors and
destructors of non-pattern-matchable types. Note that application is written with the argument
first, i.e. W ‘M should be understood asMW .
In addition to those, there is a constructor for values thunkM that freezes a computation and

a constructor for computations forceW that forces a frozen computation to execute. Freezing
the computation can be though of as the suspending it by placing it under a λ-abstraction λ_.M
while forcing a frozen computation can be though of as getting it out of the lambda abstraction by
applying it to somethingW (). Under this view, the reduction force thunkM � M then becomes

6

(λ_.M)() � M . IfM is of type B, then thunkM is of type UB.
There is also a constructor that turns a value W into a computation returnW that simply re-

turns its result: W . The result of a computation M can be extracted and used (as x in N)
using M tox.N . Note that the let construction letW bex.N could be seen as syntactic sugar
for returnW tox.N , and then reduction 〈letW bex.N ||K〉 �

〈
N
[
W / x

] ∣∣∣∣K〉 would become
〈returnW tox.N ||K〉 � 〈returnW ||� tox.N :: K〉 �

〈
N
[
W / x

] ∣∣∣∣K〉. If W if of type A,
then returnW is of type FA.

Value types are written A and computation types are written B. Because the framework
does not include dependent types, the usual dependent sums

∑
t∈A

Bt are specialised into products

A1 ×A2 :=
∑
i∈A1

A2 and a restricted sigma where the sum is not indexed over a type but over

a set of tags {1, 2}:
∑

i∈{1,2}
Bi. Similarly, dependent functions

∏
t∈A

Bt are specialised into non-

dependent functions A→ B :=
∏
t∈A

B and restricted pi:
∏

i∈{1,2}
Bi.

The context � tox.N :: K can be though of asK[� tox.N], andW :: K can be though of as
K[�W] (and similarly withW replaced by ı̂).

1.4. LJηp
We now introduce theLJηp calculus [MS15, CFM16] which is a term assignment for intuitionistic
logic with explicit evaluation order which brings together CBPV and Curien-Herbelin’s calculus.

In Curien-Herbelin’s calculus [CH00], terms are presented by commands 〈t || e〉 where t is a
term and e is an evaluation context. A crucial difference with the previous abstract machines is
that subterms are also represented by commands.
The usual rules of pattern matches are given, with the notation µ̃c in place of let� bec

or pm� asc. For example, µ̃x.c represents let� bex.c and the reduction 〈V || µ̃x.c〉 �µ̃
c
[
V / x

]
can therefore be read as let V bex.c � c

[
V / x

]
. Similarly, µ̃().c represents

pm� as ().c and the reduction
〈
()
∣∣∣∣ µ̃().c

〉
�1 c can therefore be read as pm () as ().c � c.

The symbol ? representing the outside of the context is now called a covariable2 and an as-
sociated binder is introduced. The rule 〈µ?.c ||S〉 �µ c

[
S / ?

]
is symmetrical to the one of

let / µ̃. It can be seen as moving focus: S[c] � S[c], although where the focus is moved
depends on where the focus was in the subcommand c. Another way to see µ? is to say that it
allows to define terms by their behaviour in a given context. For example, in the CBN abstract
machine, 〈fa ||S〉 � 〈f || a · S〉 can be seen as stating that fa : S 7→ 〈f || a · S〉. This can then
be encoded in λµµ̃ by defining fa := µ?.〈f || a · ?〉 and the reduction becomes an instance of
�µ. Using µ and µ̃, we can limit the number of primitive constructs per type to two: one con-
structor and one destructor. For example, for the function type _, the constructor is V · S and
the destructor is µ(x · ?).c. The reduction

〈
µ(x · ?).c

∣∣∣∣V · S〉 �_ c
[
V / x, S / ?

]
can be seen

as S[λx.c V] � S
[
c
[
V / x

]]
.

2In λµµ̃, there are more than one covariable. Only allowing to use one covariable amounts to restricting to an
intuitionistic setting as suggested by Herbelin [Her05].

7

value W ::= x
∣∣ thunkM

∣∣ ()
∣∣ (W,W)

∣∣ (̂ı,W)

computation M ::= letW bex.N
∣∣ returnW

∣∣M tox.N
∣∣ forceW∣∣ pmW as ().N

∣∣ pmW as (x, y).N
∣∣ pmW as {(1, x1).N1, (2, x2).N2}∣∣ λx.M ∣∣W ‘M

∣∣ λ{1.M1, 2.M2}
∣∣ ı̂‘M

stack K ::= nil
∣∣ � tox.M :: K

∣∣W :: K
∣∣ ı̂ :: K

tag ı̂ ::= 1
∣∣ 2

configuration E ::= 〈M ||K〉
(a) Syntax

value A ::= UB
∣∣ 1 ∣∣ A1 ×A2

∣∣ ∑
i∈{1,2}

Ai

computation B ::= FA
∣∣ A→ B

∣∣ ∏
i∈{1,2}

Bi

(b) Types〈
letW bex.N

∣∣∣∣ K
〉
�

〈
N
[
W / x

] ∣∣∣∣ K
〉〈

M tox.N
∣∣∣∣ K

〉
�

〈
M

∣∣∣∣� tox.N :: K
〉〈

returnW
∣∣∣∣� tox.N :: K

〉
�

〈
N
[
W / x

] ∣∣∣∣ K
〉〈

force thunkM
∣∣∣∣ K

〉
�

〈
M

∣∣∣∣ K
〉〈

pm () as ().N
∣∣∣∣ K

〉
�

〈
N

∣∣∣∣ K
〉〈

pm (W1,W2) as (x1, x2).N
∣∣∣∣ K

〉
�

〈
M
[
W1 / x1,W2 / x2

] ∣∣∣∣ K
〉〈

pm (̂ı,W) as {(1, x).N1, (2, x).N2}
∣∣∣∣ K

〉
�

〈
Nı̂

[
W / x

] ∣∣∣∣ K
〉〈

W ‘M
∣∣∣∣ K

〉
�

〈
M

∣∣∣∣ W :: K
〉〈

λx.N
∣∣∣∣ W :: K

〉
�

〈
N
[
W / x

] ∣∣∣∣ K
〉〈

ı̂‘M
∣∣∣∣ K

〉
�

〈
M

∣∣∣∣ ı̂ :: K
〉〈

λ{1.N1, 2.N2}
∣∣∣∣ ı̂ :: K

〉
�

〈
Nı̂

∣∣∣∣ K
〉

(c) Reductions

Figure 1.10: Call-by-push-value

8

c1
[
µ̃x.c2 / ?

]
�µ 〈µ?.c1 || µ̃x.c2〉 �µ̃

c2
[
µ?.c1 / x

]
Figure 1.11: Lafont critical pair in λµµ̃

A disadvantage of Curien-Herbelin’s calcu-
lus to represent computations is the presence
of the Lafont critical pair shown in figure 1.11
which prevents uniqueness of normal forms
(and therefore confluence). Curien and Her-
belin show that the two ways to remove the critical pair (either favouring the left or favouring
the right) correspond to a CBV and CBN restrictions of Curien-Herbelin’s calculus. Inspired
by Danos, Joinet and Schellinx [DJS97], Munch-Maccagnoni introduces a variant of Curien-
Herbelin’s calculus where the side to which the critical pair reduces is according to a polarity
determined by the type (MM 2009). Polarities + and − are added to commands, only allowing
µ̃ to reduce in positive commands, and µ only in negative commands. This is done by adding
two new syntactic categories: the values are terms that can be substituted for variables, and the
stacks are contexts that can be substituted for covariables. Types are also assigned a polarity.
Those whose constructor builds values and destructor binds variables via a µ̃ are positive and
those whose constructor build stacks and destructor binds covariables via µ are negative. The
result is (a fragment of) the system LJηp in the Curry-style variant in [Mun] which is described
in figure 1.12.
Both Call-By-Name and Call-By-Value can be encoded inLJηp. Note that the presence of µ and

µ̃ in LJηp allows to express all constructs related to functions with just two primitive constructs
specific to functions: µ(x · ?).c and a · S.

2. Simulation of CBPV by LJηp
In this section, we describe a way to express CBPV in LJηp via macros, in the sense of macro-
expressibility in Felleisen [Fel91]. We also give a second slightly modified translation that be-
haves more nicely with respect to simulation.
There exists a translation in the other direction induced by the interpretation ofLJηp into CBPV

models [CFM16] not studied here.
Types are translated by two mutually recursive functions: · A+ : A→ P sending value types of

CBPV to positive types of LJηp and · B− : B→ N sending computation types of CBPV to negative
types of LJηp. Values and computations are also translated by two mutually recursive functions:
· W+ : W → V+ sending values of CBPV to positive values of LJηp and · M− : M → V− sending
computations of CBPV to negative values of LJηp. Stacks are translated by · K− : K → S sending
stacks of CBPV to negative stacks of LJηp. The translation of configurations, · E : E → c,
sending configurations of CBPV to negative commands of LJηp, is defined by 〈M ||K〉 E

:=

〈M M

− || K
K

−〉−. Note that while the translations preserve typing, they are not restricted to typed
values / computations / stacks / configurations. The translations are described in figure 2.1. The
upper indices are left implicit. The translations are described in figure 2.1.

While type preservation and simulation (of E by E) work for the translation · , there is no
hope to obtain any (strong) simulation property in the other direction (i.e. of E by E) because

9

value V ::= x
∣∣ ()

∣∣ (V1, V2)
∣∣ ι1(V)

∣∣ ι2(V)
∣∣ {V }∣∣ µ?−.c ∣∣ µ(x · ?).x

∣∣ µ<?.c1 ; ?.c2>
∣∣ µ{?}.c

term t ::= µ?+.c
∣∣ V

stack S ::= ?
∣∣ V · S ∣∣ π1 · S ∣∣ π2 · S ∣∣ {S}∣∣ µ̃x+.c

∣∣ µ̃().c
∣∣ µ̃(x1, x2).c

∣∣ µ̃[x1.c2 | x2.c2]
∣∣ µ̃{x}.c

context e ::= µ̃x−.c
∣∣ S

command c ::= 〈V || e〉−
∣∣ 〈t ||S〉+

(a) Syntax

types A,B

{
positive A+, B+ ::=

∣∣A⊗B ∣∣ A⊕B ∣∣ ⇓A
negative A−, B− ::= A _ B

∣∣ A&B
∣∣ ⇑ A

(b) Types〈
V

∣∣∣∣ µ̃xε.c
〉
ε �µ̃ c

[
V / x

]〈
µ?ε.c

∣∣∣∣S 〉
ε �µ c

[
S / ?

]〈
()

∣∣∣∣ µ̃().c
〉

+ �1 c〈
(V1, V2)

∣∣∣∣ µ̃(x1, x2).c
〉

+ �⊗ c
[
V1 / x1, V2 / x2

]〈
ιı̂(V)

∣∣∣∣ µ̃[x.c1 | x.c2]
〉

+ �⊕ cı̂
[
V / x

]〈
µ(x · ?).c

∣∣∣∣V · S 〉
− �_ c

[
V / x, S / ?

]〈
µ<?.c1 ; ?.c2>

∣∣∣∣πı̂ · S 〉
− �& cı̂

[
S / ?

]〈
µ{?}.c

∣∣∣∣{S} 〉
+ �µ{} c

[
S / ?

]〈
{V }

∣∣∣∣ µ̃{x}.c 〉
− �µ̃{} c

[
V / x

]
(c) Reductions

Figure 1.12: LJηp

t t
n
−

x x
λx.t µ(x · ?).〈 t n− || ?〉−
fa µ?−.〈 f n

−
|| a · ? n− 〉−

(a) Translation of terms

k k
n
−

? ?

a · k a n− · k
n
−

(b) Translation of con-
texts

〈t || k〉 n
−

:= 〈 t n− || k
n
− 〉−

(c) Translation of configura-
tions

Figure 1.13: Translation from CBN to LJηp

10

t t
v
+

x x
λx.t {µ(x · ?).〈 t v+ || ?〉−}

left-to-right fa µ?+.〈 f v
+
|| a · ? v+〉+ = µ?+.

〈
f
v

+

∣∣∣∣∣∣ µ̃{xf}.〈 a v+ ∣∣∣∣ µ̃xa+.〈xf || xa · ?〉−
〉

+

〉
+

right-to-left fa µ?+.〈 a v+ || f � ?
v

+
〉+ = µ?+.

〈
a v+

∣∣∣∣∣∣ µ̃xa+.
〈
f
v

+

∣∣∣∣ µ̃{xf}.〈xf || xa · ?〉−〉+

〉
+

(a) Translation of terms

k k
v
+ k

v
+

left-to-right right-to-left
? ? ?

a · k µ̃{xf}.〈 a v+ || xf � k
v

+
〉− µ̃{xf}.〈xf || a v+ · k

v
+〉−

f � k µ̃xa
+.〈 f v

+
|| xa · k

v
+〉+ µ̃xa

+.〈 f v
+
|| xa · k

v

+
〉+

(b) Translation of contexts

〈t || k〉 v
+

:= 〈 t v+ || k
v
+〉+

(c) Translation of configura-
tions

Figure 1.14: Translation from CBV to LJηp

a normal form (for example
〈

pmW as ().N
∣∣∣∣ nil
〉
whereW can be anything except (), including

a variable or a pair) is not always sent to a normal form:〈
pmW as ().N

∣∣∣∣ nil
〉

=
〈
µ?−.

〈
W +

∣∣∣∣ µ̃().〈N − || ?〉−
〉

+

∣∣∣∣∣∣?〉− �µ 〈W +

∣∣∣∣ µ̃().〈N − || ?〉−
〉

+

Translating E by the �µ-normal form of (or the result of applying one �µ reduction to) E
does not work either because some reductions steps in CBPV are sent to �µ reduction steps in
LJηp. For example, 〈M tox.N ||K〉 � 〈M ||� tox.N :: K〉 becomes the following:〈

µ?−.
〈
M −

∣∣∣∣{µ̃x+.〈N − || ?〉−}
〉
−
∣∣∣∣∣∣ K −

〉
− �µ

〈
M −

∣∣∣∣{µ̃x+.〈N − || K −〉−}
〉
−

This problem is fixed by introducing a second translation · : E → c defined from · by
sometimes applying a�µ reduction. Intuitively, it will apply a�µ reduction if and only if it does
not correspond to a reduction in CBPV.
More formally, if E ���µ, then E is defined to be E . Otherwise, there is some c′ so that

E �µ c′. If this reduction corresponds to a reduction in CBPV, i.e. if E � E′ for some
configuration E′ and E′ = c′, then E is defined to be E . Otherwise, E is defined to be c′.
This is summarised in figure 2.1d. All the cases where E 6= E are enumerated in the proof of
proposition 2.1 on page 11.

2.1. Simulation

Both translations are simulations of CBPV by LJηp, and there is a “weak” simulation in the other
direction for · .

Proposition 2.1 (Simulation). For any configurations E1 and E2, if E1 � E2 then E1 �+ E2 .

11

W :A W + : A +

x :A x : A +

thunkM : UB
{
M −

}
:⇓B

−

() : 1 () : 1

(W1,W2) :A1 ×A2

(
W1 +

, W2 +

)
: A1 +

⊗ A2 +

(̂ı,W) :
∑

i∈{1,2}
Ai ιı̂

(
W +

)
: A1 +

⊕ A2 +

(a) Translation of values

K :B 7→ C K − : B
−

7→ C
−

nil :B 7→ B ? : B
−

7→ B
−

� tox.N :: K : FA 7→ C {µ̃x+.〈N − || K −〉−} :⇑ A + 7→ C
−

W :: K : (A→ B) 7→ C W + · K − : (A + _ B
−
) 7→ C

−

ı̂ :: K :
∏

i∈{1,2}
Bi 7→ C πı̂ · K − : B1

−
&B2

−
7→ C

−

(b) Translation of stacks

M :B M − : B
−

letW bex.N :B µ?−.
〈
W +

∣∣∣∣ µ̃x+.〈N − || ?〉−
〉

+ : B
−

returnW : FA µ{?}.〈W + || ?〉+ :⇑ A +

M tox.N :B µ?−.
〈
M −

∣∣∣∣{µ̃x+.〈N − || ?〉−}
〉
− : B

−

forceW :B µ?−.
〈
W +

∣∣∣∣ µ̃{x}.〈x || ?〉−〉+ : B
−

pmW as ().N :B µ?−.
〈
W +

∣∣∣∣ µ̃().〈N − || ?〉−
〉

+ : B
−

pmW as (x1, x2).N :B µ?−.
〈
W +

∣∣∣∣ µ̃(x1, x2).〈N − || ?〉−
〉

+ : B
−

pmW as {(1, x1).N1, (2, x2).N2} :B µ?−.〈W + || µ̃[x1. N1 −
| x2. N2 −

]〉+ : B
−

λx.N :A→ B µ(x · ?).〈N − || ?〉− : A + _ B
−

W ‘M :B µ?−.〈M − || W + · ?〉− : B
−

λ{1.N1, 2.N2} :
∏

i∈{1,2}
Bi µ<?.〈N1 −

|| ?〉− ; ?.〈N2 −
|| ?〉−> : B1

−
&B2

−

ı̂‘M :B µ?−.〈M − || πı̂ · ?〉− : B
−

(c) Translation of computations

〈M ||K〉 := 〈M − || K −〉−

E :=

{
E if E ���µ
c′ if E �µ c

′ and whenever E � E′, c′ 6= E′

(d) Translation of configurations

Figure 2.1: Translation from CBPV to LJηp

12

Proposition 2.2. A configuration E is in normal form if and only if its translation E is.

Corollary 2.3. • For any configuration E1 and command c2, if E1 � c2, then there exist
some E3 so that E1 � E3 and c2 �∗ E3 .
• For any configurations E1and E2, E1 �+ E2 if and only if E1 �+ E2 .
• For any configurations E1and E2, E2 is a normal form of E1 if and only if E2 is a �-
normal form of E1 .
• For any configuration E, E is (strongly) �-normalising if and only if E is.

Remark 2.4. Wewould also like “good” normal forms to be sent on “good” normal forms, where
by “good” we mean “locally well-typed”. For example, pm (v1, v2) as ().t is not “good” because
we’re pattern matching a pair against (). While we could define such forms by adding reductions
from “bad” states to some error state E, in both CBPV and LJηp, there is a simple characterisation
of “good” normal forms.

Definition 2.5. A configuration E (resp. command c) is potentially reducible if there is a sub-
stitution σ : x → W (resp. σ : x → V) and a stack K (resp. S) so that E

[
σ,K / nil

]
(resp.

c
[
σ, S / ?

]
) is not normal.

Remark 2.6. The intuition is that “bad” normal forms have incompatible head constructors /
destructors, and substitutions can not change head constructors.

Proposition 2.7. If E is a potentially reducible normal form if and only if E is.

2.2. Type preservation

Both translations preserve types.

Proposition 2.8. • For any contextΓ, valueW and value typeA, ifΓ `W : A, then Γ + ` W + : A +.
• For any contextΓ, computationM and computation typeB, ifΓ `M : B, then Γ + ` M − : B

−
.

• For any context Γ, stack K and computation types B and C, if Γ | B ` K : C, then
Γ + ` K − : B

−
| ? : C.

• For any contextΓ, computationM , stackK, and computations typesB andC, ifΓ `M : B
and Γ | B ` K : C, then 〈M ||K〉 : (Γ + ` ? : C

−
).

Proof. This is proved by a straightforward induction on the derivation. We have proved it in Coq,
using the formalisation of LJηp by Simon Boulier.

Proposition 2.9.
• For any contextΓ, computationM , stackK, and computations typesB andC, ifΓ `M : B

and Γ | B ` K : C, then 〈M ||K〉 : (Γ + ` ? : C
−
).

Proof. By the fact that E �∗ E and subject reduction in LJηp, E and E have the same type.
We conclude by using the last item of proposition 2.8.

13

3. Weak reduction in LJηp
3.1. A general notion of weak reduction

While weak reduction is a common name for reductions that do not reduce under λ-abstractions,
there is, to our knowledge, no general definition of weak reduction. The idea behind weak re-
duction is that to give an operational semantics, head reduction is not sufficient because it gets
blocked (for example on (II)(II)) but strong reduction is not satisfactory either because it may
cause some terms to diverge even though they should not (for example (λx.I)Ω in CBN where
Ω is a term that diverges). Weak reduction is therefore introduced as a reduction that “unblocks”
head reduction without “breaking termination”.
These two notions are formalised (in the setting where � is a head reduction and ⇒ is the

corresponding strong reduction) as follows:

Definition 3.1. A relation→1⊆⇒ unblocks3 another relation→2⊆⇒ if and only if⇒∗→2⊆→∗1→2.
It is written U(→1,→2).

Remark 3.2. The intuition is that→2 is “strong enough” to allow→1 to progress.

Example 3.3. For any relation→2⊆⇒, the strong reduction unblocks it: U(⇒,→2).

Example 3.4. The head reduction�β in λ-calculus does not unblock itself because (II)(II)⇒β

II �β I but (II)(II) ���β . But weak reduction→β does unblock head reduction �β (because
the only redex that the weak reduction can not reduce are those under λ-abstractions and reducing
those can not create a head redex).

Definition 3.5. Two relations are termination equivalent if they have the same strongly normal-
ising closed terms.

Remark 3.6. We only consider closed terms because if Ω does not terminate, then in CBV
λ-calculus, xΩ is strongly �-normalising but not strongly v→β-normalising.
Remark 3.7. For this notion to work, we need to add a new term E that represents an error
state and transitions from “bad” (i.e. not locally well-typed) terms to that error state, such as
pm (v1, v2) as ().u � E and ()v � E.

Definition 3.8. A relation→ so that�⊆→⊆⇒ is said to be a weak reduction with respect to�
if:
• It unblocks head reduction (U(→,�)) and itself (U(→,→)).
• It is termination equivalent to the head reduction.

A weak reduction with respect to � is called an �-weak reduction.

Remark 3.9. This definition is meant for abstract-machine-like calculi. For arbitrary calculi,
the second condition could be replaced by “Any weakly normalizing term for ⇒ is strongly
normalizing for→.”.

Proposition 3.10. n→β is a Iβ-weak reductions.
3While we have not found this notion in the literature, it seems very likely that it has already been used.

14

Proposition 3.11. v→β is a
v
Iβ-weak reduction.

Remark 3.12. In both cases, we use the representation with boxes to allow both reductions to
operate. Note that replacing Iβ by �β would make the propositions false because (II)(IΩ)
(where Ω diverges) is normal for �β but diverges for →β . It would however work using the
alternative definition from 3.9.

Proposition 3.13. In the three abstract-machine-like calculi described in figures 1.4, 1.6, and 1.12,
head reduction is a weak reduction with respect to itself.

Proof. We only need to check that it unblocks itself. This comes from the fact that reductions
only depend on the head constructor on each side of the command, and that those will not change
unless a head reduction step happens.

3.2. A stronger weak reduction

Up to some µ and µ̃ (un)folding, the translations from CBV / CBN λ-calculus to LJηp (described
in figure 1.14) are satisfactory on closed terms. But on open terms, for example if f is a vari-
able in

〈
f
v

+

∣∣∣∣∣∣ µ̃{xf}.〈 a v+ ∣∣∣∣ µ̃xa+.〈xf || xa · ?〉−
〉

+

〉
+, the (un)folding can get stuck. Since this

problem could be fixed by reducing under µ̃{}, it motivates looking for a weak reduction strictly
stronger that head reduction. Furthermore, head reduction does not account for other works
[Ehr16, AG16].
In this section, we restrict ourselves toLJηp without sums (i.e. without ιi(V) and µ̃[x1.c1 | x2.c2]).

While we believe that the results could be adapted to all of LJηp, adding sums naively breaks both
the uniform confluence of proposition 3.21 (because the fact that ? appears twice in µ̃[x1.c1 | x2.c2]
means that you may have to do two transitions) and the termination equivalence of proposi-
tion 3.23 (because a diverging subterm can be dropped by head reduction). Note that in [Ehr16],
the weak reduction does not reduce in the branches of sum pattern-matches either.

Definition 3.14. The weak reduction→ on LJηp is defined as the closure of the head reduction
� by all constructors except negative covariable binders (µ?−.c, µ(x · ?).c, µ<?.c1 ; ?.c2> and
µ{?}.c).

Remark 3.15. The restriction ensures that values are normal forms which is needed for conflu-
ence.

3.3. Confluence

Lemma 3.16. For any value V , V��→, i.e. V is a normal form with respect to→.

Proof. By induction on V .

Remark 3.17. This comes from the fact that we disallowed reduction under negative covariable
binders.
Remark 3.18. It is necessary for confluence because otherwise a value could be reduced and then
placed out of reach of weak reduction (for example under a λ-abstraction) by a substitution as in
figure 1.2.

15

Lemma 3.19. For any command c and stacks S and S′, if S → S′, then c
[
S / ?

]
→ c

[
S′ / ?

]
.

Remark 3.20. This comes from the fact that only one covariable is used, which ensures that no
matter where the free ? is, it is not under a negative covariable binder.

Proof. The proof of lemma B.2 (which is a slight generalisation of lemma 3.19) is on page 21.

Proposition 3.21. The weak reduction→ is uniformly confluent4.

Proof. The proof uses lemmas 3.16 and B.2. See page 22.

Corollary 3.22. The weak reduction→ is confluent.

Proof. By proposition 3.21 (and induction on the length of the derivation).

3.4. Termination

Proposition 3.23. For any closed command c, c is strongly →-normalising if and only if it is
strongly �-normalising.

Proof. See page 23.

References

[AG16] ACCATTOLI, Beniamino ; GUERRIERI, Giulio: Open Call-by-Value (Extended Ver-
sion). In: CoRR abs/1609.00322 (2016). http://arxiv.org/abs/1609.00322

[CFM16] CURIEN, Pierre-Louis ; FIORE, Marcelo P. ; MUNCH-MACCAGNONI, Guillaume: A
theory of effects and resources: adjunction models and polarised calculi. In: BODÍK,
Rastislav (Hrsg.) ; MAJUMDAR, Rupak (Hrsg.): Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, ACM, 2016. – ISBN 978–
1–4503–3549–2, 44–56

[CH00] CURIEN, Pierre-Louis ; HERBELIN, Hugo: The duality of computation. In: ODERSKY,
Martin (Hrsg.) ; WADLER, Philip (Hrsg.): Proceedings of the Fifth ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000., ACM, 2000. – ISBN 1–58113–202–6, 233–243

[DJS97] DANOS, Vincent ; JOINET, Jean-Baptiste ; SCHELLINX, Harold: A New Decon-
structive Logic: Linear Logic. In: J. Symb. Log. 62 (1997), Nr. 3, 755–807. http:
//dx.doi.org/10.2307/2275572. – DOI 10.2307/2275572

4If cl ← c→ cr with cl 6= cr , then there is some clr so that cl → clr ← cr

16

http://arxiv.org/abs/1609.00322
http://dx.doi.org/10.2307/2275572
http://dx.doi.org/10.2307/2275572

[Ehr16] EHRHARD, Thomas: Call-By-Push-Value from a Linear Logic Point of View. In:
THIEMANN, Peter (Hrsg.): Programming Languages and Systems - 25th European
Symposium on Programming, ESOP 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings Bd. 9632, Springer, 2016 (Lecture Notes in Computer
Science). – ISBN 978–3–662–49497–4, 202–228

[Fel91] FELLEISEN, Matthias: On the Expressive Power of Programming Languages. In:
Sci. Comput. Program. 17 (1991), Nr. 1-3, 35–75. http://dx.doi.org/10.1016/
0167-6423(91)90036-W. – DOI 10.1016/0167–6423(91)90036–W

[Her05] HERBELIN, Hugo: C’est maintenant qu’on calcule. Version: 2005. http://

pauillac.inria.fr/~herbelin/habilitation/memoire+errata.pdf

[Kri07] KRIVINE, Jean-Louis: A call-by-name lambda-calculus machine. In: Higher-Order
and Symbolic Computation 20 (2007), Nr. 3, 199–207. http://dx.doi.org/10.

1007/s10990-007-9018-9. – DOI 10.1007/s10990–007–9018–9

[Lev04] LEVY, Paul B.: Semantics Structures in Computation. Bd. 2: Call-By-Push-Value: A
Functional/Imperative Synthesis. Springer, 2004. – ISBN 1–4020–1730–8

[LM07] LIANG, Chuck ; MILLER, Dale: Focusing and Polarization in Intuitionistic Logic. In:
CoRR abs/0708.2252 (2007). http://arxiv.org/abs/0708.2252

[MS15] MUNCH-MACCAGNONI, Guillaume ; SCHERER, Gabriel: Polarised Intermediate Rep-
resentation of Lambda Calculus with Sums. In: 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, IEEE Com-
puter Society, 2015. – ISBN 978–1–4799–8875–4, 127–140

[Mun] MUNCH-MACCAGNONI, Guillaume: Note on Curry’s style for Linear Call-by-Push-
Value. http://guillaume.munch.name/files/curry.pdf

Contents

1. Background 2
1.1. λ-calculus . 2

1.1.1. Call-By-Name . 3
1.1.2. Call-By-Value . 4

1.2. Effects . 5
1.3. Call-by-push-value . 6
1.4. LJηp . 7

2. Simulation of CBPV by LJηp 9
2.1. Simulation . 11
2.2. Type preservation . 13

17

http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://pauillac.inria.fr/~herbelin/habilitation/memoire+errata.pdf
http://pauillac.inria.fr/~herbelin/habilitation/memoire+errata.pdf
http://dx.doi.org/10.1007/s10990-007-9018-9
http://dx.doi.org/10.1007/s10990-007-9018-9
http://arxiv.org/abs/0708.2252
http://guillaume.munch.name/files/curry.pdf

3. Weak reduction in LJηp 14
3.1. A general notion of weak reduction . 14
3.2. A stronger weak reduction . 15
3.3. Confluence . 15
3.4. Termination . 16

References 16

A. Proofs of section 2 18
A.1. Proofs of section 2.1 . 18

B. Proofs of section 3 21

A. Proofs of section 2

LemmaA.1. For any computationM (resp. valueW , stackK), the free variables of M − (resp.
W +, K −) are exactly those ofM (resp. W ,K).

Proof. By mutual induction onM andW , and then by induction onK.

Corollary A.2. For any configuration E, E is closed if and only if E is.

Definition A.3. Given a substitution σ : x → W , we define the translated substitution σ + :
x → V by σ +(x) := σ(x)

+
for all variable x.

Lemma A.4 (Substitution lemma).
• If σ : x → W is a substitution, then for any computationM (resp. valueW), M [σ]

−
=

M −[σ +] (resp. W [σ]
+

= W +[σ +]).
• IfK is a stack, then for any stackK ′, K ′

[
K / nil

]
−

= K ′ −
[
K − / ?

]
.

Proof.
• By mutual induction onM andW .
• By induction onK.

A.1. Proofs of section 2.1

Proof of proposition 2.1 (page 11). We prove it by case analysis.
• If E = 〈letx beW.N ||K〉 �

〈
N
[
W / x

] ∣∣∣∣K〉 = E′,

E = 〈letx beW.N ||K〉 ;
〈
µ?−.

〈
W +

∣∣∣∣ µ̃x+.〈N − ||K〉−
〉

+

∣∣∣∣∣∣ K −

〉
− = E

�
µ〈

W +

∣∣∣∣ µ̃x+.〈N − || K −〉−
〉

+ = E

� �
µ̃〈[

M − / N +

]
x
∣∣∣∣ K −

〉
−

=

E =
〈
N
[
W / x

] ∣∣∣∣K〉 ;
〈
N
[
W / x

]
−

∣∣∣∣ K −

〉
− = E′

18

• If E = 〈M tox.N ||K〉 � 〈M ||� tox.N :: K〉 = E′,

E = 〈M tox.N ||K〉 ;
〈
µ?−.

〈
M −

∣∣∣∣{µ̃x+.〈N − || ?〉−}
〉
−
∣∣∣∣∣∣ K −

〉
− = E = E

� �
µ{}

E′ = 〈M ||� tox.N :: K〉 ;
〈
M −

∣∣∣∣{µ̃x+.〈N || K −〉−}
〉
− = E′

• If E = 〈returnW ||� tox.N :: K〉 �
〈
N
[
W / x

] ∣∣∣∣K〉 = E′,

E = 〈returnW ||� tox.N :: K〉 ;
〈
µ{?}.〈W + || ?〉+

∣∣∣∣{µ̃x+.〈N − || K −〉−}
〉
− = E = E

�
µ̃{}〈

W +

∣∣∣∣ µ̃x+.〈N − || K −〉−
〉

+

� �
µ̃〈

N −

[
W + / x

] ∣∣∣∣ K −

〉
−

=

E′ =
〈
N
[
W / x

] ∣∣∣∣K〉 ;
〈
N
[
W / x

]
−

∣∣∣∣ K −

〉
− = E′

• If E = 〈force thunkM ||K〉 � 〈M ||K〉 = E′,

E = 〈force thunkM ||K〉 ;
〈
µ?−.

〈
{M −}

∣∣∣∣ µ̃{x}.〈x || ?〉−〉+

∣∣∣∣∣∣ K −

〉
− = E

�
µ

� 〈
{M −}

∣∣∣∣ µ̃{x}.〈x || K −〉−
〉

+ = E

�
µ̃{}

E′ = 〈M ||K〉 ; 〈M − || K −〉− = E′

• If E =
〈

pm () as ().M
∣∣∣∣K〉 � 〈M ||K〉 = E′,

E =
〈

pm () as ().M
∣∣∣∣K〉 ;

〈
µ?−.

〈
()
∣∣∣∣ µ̃().〈M − || ?〉−

〉
+

∣∣∣∣∣∣ K −

〉
− = E

�
µ

� 〈
()
∣∣∣∣ µ̃().〈M − || K −〉−

〉
+ = E

�
1

E′ = 〈M ||K〉 ; 〈M − || K −〉− = E′

• If E =
〈

pm (W1,W2) as (x1, x2).N
∣∣∣∣K〉 � 〈N[W1 / x1,W2 / x2

] ∣∣∣∣K〉 = E′,

E =
〈

pm (W1,W2) as (x1, x2).N
∣∣∣∣K〉 ;

〈
µ?−.

〈
(W1 +

, W2 +
)
∣∣∣∣ µ̃(x1, x2).〈N − || ?〉−

〉
+

∣∣∣∣∣∣ K −

〉
− = E

�
µ〈

(W1 +
, W2 +

)
∣∣∣∣∣∣ 〈µ̃(x1, x2).〈N − || ?〉−

∣∣∣∣ K −

〉
+

〉
+ = E

� �
⊗〈

N −

[
W1 +

/ x, W2 +
/ x2

] ∣∣∣∣ K −

〉
−

=

E′ =
〈
M
[
W1 / x1,W2 / x2

] ∣∣∣∣K〉 ;
〈
M
[
W1 / x1,W2 / x2

]
−

∣∣∣∣ K −

〉
− = E′

• If E =
〈

pm (̂ı,W) as {(1, x).N1, (2, x).N2}
∣∣∣∣K〉 � 〈Nı̂

[
W / x

] ∣∣∣∣K〉,
E =

〈
pm (̂ı,W) as {(1, x).N1, (2, x).N2}

∣∣∣∣K〉 ;
〈
µ?−.

〈
(̂ı, W +)

∣∣∣∣ µ̃[x.〈N1 −
|| ?〉−

∣∣ x.〈N2 −
|| ?〉−

]〉
+

∣∣∣∣∣∣ K −

〉
− = E

�
µ〈

(̂ı, W +)
∣∣∣∣ µ̃[x.〈N1 −

|| K −〉−
∣∣ x.〈N2 −

|| K −〉−
]〉

+ = E

� �
⊕〈

Nı̂

[
W + / x

] ∣∣∣∣ K −

〉
−

=

E′ =
〈
Nı̂

[
W / x

] ∣∣∣∣K〉 ;
〈
Nı̂

[
W / x

]
−

∣∣∣∣ K −

〉
− = E′

19

• If E = 〈W ‘M ||K〉 � 〈M ||W :: K〉 = E′,

E = 〈W ‘M ||K〉 ;
〈
µ?−.〈M − || W + · ?〉−

∣∣∣∣ K −

〉
− = E = E

� �
µ

E′ = 〈M ||W :: K〉 ; 〈M − || W + · K −〉− = E′

• If E = 〈λx.M ||W :: K〉 �
〈
N
[
W / x

] ∣∣∣∣K〉 = E′,

E = 〈λx.N ||W :: K〉 ;
〈
µ(x · ?).〈N − || ?〉−

∣∣∣∣ W + · K −

〉
− = E = E

�
_

� 〈
N −

[
W + / x

] ∣∣∣∣ K −

〉
−

=

E′ =
〈
N
[
W / x

] ∣∣∣∣K〉 ;
〈
N
[
W / x

]
−

∣∣∣∣ K −

〉
− = E′

• If E = 〈̂ı‘M ||K〉 � 〈M || ı̂ :: K〉 = E′,

E = 〈̂ı‘M ||K〉 ;
〈
µ?−.〈M − || ı̂ :: ?〉−

∣∣∣∣ K −

〉
− = E = E

� �
µ

E′ = 〈M || ı̂ :: K〉 ; 〈M − || ı̂ :: K −〉− = E′

• If E =
〈
λ{1.N1, 2.N2}

∣∣∣∣ ı̂ :: K
〉
� 〈Nı̂ ||K〉 = E′,

E =
〈
λ{1.N1, 2.N2}

∣∣∣∣ ı̂ :: K
〉
;

〈
µ<?.〈N1 −

|| ?〉− ; ?.〈N2 −
|| ?〉−>

∣∣∣∣ ı̂ :: K −

〉
− = E = E

� �
&

E′ = 〈Nı̂ ||K〉 ; 〈M ı̂ −
|| K −〉− = E′

Proof of proposition 2.2 (page 13). We prove each direction separately:
⇒ There are 11 reductions rules for CBPV, among which 4 apply as soon as the head con-

structor of the computation matches (the 3 that push things to the context, and the let). We
therefore only have 7 cases to handle, each corresponding to a different head constructor
of the computation:
� IfE = 〈returnW ||K〉whereK is not of the form� tox.N :: K ′, E =

〈
µ{?}.〈W + || ?〉+

∣∣∣∣ K −

〉
−

where K − is not of the form {S} which is indeed a normal form.
� IfE = 〈forceW ||K〉whereW is not of the form thunkM , E =

〈
W +

∣∣∣∣ µ̃{x}.〈x || K −〉−
〉

+

where W + is not of the form {V } which is indeed a normal form.
� IfE =

〈
pmW as ().N

∣∣∣∣K〉whereW is not of the form (), E =
〈
W +

∣∣∣∣ µ̃().〈N − || K −〉−
〉

+

where W + is not of the form () which is indeed a normal form.
� If E =

〈
pmW as (x1, x2).N

∣∣∣∣K〉 whereW is not of the form (W1,W2),
E =

〈
W +

∣∣∣∣ µ̃(x1, x2).〈N − || K −〉−
〉

+ where W + is not of the form (V1, V2)which
is indeed a normal form.
� If E =

〈
pmW as {(1, x).N1, (2, x).N2}

∣∣∣∣K〉 where W is not of the form (̂ı,W ′),
E =

〈
W +

∣∣∣∣ µ̃[x.〈N1 −
|| K −〉−

∣∣ x.〈N2 −
|| K −〉−

]〉
+ where W + is not of the form

ιı̂(V
′) which is indeed a normal form.

� IfE = 〈λx.N ||K〉whereK is not of the formW :: K ′, E =
〈
µ(x · ?).〈N − || ?〉−

∣∣∣∣ K −

〉
−

where K − is not of the form V · S which is indeed a normal form.

20

� If E =
〈
λ{1.N1, 2.N2}

∣∣∣∣K〉 whereK is not of the form ı̂ :: K ′,
E =

〈
µ<?.〈N1 −

|| ?〉− ; ?.〈N2 −
|| ?〉−>

∣∣∣∣ K −

〉
−where K − is not of the formπı̂ · S.

⇐ We prove the contrapositive. Suppose that the command E is not a normal form. There
exist a command E′ so that E � E′. By proposition 2.1, E � E′ so that E isn’t a
normal form either.

Proof of proposition 2.3 (page 13). • By proposition 2.2, E1 is not a normal form so that
E3 exists. Since the head reduction is deterministic, we can conclude that c2 �∗ E3.
• By strong induction on the length of the reduction, proposition 2.1 and the previous bullet.
• By the previous bullet and proposition 2.2.
• By the previous bullet.

Proof of proposition 2.7 (page 13).

B. Proofs of section 3

Proposition B.1. If cl � c(→ \ �)cr, then there exists some clr so that cl → clr � cr.

Proof of B.1. We start by proving the following generalisation of lemma 3.19:

Lemma B.2. For any command c, substitution σ : x → V and stacks S and S′, if S → S′, then
c
[
σ, S / ?

]
→ c

[
σ, S′ / ?

]
.

Proof. We prove by mutual induction on the command c and the context e that for any command
c (resp. context e), substitution σ : x → V and stacks S and S′, if S → S′, then c

[
σ, S / ?

]
→

c
[
σ, S / ?

]
(resp. e

[
σ, S / ?

]
→ e

[
σ, S / ?

]
).

Lemma B.3. For any commands c and c′, substitution σ : x → V and stack S, if c → c′, then
c
[
σ, S / ?

]
� c′

[
σ, S / ?

]
.

Proof. By case analysis on the reduction.

Lemma B.4. For any commands c and c′, substitution σ : x → V and stack S, if c → c′, then
c
[
σ, S / ?

]
→ c′

[
σ, S / ?

]
.

Proof. We have a command with a hole c0 and two commands c1 and c′1 so that c = c�[c1],
c′ = c�[c

′
1] and c1 � c′1. By lemma B.3, we have c1

[
σ, S / ?

]
� c′1

[
σ, S / ?

]
. The

hole � is still at a position where weak reduction can be done in c�
[
σ, S / ?

]
(because the

substitution only replaces leaves of the syntax tree, and therefore replaces nothing above the
hole �). We can therefore conclude that c

[
σ, S / ?

]
= (c�

[
σ, S / ?

]
)
[
c1
[
σ, S / ?

]]
→

(c�
[
σ, S / ?

]
)
[
c′1
[
σ, S / ?

]]
= c′

[
σ, S / ?

]
.

Let c, cl, cr be commands such that cl � c(→ \ �)cr. Note that this is equivalent to cl �
c→ cr and cl 6= cr. We show that there is some clr such that cl → clr � cr.

21

• If c = 〈V || µ̃xε.c1〉ε � c1
[
V / x

]
= cl, then by lemma 3.16 the other reduction is of the

form c = 〈V || µ̃xε.c1〉ε → 〈V || µ̃xε.c′1〉ε = cr where c1 → c′1. And then:

〈V || µ̃xε.c1〉ε � c1
[
V / x

]

→ 99K by lemma B.4
〈V || µ̃xε.c′1〉ε � c′1

[
V / x

]
A similar argument works for all commands of the form c = 〈V || µ̃ . . .〉ε.
• If c = 〈µ?ε.c1 ||S〉ε � c1

[
S / ?

]
= cl, then there are two possibilities for the other

reduction:
� Either c = 〈µ?ε.c1 ||S〉ε → 〈µ?ε.c′1 ||S〉ε = cr and then:

〈µ?ε.c1 ||S〉ε � c1
[
S / ?

]

→ 99K by lemma B.4
〈µ?ε.c′1 ||S〉ε � c′1

[
S / ?

]
� Or c = 〈µ?ε.c1 ||S〉ε → 〈µ?ε.c1 ||S′〉ε = cr and then:

〈µ?ε.c1 ||S〉ε � c1
[
S / ?

]
→ 99K by lemma B.2

〈µ?ε.c1 ||S′〉ε � c1
[
S′ / ?

]
A similar argument works for all commands of the form c = 〈µ . . . ||S〉ε. We describe two
more cases.
� In the case where c =

〈
µ(x · ?).c1

∣∣∣∣V · S〉−, if the stack gets reduced, then the re-
duction is of the form V · S → V · S′ by lemma 3.19, and then:〈

µ(x · ?).c1
∣∣∣∣V · S〉− � c1

[
V / x, S / ?

]

→ 99K by lemma B.2〈
µ(x · ?).c1

∣∣∣∣V · S′〉− � c1
[
V / x, S′ / ?

]
� In the case where c = 〈µ<?.c1 ; ?.c2> || πi · S〉−, we have:

〈µ<?.c1 ; ?.c2> || πi · S〉− � ci
[
S / ?

]

→ 99K by lemma B.2
〈µ<?.c1 ; ?.c2> || πi · S′〉− � ci

[
S′ / ?

]

Proof of proposition 3.21 on page 16. Let c, cl, cr be commands such that cl ← c → cr and
cl 6= cr We want to find some clr so that cl → clr ← cr.

If the two contracted redexes are in disjoint subterms, then contracting the remaining redex
(among the two that are being considered) in both cl and cr yields the same term, which we pick
as clr.

Otherwise, one of the two redexes is (strictly) above the other one (because since the head
reduction � is deterministic, they can not be at the same level). Suppose, without loss of gen-
erality, that the contraction of the highest of the two redex is cl ← c. There is some command

22

with a hole c� and commands c∗, c∗l and c∗r so that c = c�[c
∗], cl = c�[c

∗
l], cr = c�[c

∗
r],

c∗l � c∗(→ \ �)c∗r . By proposition B.1, we have some c∗′ so that c∗l (→ \ �)c∗ � c∗r . We
choose c′ = c�[c

∗′].

Proof of proposition 3.23 (page 16). Let c be a closed strongly �-normalising command and
consider a sequence of→-reductions starting from c.

proposition 3.21 induces a standardisation theorem: we can “move” all the head reductions in
a sequence of reductions to the beginning of the sequence without changing the number of steps.
Since c is�-normalising, there can be only finitely many of those. We can therefore consider c′,
the �-normal form of c. Showing that c′ is→-normalising will imply that c is.
Since we assume that “bad” normal forms reduce to E in an extended system, c′ is either of

the form 〈V || ?〉ε or of the form 〈x ||S〉ε.
In the first case, lemma 3.16 allows to conclude.
In the second case, since c is closed, so are c′ and the normal form of c′. So this case is not

possible.

23

	Background
	-calculus
	Call-By-Name
	Call-By-Value

	Effects
	Call-by-push-value
	LJ_p^

	Simulation of CBPV by LJ_p^
	Simulation
	Type preservation

	Weak reduction in LJ_p^
	A general notion of weak reduction
	A stronger weak reduction
	Confluence
	Termination

	References
	Proofs of translation-cbpv-l
	Proofs of translation-cbpv-l-simulation

	Proofs of weak-reduction

