
Untyped polarized calculi

XavierMontillet

July 20, 2023

0. Introduction

The goal of this thesis is to provide an introduction to polarized L calculi and to demonstrate
their usefulness in studying untyped 𝜆-calculi.

2

0. Introduction

0.1. Motivation

The study of programming languages aims at making reasoning about the behavior of pro-
grams easier, and at identifying desirable properties for future programming languages.
When studied formally, programming languages are equipped with a semantics, i.e. a map
that assigns to each program amathematical object that represents its behavior. The seman-
tics then induces an equivalence relation: two programs are considered equivalent when
they have the same semantics. Some aspects of the behavior of programs can be either use-
ful or superfluous depending on the context. For example, the time a program takes to com-
pute its result is irrelevant when reasoning about its adherence to a specification, but crucial
when trying to optimize the program. This leads to some programming languages having
several semantics, ranging from loose ones that account for very few aspects of the behav-
ior and are easy to reason about, to more precise ones that account for more aspects of the
behavior but are more complex.
One very desirable property of a semantics is compositionality: program fragments should

also have a semantics, and the semantics of the whole program should be expressible in
terms of the semantics of its fragments. For example, to get the smallest element of a list, we
can write a program that sorts the list and returns the first element of the sorted list, and this
works independently of the how exactly the list is sorted. The existence of a compositional
semantics is a fundamental property for programming languages because it allows for large
collaborative programs without requiring each individual contributor to understand every
part of the program in details. The execution of a program by a computer is an inherently
non-compositional process because any operation can a priori observe any part of the state of
the computer. This leads to some low-level programming languages suffering from a lack of
compositionality, e.g. assembly languages or those that use the goto statement [Dij68]. This
lead to the introduction of high-level programming languages that encourage writing pro-
grams in a compositional way by disallowing the natural non-compositional ways of writing
programs and providing compositional abstractions as an alternative.
One of themost popular andwidely spread of those abstractions is the concept of function

that allows writing program fragments that takes some inputs, and uses them to compute
some output. Functions can be through of as a sort of restricted goto statements that even-
tually returns to where it started1. This restriction makes reasoning on what happens after
calling a function much easier than on what happens after a goto statement: we know that
whatever instruction is placed after a function call will eventually be executed2. The 𝜆-
calculus [Bar84] is a bare-bones programming language used to study the expressiveness of
functions. Its bare-bones nature makes studying it mathematically easier, but unsuitable to
write complex programs, which is why real-world programming languages based on the 𝜆-
calculus extend it with some datatypes (e.g. numbers) and operations (e.g. addition). While
those additional operations can be encoded into the 𝜆-calculus (just like functions can be en-
coded with goto statements), the encodings can be used in more ways than intended, which
1Modulo termination.
2Again modulo termination.
[Dij68] “Letters to the Editor: Go to Statement Considered Harmful”, Dijkstra, 1968
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

3

0. Introduction

makes them harder to reason about. In the words of Robert Harper3:

The expressive power of a programming language is derived from its strictures,
not its affordances.

When trying to study programming languages with additional datatypes, a new difficulty
appears: scalability. Indeed, some proofs scale quadratically in the number of datatypes, and
hence become unmanageable as soon as a handful of datatypes are added. In a typed setting,
it is well-known that many proofs are easier in sequent calculi than in natural deduction.
In this thesis, we look at the untyped counterpart of this statement, i.e. we compare two
untyped calculi: the sequent-calculus-inspired 𝜆𝜇𝜇-calculus [CurHer00], and the natural-
deduction-like 𝜆-calculus. It turns out that, while the 𝜆𝜇𝜇-calculus has a higher initial cost
of entry, it scales much better when adding datatypes4, elucidates the connections between
several well-known variants of the 𝜆-calculus5, and suggests new better-behaved variants6.

3This is a quote I remember hearing at OPLSS 2019. A similar sentence can be found in an email by Robert
Harper on the TYPES mailing list:

The power of a type system arises from its strictures, which can be selectively relaxed, not its
affordances, which sacrifice the ability to draw sharp distinctions.

4Many definitions and proofs scale quadratically in the number of datatype constructors in the 𝜆-calculus, and
only linearly in the 𝜆𝜇𝜇-calculus.

5For example, in 𝜆𝜇𝜇, the distinction between evaluatingwith the head reduction orwith theweak head reduc-
tions in call-by-name can be understood as being dual to the distinction between evaluating open expressions
or closed expressions in call-by-value.

6This includes our calculus 𝛌→&⇑⊗⊕⇓
P which can be seen as a version of Call-by-push-value [Lev04; Lev06] with

what Levy calls “complex values”, and our dynamically typed calculus 𝛌𝒫𝒩N that avoids clashes while remain-
ing untyped.
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000

4

https://www.cs.uoregon.edu/research/summerschool/summer19/topics.php#Harper
https://lists.seas.upenn.edu/pipermail/types-list/2014/001748.html

0. Introduction

0.2. Background

0.2.1. Calculi

𝜆-calculi and Call-by-push-value The 𝜆-calculus [Bar84] is a well-known abstraction
used to study programming languages. It has two main evaluation strategies: call-by-name
(CBN) evaluates arguments only when they are used, while call-by-value (CBV) evaluates
arguments immediately. Each strategy has its own advantage: call-by-name ensures that no
unnecessary computations are done, while call-by-value ensures that no computations are
done more than once. We write 𝛌→

N and 𝛌
→
V for the call-by-name and call-by-value 𝜆-calculi

respectively. Each strategy induces two reductions: the strong reduction that can reduce
anywhere in the expression, an the operational reduction (often called the weak head
reduction) that never reduces under 𝜆-abstractions and is deterministic. While the strong
reduction is the most common in the literature, the operational reduction is more closely
related to real-world programming languages [Ong88; Abr90].
The call-by-name 𝜆-calculus has be thoroughly studied [Bar84] and is well-understood.

By contrast, the current understanding of the call-by-value lags behind. This is due to its
study being more involved than that of call-by-name, for example requiring computation
monads [Mog89; Mog91] to build models, and 𝜎-reductions / commuting conversions to
get a well-behaved reduction on open expressions [AccGue16; AccPao12; PaoRon99; Gar-
Nog16]. Call-by-push-value (CBPV) [Lev04; Lev06] decomposesMoggi’s computationmonad
as an adjunction, subsumes both call-by-name and call-by-value, and sheds some light on the
interactions and differences of both strategies. CBPV also adds some datatypes (sums and
pairs), and its pure fragment has been studied under the name Bang calculus [EhrGue16;
BucKesRíoVis20].

The 𝜆𝜇𝜇-calculus Another direction the 𝜆-calculus has evolved in is the computational
interpretation of classical logic, with continuation-passing style translations and the 𝜆𝜇-
calculus [Par92]. This eventually led to the 𝜆𝜇𝜇-calculus [CurHer00], which can be un-
derstood as denoting proofs in the sequent calculus, just like 𝜆-terms denote proofs in nat-
ural deduction. An interesting property of the 𝜆𝜇𝜇-calculus is that it resembles both the
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984
[Ong88] “Fully Abstract Models of the Lazy Lambda Calculus”, Ong, 1988
[Abr90] “The lazy lambda calculus”, Abramsky, 1990
[Mog89] “Computational Lambda-Calculus and Monads”, Moggi, 1989
[Mog91] “Notions of Computation and Monads”, Moggi, 1991
[AccGue16] “Open Call-by-Value”, Accattoli and Guerrieri, 2016
[AccPao12] “Call-by-Value Solvability, Revisited”, Accattoli and Paolini, 2012
[PaoRon99] “Call-by-value Solvability”, Paolini and Ronchi Della Rocca, 1999
[GarNog16] “No solvable lambda-value term left behind”, García-Pérez and Nogueira, 2016
[Lev04] Call-By-Push-Value: A Functional/Imperative Synthesis, Levy, 2004
[Lev06] “Call-by-push-value: Decomposing call-by-value and call-by-name”, Levy, 2006
[EhrGue16] “The Bang Calculus: An Untyped Lambda-Calculus Generalizing Call-by-Name and Call-by-
Value”, Ehrhard and Guerrieri, 2016
[BucKesRíoVis20] “The Bang Calculus Revisited”, Bucciarelli et al., 2020
[Par92] “𝜆𝜇-Calculus: An algorithmic interpretation of classical natural deduction”, Parigot, 1992
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000

5

0. Introduction

𝜆-calculus and the Krivine abstract machine [Kri07; CurMun10; MunSch15], which makes
it suitable to study both the equational theory and the operational semantics. The full 𝜆𝜇𝜇-
calculus is not confluent, but two natural fragments, the call-by-name and call-by-value frag-
ments, are. Further restricting those to their intuitionistic fragments yields calculi that cor-
respond to the call-by-name and call-by-value 𝜆-calculi. Since call-by-value is syntactically
dual to call-by-name in the full 𝜆𝜇𝜇-calculus [CurHer00; DowAri18], the additional diffi-
culty in the study of call-by-value can be understood as stemming from the restriction to the
intuitionistic fragment which breaks this symmetry.

Polarized sequent calculi Those two lines of work (CBPV and 𝜆𝜇𝜇) can be combined
into a polarized sequent calculus LJ𝜂𝑝 [CurFioMun16] or Lint [MunSch15]. It inherits all
the advantages of CBPV (subsumes CBV and CBN without loss of confluence, allows both
strategies to interact, has nicemodels, has nice 𝜂-rules for functions, pairs and sums, ...) and
of 𝜆𝜇𝜇 (CBV and CBN are dual, has a simple top-level reduction that generalizes bothmove-
ments of the focus inside expressions of abstract machines and commuting conversions, has
classical logic built-in but can easily be restricted to intuitionistic logic, ...).

0.2.2. Solvability in arbitrary programming languages

Observational equivalence and preorder The compilation of programs often involves
many optimizations where some parts of the programs are replaced by faster ones. The
soundness of those transformations is studied in a compositional way by using an observa-
tional equivalence: two expressions, i.e. program fragments, are said to be observationally
equivalent when replacing one by the other never changes the observable behavior of the
encompassing program. The observational equivalence is often refined to an observational
preorder that takes into account that some replacements are sound in one direction but not
in the other, i.e. that some expressions are strictly better than others.

Operational relevance and solvability The study of the observational equivalence often
relies on two notions that it preserves:
Operationally relevant expressions are those that can be used to form a program that re-

turns a result on at least one input, i.e. those that are not completely useless. Expressions
that are not operationally relevant are called operationally irrelevant and are often exactly
the least elements of the observational preorder.
Solvable expressions are those that can be used to form programs of any chosen behavior,

and expressions that are not solvable are called unsolvable. The intuition behind solvability
is that it is an indirect way of stating that the expression computes some intermediate result
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007
[CurMun10] “The duality of computation under focus”, Curien and Munch-Maccagnoni, 2010
[MunSch15] “Polarised Intermediate Representation of Lambda Calculus with Sums”, Munch-Maccagnoni
and Scherer, 2015
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000
[DowAri18] “A tutorial on computational classical logic and the sequent calculus”, Downen and Ariola, 2018
[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

6

0. Introduction

that can be observed internally. Indeed, to use a solvable expression in a way that yields a
chosen behavior, it suffices to observe that intermediate result, and then execute another
program with the chosen behavior if the expected intermediate result was observed.

The central role of unsolvability In the call-by-name 𝜆-calculus, the unsolvable expres-
sions are exactly the operationally irrelevant ones. They are completely useless for writing
actual programs, but are very useful for many theoretical purposes because they are a much
more resilient notion of “undefined” than “being non-terminating”. Quoting from [Acc-
Pao12] (itself quoting from [Wad76]):

[...] only those expressions without normal forms which are in fact unsolvable
can be regarded as being ”undefined” (or better now: ”totally undefined”); by
contrast, all other expressions without normal forms are at least partially de-
fined. Essentially the reason is that unsolvability is preserved by application
and composition [...] which [...] is not true in general for the property of failing
to have a normal form.

This leads to unsolvability being a central notion when studying 𝜆-definability, 𝜆-theories,
the observational equivalence, or Böhm trees. When studying 𝜆-theories (i.e. congruences
on the 𝜆-calculus that contain 𝛽-reduction), this manifests as the fact that any 𝜆-theory that
equates all expressions without a normal form is inconsistent (i.e. it is a trivial theory that
identifies all expressions), while there are consistent 𝜆-theories that equate all unsolvable
expression. When studying 𝜆-definability [dVri16] (i.e. encodings of partial recursive func-
tions in the 𝜆-calculus) the partiality of the function is represented by mapping inputs for
which it is undefined to some “undefined” expressions of the 𝜆-calculus. While it is possible
to define “undefined” as meaning “having no normal form”, the corresponding encoding is
not compositional: the encoding of the composition of two partial functions can not be not
encoded as the composition of the encodings. Defining “undefined” as meaning unsolvable
instead allows for the definition of a compositional encoding.

Unary operational completeness In someprogramming languages, operational relevance
and solvability are equivalent. With the intuition given above for solvability, this corre-
sponds to saying that any (external) result of a program can be observed internally, i.e. can
be used as an intermediate result. This can be though of as being a sort of internal complete-
ness, which we call unary7 operational completeness.
A programming language that does not have unary operational completeness (e.g. one

where the result of a program can be an uncatchable exception) can be thought of as having
either too many operationally relevant expressions or too few solvable expressions. There
7We call this unary operational completeness because it does not imply binary operational completeness, i.e.
the equivalence between the corresponding binary notions: external and internal separability. See Part C.
[AccPao12] “Call-by-Value Solvability, Revisited”, Accattoli and Paolini, 2012
[Wad76] “The Relation Between Computational and Denotational Properties for Scott’s Dinfty-Models of the
Lambda-Calculus”, Wadsworth, 1976
[dVri16] “On Undefined and Meaningless in Lambda Definability”, de Vries, 2016

7

0. Introduction

are therefore two approaches to recovering unary operational completeness: the restrictive8
[AbrOng93] approach restrict the notion of operational relevance; and the expansive8 ap-
proach expands the notion of solvability. For example, a lack of unary operational complete-
ness that are due to uncatchable exceptions being results can be treated either bymaking the
uncatchable exceptions operationally irrelevant by no longer considering them as results, or
by making them solvable by adding try-catch statements to the language.

Operational characterization of solvability For translations between two programming
languages for which it holds, preservation of operational relevance or solvability can of-
ten be proven directly by looking at the image of reductions and normal forms through the
translation, while preservation of operational irrelevance or unsolvability is often harder to
prove. For example, if the translation simply embeds a programming language in its exten-
sion, operationally relevance is clearly preserved and solvability most likely is too, but this
is not necessarily the case for operational irrelevance and unsolvability: the extension can
add new ways of using or observing some previously operationally irrelevant or unsolvable
expressions.
One way to prove that operational irrelevance or unsolvability are preserved is to use an

operational characterization of operational relevance (resp. solvability), i.e. a reduction ⇝
such that weak⇝-normalization, strong⇝-normalization, and operational relevance (resp.
solvability) are equivalent. Given operational characterizations ⇝1 and ⇝2 of operational
relevance (resp. solvability) in the source and target programming languages, to show that
a translation preserves operational irrelevance (resp. unsolvability), it suffices to show that
it sends infinite⇝1 reduction sequences to infinite⇝2 reduction sequences, which is often
fairly easy.

0.2.3. Solvability in 𝜆-calculi

In the untyped 𝜆-calculus, the observational equivalence is defined as only observing ex-
pressionination, i.e. two expressions are observationally equivalent when replacing either
by the other in an expressioninating (resp. diverging) program can not make the program
diverge (resp. expressioninate). While this definition of observational equivalence could
a priori identify too many expressions, it ends-up distinguishing any expressions we could
want to use as inputs or outputs (e.g. Church encodings [Chu85] of natural numbers). A
solvable expression is one that can be used to reach any expression (or equivalently any nor-
mal form), and an operationally relevant expression9 is one that can be used to reach at least
one normal form.

8These two words are used in [AbrOng93] to describe ways of rectifying a “poorness of fit” between a language
and its model. Here, we have no model, but we can think of the language equipped with its observational
preorder as being a sort of initial model. Since the observational preorder respects extenal observations,
the intuition of operational relevance (resp. solvability) being about external (resp. internal) results casts
operational relevance (resp. solvability) as slightly more on the semantic (resp. syntactic).

9In the litterature, the notion of operational relevance is mostly used informally, and formal notions of what
we would call operational relevance are often called solvability.
[Chu85] The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics Studies), Church, 1985

8

0. Introduction

Those notions of course depend on the reduction⇝ used to evaluate the expressions, so
we make this dependency explicit: given a reduction ⇝, we write ≂⇝ for the induced ob-
servational equivalence, and call⇝-solvability (resp. ⇝-operational relevance) the induced
notions of solvability and operational relevance. There are five main reductions that appear
in the litterature: 𝑁 , h

𝑁 , 𝑁 , 𝑉 , and 𝑉 . The reduction 𝑁 (resp. 𝑉) is the strong
call-by-name (resp. call-by-value) reduction, i.e. the call-by-name (resp. call-by-value) re-
duction that can reduce anywhere in the expression; the reduction 𝑁 (resp. 𝑉) is the
call-by-name (resp. call-by-value) operational reduction10 that more closely models how
expressions are evaluated in a real-world call-by-name (resp. call-by-value) programming
language; and the reduction h

𝑁 is a call-by-name reduction such that

𝑁 ⊊ h
𝑁 ⊊ 𝑁

called the (call-by-name) head reduction.

Call-by-name solvability In call-by-name, the observational equivalence ≂ 𝑁 induced by
the call-by-name operational reduction 𝑁 is Abramsky’s one [Abr90] (in the so-called lazy
𝜆-calculus); the observational equivalence≂ h

𝑁 induced by thehead reduction
h

𝑁 isWadsworth’
one [Wad76], and the observational equivalence ≂ 𝑁 induced by the call-by-name strong
reduction 𝑁 is Morris’ one [Mor69]11. It is well-known that there are strict inclusions12
[DezGio01; Bar84; IntManPol17]

≂ 𝑁 ⊊ ≂ 𝑁 ⊊ ≂ h
𝑁

The 6 call-by-name notions of⇝-solvability and⇝-operational relevance induced by the 3
call-by-name reductions we consider are related as depicted in Figure 0.2.1, where equiva-
lent notions are placed in the same node, and implications between non-equivalent notions
are depicted by arrows⇒. Note that both notions have an operational characterization: the
stronger notion is operationally characterized by the head reduction h

𝑁 , while the weaker
one is operationally characterized by the operational reduction 𝑁 . Also note that using
either the head reduction h

𝑁 or the strong reduction 𝑁 yields a calculus that has unary
operational completeness, but that using the operational reduction 𝑁 does not.
The lack of unary completeness when using the operational reduction 𝑁 is due to all 𝜆-

10In call-by-value, to get a deterministic reduction, we need to further restrict to either left-to-right or right-to-
left evaluation (depending on whether we want to evaluate functions or their arguments first). Both restric-
tions work for our purposes.

11And can alternatively be defined by observing normal forms modulo 𝜂 (or equivalently 𝛽𝜂-normal forms)
[Mor69].

12The strictness of the inclusions can be understood as stemming from a differences of strength between their
respective versions of 𝜂-conversion on Böhm trees [IntManPol17].
[Abr90] “The lazy lambda calculus”, Abramsky, 1990
[Wad76] “The Relation Between Computational and Denotational Properties for Scott’s Dinfty-Models of the
Lambda-Calculus”, Wadsworth, 1976
[Mor69] “Lambda Calculus Models of Programming Languages”, Morris, 1969
[DezGio01] “From Böhm’s Theorem to Observational Equivalences: an Informal Account”, Dezani-
Ciancaglini and Giovannetti, 2001
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

9

0. Introduction

𝑁-solvabilityh
𝑁-solvability
𝑁-solvabilityh

𝑁-operational relevance
𝑁-operational relevanceh

𝑁-convergence

𝑁-operational relevance
𝑁-convergence

Figure 0.2.1: Notions of⇝-solvability and⇝-operational relevance in call-by-name

abstractions being 𝑁-operationally relevant while some of them are 𝑁-unsolvable13. The
notion of order of an expression (which is more or less its arity) allows to relate both notions
more precisely: 𝑁-operationally irrelevant expressions are exactly 𝑁-unsolvable expres-
sions of order 0.
Trying to restore unary operational completeness using the restrictive approach would

mean preventing (at least) some 𝜆-abstractions frombeing 𝑁-operationally relevant, e.g. by
replacing the reduction by the strong reduction 𝑁 or the head reduction h

𝑁 . Using the
expansive approach would mean adding a new construction that allows testing whether an
expression is a 𝜆-abstraction, e.g. an if-lambda conditional or a call-by-value let-expression.
We could not find such an extension in the literature, and do not study it directly either14.

Call-by-value solvability

13For example, given a (closed) 𝑁-diverging expression𝑇 (e.g. Ω ≝ 𝛿𝛿where 𝛿 ≝ 𝜆𝑦.𝑥𝑥), the expression 𝜆𝑥.𝑇
is 𝑁-operationally relevant (because it is 𝑁-normal) but 𝑁-unsolvable (because whenever it is given an
argument, it 𝑁-diverges).

14However, the embeddings of the call-by-value 𝜆-calculus into our polarized 𝜆-calculus described in can be
understood as a way of adding such an operation.

10

0. Introduction

0.3. Content

Parts A and B and currently being cleaned up and should be available in their en-
tirety soon. The first two chapters of part C should follow shortly thereafter. The last
chapter will most likely not be part of the official thesis, but should eventually ap-
pear.

11

0. Introduction

0.4. Notations

Reduction sequences A reduction⇝ on a set𝐗 is defined as being a subsets of the Carte-
sian square of 𝐗, i.e. ⇝ ⊆ 𝐗 × 𝐗. We say that 𝑂 ⇝-reduces to 𝑂′, and write 𝑂 ⇝ 𝑂′,
when (𝑂,𝑂′) ∈ ⇝. We say that 𝑂 is⇝-reducible (resp. ⇝-normal), and write 𝑂 ⇝ (resp.
𝑂 ⇝) when there exists (resp. does not exist) 𝑂′ such that 𝑂 ⇝ 𝑂′, i.e. when 𝑂 is (resp.
is not) in the domain of⇝. More generally, we write 𝑂0 ⇝1 𝑂1 ⇝2 𝑂2 ⇝3 … ⇝𝑛 𝑂𝑛 for
∀𝑘 ∈ {1,… , 𝑛}, 𝑂𝑘−1 ⇝ 𝑂𝑘, and anymissing object should be understood as being quantified
existentially, e.g. 𝑂 ⇝1⇝2 𝑂′′ stands for ∃𝑂′, 𝑂 ⇝1 𝑂′ ⇝2 𝑂′′. We write ⇝= (resp. ⇝+,
⇝∗) for the reflexive (resp. transitive, reflexive transitive) closure of⇝. We write 𝑂 ⇝⊛ 𝑂′

for 𝑂 ⇝∗ 𝑂′ ⇝, 𝑂 ⇝⊛ for the existence of a finite maximal⇝-reduction sequence starting
at 𝑂, and 𝑂 ⇝𝜔 for the existence of an infinite⇝-reduction sequence 𝑂 ⇝ 𝑂′ ⇝ 𝑂′′ ⇝ …
starting at 𝑂. The inverse (as a binary relation) of a reduction⇝ is denoted by reflecting the
symbol along a vertical line: 𝑂 ⇝ 𝑂′ is equivalent to 𝑂′ ⇜ 𝑂.

Main reductions We use four tip symbols for reductions: for 𝛽-reduction, for 𝜎-
reduction, for 𝜂-expansion, and for an arbitrary reduction. Each symbol is combined
with a vertical line to denote the operational variant of the reduction (i.e. the one relevant
to study evaluation), and with a tail to denote its equational variant (i.e. the one that can
reduce anywhere in the expression and is relevant to the study of the equational theory):

𝛽-reduction 𝜎-reduction 𝜂-expansion Arbitrary
Top-level
Operational
Strong

Unions of some of these reductions are denoted by superimposing the symbols, e.g. the
strong 𝛽𝜎-reduction is = ∪ , the strong 𝛽𝜂-reduction is = ∪ , and the strong
𝛽-reduction combined with the strong 𝜂-expansion is = ∪ .
Some other closures of will be used often, and they will be denoted by with sym-

bols on the tail: t for top-level, o for operational, h for head, a for ahead, lo for leftmost
outermost, s for strong, and ¬ for “and not”. For example, h is the head reduction, and
s¬h (or ¬h) is the non-head reduction.

Closure of reductions under contexts More generally, given an arbitrary set of contexts
𝐗 (i.e. expressions with a hole ◽) and an arbitrary reduction⇝, we call closure15 of⇝ under
𝐗 the reduction

𝐗 ⇝ ≝ {(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑂,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑂′)∣𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ∈ 𝐗 and (𝑂,𝑂′) ∈⇝}
(where 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑂 denotes the result of plugging 𝑂 in the hole ◽ of the context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) that allows⇝
reductions under contexts 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ∈ 𝐗. When the reduction⇝ is denoted by one of the four tip
symbols (, , , or), we also denote this closure by using the symbol for the corresponding
strong reduction (i.e. , , , or) and placing 𝐗 over its tail, e.g.

𝐗 ntn= 𝐗 and 𝐗 ntn= 𝐗
15For some sets 𝐗, the induced operation is not really a closure because it is not idempotent. For it to be idem-

potent, it suffices for 𝐗 to be closed under composition.

12

0. Introduction

The previously given notations are instances of this, e.g. is 𝐗 with𝐗 left implicit because
it is the set of all contexts𝐊, and the symbols above the tail of denote sets of contexts, e.g.
a is the closure 𝐀 of under the set 𝐀 of ahead contexts. Note that the negation symbol
over tails denotes a set difference on contexts, e.g.

s¬o = 𝐊 ⧵𝐎

(and not a set difference on the reductions16).
Subscripts should be though of as commutingwith closureswhen itmakes sense, e.g. let

denotes the contextual closure of let:

let = (𝐊N)let = 𝐊N let

16For example, we have
s¬o ≠ s ⧵ o = ⧵

in the 𝜆-calculus because there can be several ways to reduce an expression to another expression:
(𝜆𝑦.𝑦)𝑉 (𝜆𝑥.(𝜆𝑦.𝑦)𝑥)𝑉 s¬o (𝜆𝑥.𝑥)𝑉

where the reduction reduces the outer redex and the s¬o one reduces the inner redex. The equation
s¬o = s ⧵ o would hold if we though of the reductions as being multisets that count the numbers of ways
in which the reduction can happen (or used labeled transitions to allow distinguishing them), but we do not.

13

0. Introduction

0.5. Table of contents

0. Introduction 2

A. Introduction to L calculi 15

I. Pure call-by-name calculi 18

II. Pure call-by-value calculi 70

B. Untyped polarized calculi 75

III. Pure polarized calculi 77

IV.Polarized calculi with pairs and sums 83

V. Polarized calculi with arbitrary constructors 98

VI.Dynamically typed polarized calculi 165

C. Solvability in polarized calculi 171

VII.Call-by-name solvability 174

VIII.Call-by-value solvability 175

IX.Polarized solvability 176

Bibliography 177

14

Part A.

Introduction to L calculi

15

Part A is an introduction to the untyped 𝜆𝜇𝜇-calculus [CurHer00], and more generally
to calculi that look like it, which we call L-calculi. Through the Curry-Howard correspon-
dence, the simply-typed 𝜆𝜇𝜇-calculus corresponds to Gentzen’s sequent calculus for classi-
cal logic in the same way that the 𝜆-calculus corresponds to natural deduction. Most intro-
ductions to 𝜆𝜇𝜇 focus on this correspondence, and sometimes mention the similarity with
abstract machines. Here, we focus on the parts that are relevant to using 𝜆𝜇𝜇 to study the
untyped 𝜆-calculus, and in particular on the correspondence between the reductions of the
call-by-name (resp. call-by-value) 𝜆-calculus and the reductions of the call-by-name (resp.
call-by-value) intuitionistic fragment of 𝜆𝜇𝜇.
It is well-known that the operational (i.e. weak head) reduction of the call-by-name 𝜆-

calculus 𝛌→
N is refined by the reduction of the Krivine abstract machine [Kri07], that makes

the search for the redex explicit. The intuitionistic call-by-name fragment Li→n of 𝜆𝜇𝜇 extends
this refinement to its contextual closure, the strong reduction, that can reduce anywhere in
the expression. To make understanding the call-by-name (resp. call-by-value) fragment Li→n
(resp. Li→v) of 𝜆𝜇𝜇 easier, we introduce a new 𝜆-like syntax 𝜆→n (resp. 𝜆→v) for it. In this
new syntax 𝜆→n (resp. 𝜆→v), the reductions of the 𝜇 binder of Li→n (resp. Li→v) appear as a
natural generalizations of the redex searching reductions of abstract machines, and of some
of Regnier’s 𝜎-reductions [Reg94].
While some advantages of using L-calculi are immediately apparent (e.g. the symmetry,

and the built-in classical logic), many of their advantages only become relevant in larger
calculi (e.g. those in Part B) orwhen studyingmore complex properties (e.g. those in Part C).
The reader that has yet to be convinced of the usefulness of L-calculi should therefore not
expect to be convinced after reading just Part A.

Content Chapter I describes the following calculi (in left-to-right order), translations17between
them, and their properties:

𝛌→
N 𝜆→n Li→n L→

n

⌊ ⋅ ⌋

⌈ ⋅ ⌉

⋅
⃖⃗

⋅
⃖⃖

⊊

Chapter II describes their call-by-value counterparts:

𝛌→
V 𝜆→v Li→v L→

v

⌊ ⋅ ⌋

⌈ ⋅ ⌉

⋅
⃖⃗

⋅
⃖⃖

⊊

Contribution The contribution of this part is mainly pedagogical: it provides a detailed
introduction to 𝜆𝜇𝜇 from a new angle. Technical contributions include:

17Translations are represented by arrows with a hook↪ when they are injective, with two heads↠ when they
are surjective, and with both when they are bijective.
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007
[Reg94] “Une équivalence sur les lambda-termes”, Regnier, 1994

16

• defining the call-by-name (resp. call-by-value) 𝜆-calculi with focus 𝜆→n (resp. 𝜆→v) as
an alternative syntax for the call-by-name (resp. call-by-value) intuitionistic fragment
Li→n (resp. Li

→
v) of 𝜆𝜇𝜇; and

• giving a detailed description of the action of focus-inserting and focus-erasing trans-
lations ⌊ ⋅ ⌋ and ⌈ ⋅ ⌉ on reduction sequences.

17

I. Pure call-by-name calculi

Summary

The goal of this chapter is to recall the pure untyped call-by-name 𝜆-calculus 𝛌→
N [Bar84], the

pure untyped call-by-nameL calculus L→
n (i.e. the call-by-name fragment of𝜆𝜇𝜇 [CurHer00]),

and its intuitionistic fragment Li→n ; to introduce the pure untyped call-by-name 𝜆-calculus
with focus 𝜆→n as an alternative syntax to Li

→
n ; and to relate them via translations1:

𝛌→
N 𝜆→n Li→n L→

n

⌊ ⋅ ⌋

⌈ ⋅ ⌉

⋅
⃖⃗

⋅
⃖⃖

⊊

In order to make the introduction of concepts more progressive, after recalling 𝛌→
N, we intro-

duce the pure untyped call-by-name 𝜆-calculuswith top-level focus 𝜆→N and recall theKrivine
abstract machineM→

N [Kri07], which are simpler versions of 𝜆
→
n and Li

→
n respectively, and are

related to 𝛌→
N in a similar way:

𝛌→
N 𝜆→N M→

N

⋅

⌈ ⋅ ⌉

⋅
⃖⃗

⋅
⃖⃖

In both cases, the translations ⋅
⃖⃗
and ⋅

⃖⃖
are inverses, so that up to syntax 𝜆→N and M

→
N (resp.

𝜆→n and Li
→
n) are identical. Both the ⋅ translation from 𝛌→

N to 𝜆
→
N and the ⌊ ⋅ ⌋ translation from

𝛌→
N to 𝜆→n add markers ⋅ to make explicit where the focus is, i.e. which subexpression we
are currently trying to reduce, while the ⌈ ⋅ ⌉ translation erases these markers. This allows
to refine an operational reduction step into three simpler steps: moving the focus down-
wards until a redex is found, reducing the redex, and moving the focused back to the top of
the expression. When looking at several successive operational reduction steps, time can be
gained by not going back to the top of the expression between two steps, but instead refocus-
ing [DanNie04], i.e. continuing the search for the next redex from where the previous redex
was reduced. In Li→n / 𝜆

→
n , the strong reduction step can also be refined in a similar way, with

focus movement replaced by a more general reduction called 𝜇, which also generalizes
(some of) Regnier’s 𝜎-reductions [Reg94].

1Translations are represented by arrows with a hook↪ when they are injective, with two heads↠ when they
are surjective, and with both when they are bijective.
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007
[DanNie04] “Refocusing in Reduction Semantics”, Danvy and Nielsen, 2004
[Reg94] “Une équivalence sur les lambda-termes”, Regnier, 1994

18

I. Pure call-by-name calculi

Table of contents

I.1. A pure call-by-name 𝜆-calculus: 𝛌→
N . 20

I.2. A pure call-by-name 𝜆-calculus with toplevel focus: 𝜆→N 27
I.3. A pure call-by-name abstract machine: M→

N 30
I.4. Equivalence between 𝜆→N and M

→
N . 35

I.5. Translations between 𝛌→
N and 𝜆

→
N . 46

I.6. A pure call-by-name 𝜆-calculus with focus: 𝜆→n 51
I.7. Translations between 𝛌→

N and 𝜆
→
n . 61

I.8. A pure call-by-name intuitionistic L calculus: Li→n 62
I.9. Equivalence between 𝜆→n and Li

→
n . 67

I.10. A pure call-by-name classical L calculus: L→
n 68

I.11. Simply-typed L calculi . 69

19

I. Pure call-by-name calculi

I.1. A pure call-by-name 𝜆-calculus: 𝛌→
N

Syntax

We recall the pure untyped call-by-name 𝜆-calculus [Bar84], which we will call 𝛌→
N, in Fig-

ure I.1.1. This is the standard 𝜆-calculus with a few minor changes to the syntax. First, we
addedN at all the places where polarity annotations will be needed later, e.g. to differentiate
for example positive expressions 𝑇+ from negative ones 𝑇− or positive variables 𝑥+ from neg-
ative ones 𝑥−. For now, those annotations aremostly useless2 (and there is no real difference
between N as a subscript and N as a superscript) but we nevertheless keep them to prepare
the reader for the polarized calculi. Secondly, we have let-expressions let𝑥N ∶= 𝑇N in𝑈N,
even though they behave exactly like 𝛽-redexes (𝜆𝑥N.𝑈N)𝑇N, because when translating from
𝛌→
N to another calculus, the translation of let𝑥

N ∶= 𝑇N in𝑈N is sometimes simpler than that
of (𝜆𝑥N.𝑈N)𝑇N. Finally, while it is common to only refer to the objects of study as terms, we
also call them values and expressions. In general, given a calculus described by a BNF gram-
mar, we call expressions 𝑇 (resp. values 𝑉, terms 𝓉) the elements of the syntax generated by
the start non-terminal symbol (resp. same non-terminal symbols as variables 𝑥 , any non-
terminal symbol). In 𝛌→

N, the BNF grammar only has only one non-terminal symbol, and all
three names therefore denote the same objects. As is usual, application is considered to be
left-associative, i.e. 𝑇N𝑈1

N𝑈2
N stands for (𝑇N𝑈1

N)𝑈2
N. We write 𝐓N for the set of all expressions

𝑇N.

Figure I.1.1: Syntax of 𝛌→
N

Expressions / values:
𝑇N, 𝑈N, 𝑉N,𝑊N ⩴ 𝑥N∣ let𝑥N ∶= 𝑇N in𝑈N

∣𝜆𝑥N.𝑇N∣𝑇N𝑈N

Contexts

Contexts of 𝛌→
N are denoted by 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, and are generated by the BNF grammar given in Fig-

ure I.1.2.

Figure I.1.2: Contexts in 𝛌→
N

Contexts:
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N ⩴ ◽
∣ let𝑥N ∶= 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N in𝑇N∣ let𝑥N ∶= 𝑇N in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N

∣𝜆𝑥N.𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N∣𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N𝑇N∣𝑇N𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N

2Except when looking at translations between several calculi, or skim-reading, where they serve as a reminder
of which calculus we are in.
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

20

I. Pure call-by-name calculi

The result of plugging a term 𝑇N (resp. a context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0
N) in a context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, i.e. the non-capture-

avoiding3 substitution of ◽ by 𝑇N (resp. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0
N) in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, is denoted by plug(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝑇N) or𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N (resp.

plug(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0
N) or 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0

N).
The weak head contexts, which we prefer calling operational contexts (because they allow

defining the operational semantics) or stacks (because they correspond to stacks in abstract
machines and L calculi), are defined in Figure I.1.3.

Figure I.1.3: Operational contexts in 𝛌→
N

Operational contexts / stacks / weak head contexts:
𝐎N = 𝐒N = �̊�N ∋ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, �̊�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁 ⩴ ◽

∣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N𝑇N

Substitutions and disubstitutions

Wewrite FV(𝑇N) for the set of all free variables of 𝑇N, and we say that a variable is freshwith
respect to an expression when it is neither free nor bound in it. We write 𝑇N[𝑉N∕𝑥N] for
the usual capture avoiding substitution of 𝑥N by 𝑉N, denote arbitrary substitutions by 𝜎 and
write 𝑇N[𝜎] for the result of applying a substitution 𝜎 to a given expression 𝑇N.
When studying the behavior of terms (see e.g.), we often want to close them via a

substitution 𝜎, and then give them arguments via a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. We therefore give a name to
the combination of a substitutions and a stack:

Definition I.1.1

A disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) that consists of a substitution 𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N.
We write 𝑇N[𝜑] for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝜎] .

We call these disubstitutions because they correspond to substitutions that act on both the
usual variables 𝑥 and on a stack variable⋆ in L-calculi (see). We call disubstitutivity the
property of being closed under disubstitutions:

Definition I.1.2

A reduction⇝ of 𝛌→
N is said to be:

• substitutive when for any substitution 𝜎 and terms 𝑇N and 𝑇′N, we have
𝑇N ⇝ 𝑇′N ⇒ 𝑇N[𝜎]⇝ 𝑇′N[𝜎]

3Contrary to substitutions where variable capture was avoided by renaming bound variables on the fly, e.g.
(𝜆𝑥N.𝑥N𝑦N)[𝑥N∕𝑦N] = (𝜆𝑧N.𝑧N𝑦N)[𝑥N∕𝑦N] = 𝜆𝑧N.𝑧N𝑥N, plugging does not rename anything and allows vari-
able capture: (𝜆𝑥N.𝑥N◽) 𝑥N = 𝜆𝑥N.𝑥N𝑥N.

21

I. Pure call-by-name calculi

• closed under stacks when for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and terms 𝑇N and 𝑇′N, we have
𝑇N ⇝ 𝑇′N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⇝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N

• disubstitutive when for any disubstitution 𝜑 and terms 𝑇N and 𝑇′N, we have
𝑇N ⇝ 𝑇′N ⇒ 𝑇N[𝜑]⇝ 𝑇′N[𝜑]

Fact I.1.3

A reduction⇝ is disubstitutive if and only if it is substitutive and closed under stacks.

Proof

⇒ Take 𝜑 = (𝜎,◽) and 𝜑 = (Id, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N). ⇐ Immediate.

𝛽-reduction

The top-level reduction is defined in Figure I.1.4. It is the usual one (if one thinks of
let𝑥N ∶= 𝑇N in𝑈N as being a notation for (𝜆𝑥N.𝑈N)𝑇N).

Figure I.1.4: Top-level reduction

let𝑥N ∶= 𝑇N in𝑈N let 𝑈N[𝑇N∕𝑥N]
(𝜆𝑥N.𝑇N)𝑈N → 𝑇N[𝑈N∕𝑥N]

≝ let ∪ →

The two closures of the top-level 𝛽-reduction we are interested in for now are its opera-
tional and strong closures:

Definition I.1.4: Operational and strong reductions

The operational reduction is defined as the operational closure of the top-level 𝛽-
reduction , and the strong reduction as the contextual closure of :

≝ 𝐎N and ≝ 𝐊N

We write ¬o for the closure of the top-level 𝛽-reduction under the set of non-
operational contexts𝐊N ⧵𝐎N:

¬o ≝ (𝐊N ⧵𝐎N)

The operational reduction is often called the weak head reduction, but we prefer calling
it the operational reduction because its main characteristic is that it induces a small-step op-
erational semantics for the calculus, i.e. it represents evaluation. The strong reduction

22

I. Pure call-by-name calculi

should be understood as defining an equational theory ∗ = (∪)∗ for the calculus,
and it being directed helps when relating it to the operational reduction (e.g. via the fac-
torization ∗ = ∗ ¬o ∗). The reductions have the properties announced in Figure ?? (see
Section .2 for details).

𝜎-reductions

Regnier’s 𝜎-reductions [Reg94] allow commuting redexes in a way that preservesmost prop-
erties of the expression:

(𝜆𝑥N.𝑈N)𝑇N𝑉N ↝𝜎 (𝜆𝑥N.𝑈N𝑉N)𝑇N if 𝑥N fresh w.r.t. 𝑉N

(𝜆𝑥N.𝜆𝑦N.𝑇N)𝑈N ↝𝜎 𝜆𝑦N.(𝜆𝑥N.𝑇N)𝑈N if 𝑦N fresh w.r.t. 𝑈N

Replacing (𝜆𝑥N.𝑈N)𝑇N by let𝑥N ∶= 𝑇N in𝑈N in these yields
(let𝑥N ∶= 𝑇N in𝑈N)𝑉N ↝𝜎 let𝑥N ∶= 𝑇N in𝑈N𝑉N if 𝑥N fresh w.r.t. 𝑉N

let𝑥N ∶= 𝑈N in 𝜆𝑦N.𝑇N ↝𝜎 𝜆𝑦N. let𝑥N ∶= 𝑈N in𝑇N if 𝑦N fresh w.r.t. 𝑈N

We only use the first of these two 𝜎-reductions and denote it by a backwards Σ as shown in
Figure I.1.5.

Figure I.1.5: Top-level 𝜎-reduction

(let𝑥N ∶= 𝑇N in𝑈N)𝑉N let𝑥N ∶= 𝑇N in𝑈N𝑉N if 𝑥N fresh w.r.t. 𝑉N

Definition I.1.5

We write for the closure of under the set of simple stacks �̊�Na, and for the
contextual closure of :

≝ �̊�N and ≝ 𝐊N

aWhile we have �̊�N = 𝐒N = 𝐎N in 𝛌→N , in general, we only have �̊�N ⊆ 𝐒N ⊆ 𝐎N.

In accordance with our convention of denoting unions of reductions by superimposing
their symbols, we use the notations

ntn= ∪ and ntn= ∪
In the call-by-name 𝜆-calculus, 𝜎-reductions are somewhat superfluous because they only

relate expressions that have a common reduct:
(let𝑥N ∶= 𝑇N in𝑈N)𝑉N (𝑈N[𝑇N∕𝑥N])𝑉N let𝑥N ∶= 𝑇N in𝑈N𝑉N

They are however very useful to make the call-by-value 𝜆-calculus behave well on open ex-
pressions [AccGue16; AccPao12; PaoRon99], and to understand the 𝜇 reduction of L calculi
[Reg94] “Une équivalence sur les lambda-termes”, Regnier, 1994
[AccGue16] “Open Call-by-Value”, Accattoli and Guerrieri, 2016
[AccPao12] “Call-by-Value Solvability, Revisited”, Accattoli and Paolini, 2012
[PaoRon99] “Call-by-value Solvability”, Paolini and Ronchi Della Rocca, 1999

23

I. Pure call-by-name calculi

(which can be though of as being a generalization of), which is why is nevertheless exam-
ine them in the call-by-name 𝜆-calculus.
The first thing to note is that extending by yields a reduction = ∪ that is not

deterministic:
let𝑥N ∶= 𝑇N in𝑈N𝑉N (let𝑥N ∶= 𝑇N in𝑈N)𝑉N let (𝑈N[𝑇N∕𝑥N])𝑉N

This also happens in call-by-value, where we would really like to use to evaluate open
expressions. A very common choice to avoid this problem is to simply not add to the oper-
ational reduction, and to only add 𝜎-reductions in the strong reduction when looking
at the equational theory. This of course leads to complications, e.g. requiring distinguishing
𝜎-reduction from operational reduction in many lemmas and theorems. The reduction 𝜇

of Li→n and 𝜆→n takes the opposite approach to recover determinism: it prevents the let re-
duction above by disallowing the reduction of let-expressions under non-trivial operational
contexts and keeps as part of the operational reduction!
More precisely, since can not be added directly to without breaking determinism, we

first restrict and only then extend it with :

Definition I.1.6

The reductions and are defined by
≝ → ∪ let and ≝ ∪

The difference between and is that allows all reductions of the shape
(let𝑥N ∶= 𝑇N in𝑈N)𝑉1

N…𝑉
𝑞
N (𝑈N[𝑇N∕𝑥N])𝑉1

N…𝑉
𝑞
N

while only allows those of the shape
let𝑥N ∶= 𝑇N in𝑈N let 𝑈N[𝑇N∕𝑥N]

i.e. those where the operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N = ◽𝑉1
N…𝑉

𝑞
N under which the reduction hap-

pens is trivial. In particular, the let reduction of the aformentioned critical pair is not al-
lowed by , which allows it to be deterministic:

Fact I.1.7: Determinism of

The reduction reduction is deterministic.

Proof

Both and are deterministic, and they have disjoint domains.

Furthermore, the forbidden reductions
(let𝑥N ∶= 𝑇N in𝑈N)𝑉1

N…𝑉
𝑞
N let (𝑈N[𝑇N∕𝑥N])𝑉1

N…𝑉
𝑞
N

24

I. Pure call-by-name calculi

can be simulated by

(let𝑥N ∶= 𝑇N in𝑈N)𝑉1
N…𝑉

𝑞
N (let𝑥N ∶= 𝑇N in𝑈N𝑉1

N)𝑉2
N…𝑉

𝑞
N

∗ let𝑥N ∶= 𝑇N in𝑈N𝑉1
N…𝑉

𝑞
N

let (𝑈N[𝑇N∕𝑥N])𝑉1
N…𝑉

𝑞
N

In fact, the reductions and have the same notion of normal form, and induce the same
notion of (big-step) evaluation:

Fact I.1.8: Equivalence between ⊛ and ⊛

• The -normal expressions are exactly the -normal expressions:
𝑇N ⇔ 𝑇N

• The steps can be postponed at the cost of strengthening let to let:
𝑇N

∗ 𝑇′N ⇔ 𝑇N
∗ ∗ 𝑇′N

• Evaluating with or yields the same result:
𝑇N

⊛ 𝑇′N ⇔ 𝑇N
⊛ 𝑇′N

Proof sketch (See page 186 for details)

Immediate.

𝜂-expansion

Another well-known and useful relation on 𝜆-terms is 𝜂-expansion (and its symmetric, 𝜂-
reduction) that relates any expressions 𝑇N to a 𝜆-abstraction 𝜆𝑥N.𝑇N𝑥N that has the same
functional behavior, i.e. that behaves the same once given an argument. The 𝜂-expansions
for 𝛌→

N are defined in Figure I.1.6, where → is the standard 𝜂-expansion for functions.

Figure I.1.6: Top-level 𝜂-expansion

𝑇N → 𝜆𝑥N.𝑇N𝑥N if 𝑥N fresh w.r.t. 𝑇N

𝑇N let let𝑥N ∶= 𝑇N in𝑥N

We write for the contextual closure of , for ∪ , for ∪ , for ∪ ∪ ,
and ≈𝛽𝜂𝜎 or ∗ for the 𝛽𝜂𝜎-equivalence:

≈𝛽𝜂𝜎 ≝ ∗ = (∪ ∪ ∪ ∪ ∪)∗

The 𝜂-expansion for let-expressions let is less common, most likely because it is contained
in let (in call-by-name):

𝑇N let let𝑥N ∶= 𝑇N in𝑥N

25

I. Pure call-by-name calculi

There are other reasonable definitions of 𝜂-expansion, but all of them are contained in the
𝛽𝜂𝜎-equivalence induced by this definition of 𝜂-expansion. For example, we have

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑉N ≈𝛽𝜂𝜎 let𝑥N ∶= 𝑉N in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑥N if 𝑥N fresh w.r.t. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N

because
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑉N let let𝑥N ∶= 𝑉N in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑥N

and
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N ≈𝛽𝜂𝜎 let𝑥N ∶= 𝑇N in𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑥N if 𝑥N fresh w.r.t. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N

because
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N let 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N let𝑥N ∶= 𝑇N in𝑥N ∗ let𝑥N ∶= 𝑇N in𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N

In call-by-name, all terms are values, so the first≈𝛽𝜂𝜎-equivalence implies the second, but
in call-by-value and polarized settings, neither implies the other.

26

I. Pure call-by-name calculi

I.2. A pure call-by-name 𝜆-calculus with toplevel focus: 𝜆→
N

Abstract machines use a subset of operational contexts called stacks. In general, stacks
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N form a possibly strict subset of operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N, but in 𝛌→

N they are exactly the
same. To avoid forming intuitions that do not generalize to subsequent calculi, we call op-
erational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N in this section. We also completely ignore let-expressions in
this section because our goal is to make the comprehension of L calculi easier, and adding
let-expressions at this point would not help in that regard.

Searching for the next redex

In 𝛌→
N, to implement the →-reduction of a term 𝑇N, a machine needs to decompose it as

𝑇N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑈N)𝑉N

Figure I.2.1: The 𝜆→N calculus

Figure I.2.1.a: Syntax

Stacks: Configurations:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽ 𝐶N ⩴ 𝑇N

∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N ∣𝐶N𝑇N

Figure I.2.1.b: Expanded descriptions

Stacks (expanded): Configurations (expanded):
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽𝑇1N…𝑇𝑘N 𝐶N ⩴ 𝑇N𝑈1

N…𝑈𝑘
N

Figure I.2.1.c: Operational reduction

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N
M

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N
M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]

M ≝ M

→ ∪
M

m

Figure I.2.1.d: Disubstitutions

Stacks: Configurations:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N 𝐶N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N

27

I. Pure call-by-name calculi

The 𝜆→N calculus defined in Figure I.2.1 makes the computation of that decomposition ex-
plicit: a configuration 𝐶N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N represents the expression 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N in which the machine
is currently looking at the subexpression 𝑇N. Initially, the machine is looking at the whole
term, i.e. it starts from 𝑇N. It then moves to the left of applications with

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N
M

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N

until it reaches a 𝜆-abstraction, at which point it reduces the 𝛽-redex with
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N

M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]
For example, the reduction

𝐼N𝑇N𝑈N → 𝐼N𝑇N𝑈N

of 𝛌→
N becomes

𝐼N𝑇N𝑈N
M

m 𝐼N𝑇N𝑈N
M

m 𝐼N𝑇N𝑈N → 𝑇N𝑈N

in 𝜆→N. Note that the “move” reduction steps
M

m are invisible in the original calculus, while
the “reduce” reduction step M

→ corresponds exactly to the reduction reduction step → in
𝛌→
N.

Simulation

A top-level reduction
(𝜆𝑥N.𝑇N)𝑈N → 𝑇N[𝑈N∕𝑥N]

in 𝛌→
N becomes

(𝜆𝑥N.𝑇N)𝑈N
M

m (𝜆𝑥N.𝑇N)𝑈N
M

→ 𝑇N[𝑈N∕𝑥N]
in 𝜆→N, and an operational reduction

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N
induced by 𝑇N → 𝑇′N in 𝛌

→
N becomes
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N

M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N

M

m
M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N
M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N

in 𝜆→N, where the reduction sequences
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N

M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N

M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N

just correspond to moving downwards through 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and do not depend on what is plugged in
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, and the

M

m
M

→ reduction steps correspond to the actual reduction 𝑇N → 𝑇′N.

Refocusing

A reduction sequence
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′

N

in 𝛌→
N induced by

𝑇N𝑉N 𝑇′N and 𝑈N𝑊N 𝑈′
N

28

I. Pure call-by-name calculi

can be simulated step by step in 𝜆→N as
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′

N

M∗m

M∗m

M∗m

M∗m

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N
M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N
M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′
N

Moving the focus back to the top of the term between the two reduction steps is inefficient:
instead of computing the decomposition 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N , we could compute it
from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N , which is called refocusing [DanNie04]. This amounts to simplifying the reduc-
tion sequence M ∗

m induced by one step with the reduction sequence
M ∗
m induced by the next

step (using determinism of M), which yields the shorter reduction sequence
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′

N

M∗m

M∗m

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N
M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N
M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N

M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′
N

For example, for any terms 𝑇1N and 𝑇2N,
(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N 𝐼N𝐼N𝑇1N𝑇2N = 𝐼N𝐼N𝑇1N𝑇2N 𝐼N𝑇1N𝑇2N = 𝐼N𝑇1N𝑇2N 𝑇1N𝑇2N

M∗m

M∗m

M∗m

M∗m

M∗m

M∗m

(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N M

→ 𝐼N𝐼N𝑇1N𝑇2N 𝐼N𝐼N𝑇1N𝑇2N
M

→ 𝐼N𝑇1N𝑇2N 𝐼N𝑇1N𝑇2N
M

→ 𝑇1N𝑇2N
simplifies to

(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N 𝑇1N𝑇2N

M∗m

M∗m

(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N M

→ 𝐼N𝐼N𝑇1N𝑇2N
M

m 𝐼N𝐼N𝑇1N𝑇2N
M

→ 𝐼N𝑇1N𝑇2N = 𝐼N𝑇1N𝑇2N
M

→ 𝑇1N𝑇2N

Properties of reductions

Disubstitutions of 𝜆→N are defined just like in 𝛌
→
N:

Definition I.2.1

A disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) composed of a substitution 𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N.
Given a configuration 𝐶N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N), we write 𝐶N[𝜑] (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜑]) or 𝐶N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N]
(resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N]) for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N[𝜎] (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎]).

As announced in Figure ??, M is deterministic, substitutive, and disubstitutive (see Sec-
tion .2 for details).

[DanNie04] “Refocusing in Reduction Semantics”, Danvy and Nielsen, 2004

29

I. Pure call-by-name calculi

I.3. A pure call-by-name abstract machine: M→
N

The inside-out syntax

When implementing an abstract machine, representing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N as a tree with a marked po-
sition is suboptimal because most operations will require traversing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, and hence takes a
time linear in the depth of the hole ◽ in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. It is more efficient to use a zipper [Hue97], i.e.
to represent 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and 𝑇N independently, and to represent 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N in an “inside-out” fashion. More
precisely, a stack ◽ is representend by⋆, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑉N by 𝑉N ∙ 𝑆N (where 𝑆N is the inside-out
representation of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N), so that a stack

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ((◽𝑉1
N) …)𝑉𝑘

N = ((◽ ◽𝑉𝑘
N) …) ◽𝑉1

N

is represented by
𝑆N = 𝑉1

N ∙(… ∙(𝑉𝑘
N ∙⋆))

or
𝑆N = 𝑉1

N ∙ … ∙ 𝑉𝑘
N ∙⋆

with the convention that ∙ is right associative. Note that the arguments appear in the or-
der in which they will (possibly) be needed by the computation, and that⋆ represents the
outside of the context. An expression with an underlined subexpressions 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N is then rep-
resented by a pair (𝑇N, 𝑆N), which we call a configuration4 and denote by ⟨𝑇N∣𝑆N⟩, where 𝑇N

is the focused subexpression, and 𝑆N is the inside-out representation of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. This yields the
M→

N calculus described in Figure I.3.1, a variant of the Krivine abstract machine [Kri07] that
uses substitutions instead of environments and closures. Just like in the Krivine abstract
machine, M

m-reducing a term is a constant time operation thanks to the inside-out represen-
tation, but the use of substitutions inM→

N makes
M

→-reducing a term linear in the number of
free occurrences of the variable, and hence less efficient than in the Krivine abstratmachine.
An example reduction sequence is given in the right column of Figure I.3.2, with the cor-

responding reduction sequence in the left column.
As announced in Figure ??, M is deterministic, substitutive, and disubstitutive (see Sec-

tion .2 for details).

Disubstitutions

In M→
N, we also consider substitutions that act on⋆

N (in addition to the usual variables 𝑥N),
which we call disubstitutions to avoid any confusion with the usual definition of substitu-
tions:

4These are also sometimes called a command. In this document, we only use “configuration” for abstract
machines, and keep “command” for L calculi.
[Hue97] “The Zipper”, Huet, 1997
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007

30

I. Pure call-by-name calculi

Figure I.3.1: The M→
N calculus

Figure I.3.1.a: Syntax

Stacks: Configurations:
𝑆N ⩴⋆N 𝐶N ⩴ ⟨𝑇N∣𝑆N⟩
∣𝑇N ∙ 𝑆N

Figure I.3.1.b: Expanded descriptions

Stacks (expanded): Configurations (expanded):
𝑆N ⩴ 𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N 𝐶N ⩴ ⟨𝑇N∣𝑈1

N ∙ … ∙𝑈𝑞
N ∙⋆N⟩

Figure I.3.1.c: Operational reduction

⟨𝑇N𝑈N∣𝑆N⟩
M

m ⟨𝑇N∣𝑈N ∙ 𝑆N⟩
⟨𝜆𝑥N.𝑇N∣𝑈N ∙ 𝑆N⟩ M

→ ⟨𝑇N[𝑈N∕𝑥N]∣𝑆N⟩
M ≝ M

→ ∪
M

m

Figure I.3.1.d: Disubstitutions

Expressions:
𝑥N[𝜑] ≝ 𝜑(𝑥N)

(𝜆𝑥N.𝑇N)[𝜑] ≝ 𝜆𝑥N.𝑇N[𝜑] if 𝑥N fresh w.r.t. 𝜑
(𝑇N𝑈N) ≝ (𝑇N[𝜑])(𝑈N[𝜑])

Stacks:
⋆N[𝜑] ≝ 𝜑(⋆N)

(𝑇N ∙ 𝑆N)[𝜑] ≝ (𝑇N[𝜑]) ∙(𝑆N[𝜑])
Configurations:
⟨𝑇N∣𝑆N⟩[𝜑] ≝ ⟨𝑇N[𝜑]∣𝑆N[𝜑]⟩

31

I. Pure call-by-name calculi

Figure I.3.1.e: Disubstitutions⋆N ↦ 𝑆N

Expressions:
𝑇N[𝑆N∕⋆N] = 𝑇N

Stacks:
⋆N[𝑆N∕⋆N] = 𝑆N

(𝑇N ∙ 𝑆�N)[𝑆N∕⋆N] = 𝑇N ∙(𝑆�N [𝑆N∕⋆N])
Configurations:
⟨𝑇N∣𝑆�N ⟩[𝑆N∕⋆N] = ⟨𝑇N∣𝑆�N [𝑆N∕⋆N]⟩

Figure I.3.1.f: Disubstitutions (simplified)

Expressions:
𝑇N[𝜎, 𝑆N∕⋆N] = 𝑇N[𝜎]

Stacks:
𝑆�N [𝜎, 𝑆N∕⋆N] = 𝑆�N [𝜎][𝑆N∕⋆N]

Configurations:
⟨𝑇N∣𝑆�N ⟩[𝜎, 𝑆N∕⋆N] = ⟨𝑇N[𝜎]∣𝑆�N [𝜎][𝑆N∕⋆N]⟩

Definition I.3.1: Disubstitutions

A disubstitution 𝜑 is a function of the shape 𝜑 = 𝜎,⋆N ↦ 𝑆N, i.e. it is a substitution 𝜎
extended by⋆N ↦ 𝑆N for some stack 𝑆N.

One way to understand this operation is to think of ⋆N as meaning “outside”, so that
𝐶N[𝑆N∕⋆N]means replacing the “outside” of 𝐶N by 𝑆N. The action of disubstitutions on terms
is described in Figure I.3.1d, and the special case 𝜑 = ⋆N ↦ 𝑆N (i.e. 𝜑 = Id,⋆N ↦ 𝑆N) is
described in Figure I.3.1e.
Since expressions 𝑇N can never contain⋆N, the action of a disubstitution 𝜑 = 𝜎,⋆N ↦ 𝑆N

can be expressed in terms of the action of the subsitution𝜎 and of the disubstitution⋆N ↦ 𝑆N:

Fact I.3.2

The equations given in Figure I.3.1f always hold.

Proof

The equation on expressions is proven by induction on 𝑇N. The equation on stacks is
prove by induction on 𝑆�N , using the equation on terms. The equation on configura-

32

I. Pure call-by-name calculi

Figure I.3.2: Example of reductions in 𝜆→N and M
→
N

((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N ⟨((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N∣⋆N⟩

M

m

M

m

((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N ⟨(𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N∣𝐼N ∙⋆N⟩

M

m

M

m

((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N ⟨𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N∣𝐼N ∙ 𝐼N ∙⋆N⟩

M

→

M

→
(𝜆𝑦N.𝐼N𝑦N)𝐼N ⟨𝜆𝑦N.𝐼N𝑦N∣𝐼N ∙⋆N⟩

M

→

M

→

𝐼N𝐼N ⟨𝐼N𝐼N∣⋆N⟩

M

m

M

m

𝐼N𝐼N ⟨𝐼N∣𝐼N ∙⋆N⟩

M

→

M

→

𝐼N ⟨𝐼N∣⋆N⟩

tions immediately follows from the equations on expressions and stacks.

Ambiguity of the ambiant calculus

There is sometimes a slight ambiguity on which calculus an expression 𝑇N lives: it could live
in 𝛌→

N, 𝜆
→
N, or M

→
N. Most of the time, this ambiguity is unimportant, but it sometimes needs

to be resolved:

Remark I.3.3

Translating the of disubstitutions on expressions 𝑇N described in Figure I.3.1d to 𝜆
→
N

would yield
𝑇N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] = 𝑇N[𝜎] in 𝜆→N

which would clash with
𝑇N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝜎] in 𝛌→

N
This mismatch would not be that problematic because it can be trivially resolved by
making the ambiant calculus explicit. Furthermore, since the action of disubstitu-
tions on expressions is uninteresting in 𝜆→N and M→

N (because they act like substitu-
tions), we could simply take the convention that when writing 𝑇N[𝜑], both 𝑇N and 𝜑
live in 𝛌→

N. We nevertheless avoided redefining the action of disubstitutions on ex-
pressions in Figure I.2.1d to avoid unnecessary confusion.

33

I. Pure call-by-name calculi

Remark I.3.4

The M in M is redundant (i.e. we could denote M by) because only reduces expres-
sions, while M only reduces configurations, so that any reduction

𝑇N 𝑇′N (resp. 𝐶N
M 𝐶′N)

necessarily happens in 𝛌→
N (resp. 𝜆→N or M→

N). The remaining ambiguity between 𝜆
→
N

and M→
N is not problematic because those two calculi are basically the same (as will

be shown in Section I.4).
We nevertheless keepwriting M for the reduction of 𝜆→N orM

→
N because the dinstinc-

tion between expressions 𝑇N and configurations 𝐶N may not be immediate for large
terms, e.g.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N … 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞N 𝑇N𝑈1
N…𝑈𝑟

N vs 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N … 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞N 𝐶N𝑈1
N…𝑈𝑟

N

In 𝜆→n and Li
→
n , the operational reduction will be denoted by , and this will not lead

to any semblance of ambiguity because we use lower cases letters to denote terms of
𝜆→n and Li

→
n .

34

I. Pure call-by-name calculi

I.4. Equivalence between 𝜆→
N and M→

N

Inside-out and outside-out descriptions

Figure I.4.1: Syntax of 𝜆→N and M
→
N

Figure I.4.1.a: Syntax of 𝜆→N (left) and outside-out description of M
→
N (right)

Stacks:
𝐒N ∋ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽

∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N

Configurations:
𝐂N ∋ 𝐶N ⩴ 𝑇N

∣𝐶N𝑇N

Stacks (outside-out):
𝐒N ∋ 𝑆N ⩴⋆N

∣𝑆N[𝑇N ∙⋆N∕⋆N]
Configurations (outside-out):
𝐂N ∋ 𝐶N ⩴ ⟨𝑇N∣⋆N⟩

∣𝐶N[𝑇N ∙⋆N∕⋆N]

Figure I.4.1.b: Inside-out description of 𝜆→N (left) and syntax of M
→
N (right)

Stacks (inside-out):
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽
∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑇N

Configurations (inside-out):
𝐂N ∋ 𝐶N ⩴ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N

Stacks:
𝑆N ⩴⋆N

∣𝑇N ∙ 𝑆N
Configurations:
𝐶N ⩴ ⟨𝑇N∣𝑆N⟩

Figure I.4.1.c: Expanded descriptions of 𝜆→N (left) and M
→
N (right)

Stacks (expanded):
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽𝑇1N…𝑇𝑘N
Configurations (expanded):
𝐶N ⩴ 𝑇N𝑈1

N…𝑈𝑘
N

Stacks (expanded):
𝑆N ⩴ 𝑇1N
Configurations (expanded):
𝐶N ⩴ ⟨𝑇N∣𝑈1

N ∙ … ∙𝑈𝑞
N ∙⋆N⟩

The right column of Figure I.4.1b and the left column of Figure I.4.1a recall the syntaxes
of M→

N and 𝜆→N respectively. Though 𝜆→N and M→
N represent the same objects, they represent

them in structurally different ways. Indeed, in 𝜆→N (resp. M
→
N) a stack

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ◽𝑇1N…𝑇
𝑞
N (resp. 𝑆N = 𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N)

is implicitly parenthesized as
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ((◽𝑇1N) …)𝑇𝑞N (resp. 𝑆N = 𝑇1N ∙(… ∙(𝑇𝑞N ∙⋆N)))

35

I. Pure call-by-name calculi

i.e. its parse tree is a left (resp. right) comb:

◽ 𝑇1N

𝑇𝑞−1N

𝑇𝑞N (resp. 𝑇1N𝑇2N
𝑇𝑞N ⋆N

)
Taking the structure of stacks in 𝛌→

N as reference, stacks of M
→
N are therefore inside-out, and

we call stacks of 𝜆→N (which are exactly stacks of 𝛌→
N) outside-out by opposition. To make

the difference in structure more apparent, we give an outside-out description of M→
N in the

right column of Figure I.4.1a and an inside-out description of 𝜆→N in the left column of Fig-
ure I.4.1b, using an operation that substitutes⋆N by a stack 𝑆N and plugging.
The difference between inside-out and outside-out descriptions is fairly inconsequential

here because both are clearly equivalent to the expanded descriptions given in Figure I.4.1c.
However, in more complex calculi, expanded descriptions become unusable. Since we only
study 𝜆→N andM

→
N as a stepping stone towardsmore complex calculi, we therefore avoid using

expanded descriptions.

Translations

Figure I.4.2 defines translations
⋅
⃖⃗
∶ 𝜆→N → M→

N and ⋅
⃖⃖
∶ M→

N → 𝜆→N
It is immediate that the translation ⋅

⃖⃗
maps outside-out expressions (resp. stacks, config-

urations) of 𝜆→N to outside-out expressions (resp. stacks, configurations) of M→
N, and that ⋅⃖⃖maps inside-out expressions (resp. stacks, configurations) of M→

N to inside-out expressions
(resp. stacks, configurations) of 𝜆→N. To consider them as translations between 𝜆→N and M→

N
(i.e. between outside-out 𝜆→N and inside-out M

→
N), we therefore need to show that:

• all inside-out expressions (resp. stacks, configurations) of 𝜆→N are outside-out expres-
sions (resp. stacks, configurations) of 𝜆→N; and that

• all outside-out expressions (resp. stacks, configurations) of M→
N are inside-out expres-

sions (resp. stacks, configurations) of M→
N.

This holds thanks to the following fact:

Fact I.4.1

• In 𝜆→N, for any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and configuration 𝐶N), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N is
a stack (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N is a configuration).

36

I. Pure call-by-name calculi

Figure I.4.2: Translations ⋅
⃖⃗
∶ M→

N → 𝜆→N and ⋅
⃖⃖
∶ 𝜆→N → M→

N

Figure I.4.2.a: Definition of ⋅
⃖⃗
and outside-out description of ⋅

⃖⃖
Terms:

𝑇N
⃖⃗
≝ 𝑇N

Stacks:
◽
⃗
≝⋆N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N
⃖⃖⃖⃗

= (◽𝑇N) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃗
[𝑇N
⃖⃗

∙⋆N∕⋆N]
Configurations (outside-out):

𝑇N

⃖⃗
≝ ⟨𝑇N

⃖⃗
∣⋆N⟩

𝐶N𝑇N
⃖⃖⃖⃗

≝ 𝐶N
⃖⃗
[𝑇N
⃖⃗

∙⋆N∕⋆N]

Terms:
𝑇N
⃖⃖

= 𝑇N

Stacks:
⋆N

⃖⃖
= ◽

𝑆N[𝑇N ∙⋆N∕⋆N]
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖

= (◽𝑇N
⃖⃖
) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃖

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N

Configurations:
⟨𝑇N∣⋆N⟩
⃖⃖ ⃖⃖⃖⃖

= 𝑇N
⃖⃖

𝐶N[𝑇N ∙⋆N∕⋆N]
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖

= (◽𝑇N
⃖⃖
) 𝐶N
⃖⃖

= 𝐶N𝑇N

Figure I.4.2.b: Inside-out description of ⋅
⃖⃗
and definition of ⋅

⃖⃖
Terms:

𝑇N
⃖⃗
= 𝑇N

Stacks:
◽
⃗
=⋆N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑇N

⃖⃖⃖⃖⃖⃗
= 𝑇N
⃖⃗

∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃗

Configurations:
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N

⃖⃖⃖⃖⃗
= ⟨𝑇N

⃖⃗
∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃗ ⟩

Terms:
𝑇N
⃖⃖

≝ 𝑇N

Stacks:
⋆N

⃖⃖
≝ ◽

𝑇N ∙ 𝑆N
⃖⃖⃖⃖⃖

≝ 𝑆N
⃖⃖

◽𝑇N
⃖⃖

Configurations:
⟨𝑇N∣𝑆N⟩
⃖⃖ ⃖⃖⃖⃖

≝ 𝑆N
⃖⃖

𝑇N
⃖⃖

Figure I.4.2.c: Expanded description of ⋅
⃖⃗
and ⋅

⃖⃖
Terms:

𝑇N
⃖⃗
= 𝑇N

Stacks:
◽𝑇1N…𝑇

𝑞
N

⃖⃖⃖⃖⃖⃖⃖⃗
= 𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N

Configurations:
𝑇N𝑈1

N…𝑈
𝑞
N

⃖⃖⃖⃖⃖⃖⃖⃖⃗
= ⟨𝑇N∣𝑈1

N ∙ … ∙𝑈𝑞
N ∙⋆N⟩

Terms:
𝑇N
⃖⃖

= 𝑇N

Stacks:
𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N

⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
= ◽𝑇1N…𝑇

𝑞
N

Configurations:
⟨𝑇N∣𝑈1

N ∙ … ∙𝑈𝑞
N ∙⋆N⟩

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
≝ 𝑇N𝑈1

N…𝑈
𝑞
N

37

I. Pure call-by-name calculi

• InM→
N, for any stacks 𝑆

1
N and 𝑆2N (resp. stack 𝑆N and configuration𝐶N), 𝑆1N[𝑆2N∕⋆N]

is a stack (resp. 𝐶N[𝑆N∕⋆N] is a configuration).

Proof

• By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N).

• By induction on 𝑆1N (resp. 𝐶N).

Fact I.4.2

The translation ⋅
⃖⃗
maps expressions (resp. stacks, configurations) of 𝜆→N to expres-

sions (resp. stacks, configurations) of M→
N, and the translation ⋅

⃖⃖
maps (resp. stacks,

configurations) of M→
N to expressions (resp. stacks, configurations) of 𝜆

→
N.

Proof

By the previous fact.

Proving that ⋅
⃖⃗
and ⋅

⃖⃖
are inverses amounts to proving that the translations distribute

over plugging and stubstitutions of⋆N by a stack, which in turn relies on these operations
inducing a monoid structure on stacks, and an action of that monoid on configurations:

Fact I.4.3

In 𝜆→N (resp. M
→
N), the set of stacks 𝐒N has a monoid structure

(𝐒N,⚪◽,◽) (resp. (𝐒N,⚪⋆,⋆N))
where

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N ⚪◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N ⚪⋆ 𝑆2N ≝ 𝑆1N[𝑆2N∕⋆N])
and this monoid acts on configurations on the left (resp. on the right) via

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⚫◽ 𝐶N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N (resp. 𝐶N ⚫⋆ 𝑆N ≝ 𝐶N[𝑆N∕⋆N])
In other words:

• (mon-unit) for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N), we have
◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽ (resp.⋆N[𝑆N∕⋆N] = 𝑆N = 𝑆N[⋆N∕⋆N])

• (mon-accoc) for any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆1N, 𝑆2N, and 𝑆3N), we have

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝑆1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])
• (act-unit) for any configuration 𝐶N, we have

◽ 𝐶N = 𝐶N (resp. 𝐶N = 𝐶N[⋆N∕⋆N])

38

I. Pure call-by-name calculi

• (act-assoc) for any configuration 𝐶1N and stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆2N and 𝑆3N), we
have

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝐶1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝐶1N (resp. 𝐶1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝐶1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])

Proof sketch (See page 187 for details)

By a few inductions.

Fact I.4.4

• For any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and configuration 𝐶N) of 𝜆
→
N, we have

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N
⃖⃖⃖⃖⃗

= 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N
⃖⃗
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N
⃖⃗
∕⋆N] (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N

⃖⃖⃖⃖⃗
= 𝐶N
⃖⃗
[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃗
∕⋆N])

• For any stacks 𝑆N and 𝑆0N (resp. stack 𝑆N and configuration 𝐶N) of M→
N, we have

𝑆1N[𝑆2N∕⋆N]
⃖⃖⃖⃖⃖⃖⃖⃖

= 𝑆2N
⃖⃖

𝑆1N
⃖⃖ (resp. 𝐶N[𝑆N∕⋆N]

⃖⃖⃖⃖⃖⃖⃖⃖
= 𝑆N
⃖⃖

𝐶N
⃖⃖)

Proof

By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N / 𝑆N (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N / 𝑆2N), using the previous fact.

Fact I.4.5

The translation ⋅
⃖⃗
and ⋅

⃖⃖
are are each other’s inverse:

• For any expression 𝑇N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, configuration 𝐶N) of 𝜆
→
N, we have

𝑇N
⃖⃗⃖⃖
= 𝑇N (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃖⃖⃗ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, 𝐶N

⃖⃗⃖⃖
= 𝐶N)

• For any expression 𝑇N (resp. stack 𝑆N, configuration 𝐶N) of M→
N, we have

𝑇N = 𝑇N
⃖⃖⃖⃗ (resp. 𝑆N = 𝑆N

⃖⃖⃖ ⃗
, 𝐶N = 𝐶N

⃖⃖⃖⃗)
Proof

By induction on the term, using the previous fact.

We write⇌ for equality through these translations:

39

I. Pure call-by-name calculi

Definition I.4.6

We write 𝓉1 ⇌ 𝓉2 to state that 𝓉1
⃖⃗
= 𝓉2, or equivalently that 𝓉1 = 𝓉2

⃖⃖
. Whenever we

write, 𝓉1 ⇌ 𝓉2, we implicitly assume that 𝓉1 lives in 𝜆
→
N and that 𝓉2 lives in M

→
N.

With this notation, Fact I.4.4 can be reformulated as the compatibility of the operations
with⇌:

Fact I.4.7

We have
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�1N ⇌ 𝑆�1N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�2N ⇌ 𝑆�2N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�1N ⇌ 𝑆�1N [𝑆�2N ∕⋆N]

and
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N ⇌ 𝑆�N and 𝐶�

N ⇌ 𝐶�
N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N 𝐶�

N ⇌ 𝐶�
N[𝑆�N∕⋆N]

Proof

By Fact I.4.4.

Remark I.4.8

Every notion will be defined in both 𝜆→N and M→
N, and shown to be compatible with

⇌ (i.e. to be the same in 𝜆→N and M
→
N). We will often also give an equivalent outside-

out (resp. inside-out) description in M→
N (resp. 𝜆→N), but will leave the proof of the

equivalence implicita. From a technical perspective, the alternative descriptions are
completely superfluous, and the reader should feel free to ignore them, but we nev-
ertheless keep them because we believe that they may have some pedagogical value.
aThe outside-out (resp. inside-out) description in M→

N (resp. 𝜆→N) will be defined as being exactly the
definition in 𝜆→N (resp. M

→
N) transported through⇌, so that the equivalence between the outside-out

(resp. inside-out) description inM→
N (resp. 𝜆

→
N) and the definition inM

→
N (resp. 𝜆

→
N) will immediately

follow from compatibility of the definition with⇌.
For example, if we define a unary operation 𝑓�(𝐶N) in 𝜆

→
N and the corresponding operation 𝑓�(𝐶N)

in M→
N , we will show that

𝐶1
N ⇌ 𝐶2

N ⇒ 𝑓�(𝐶1
N)⇌ 𝑓�(𝐶2

N) (1)
The outside-out (resp. inside-out) description 𝑓⇌

�
(resp. 𝑓⇌

�
) in M→

N (resp. 𝜆→N) will be defined by
starting from the equalities

𝑓⇌
� (𝐶2

N) = 𝑓�(𝐶2
N

⃖⃖
)

⃖⃖⃖⃖⃖⃗
(resp. 𝑓⇌� (𝐶1

N) = 𝑓�(𝐶1
N
⃖⃗
)

⃖⃖ ⃖⃖⃖⃖
)

and possibly simplifying the right hand side. By (1), we therefore immediately get
𝑓⇌
�
= 𝑓� (resp. 𝑓⇌� = 𝑓�)

Substitutions

Figure I.4.3 recalls the action of substitutions on stacks and configurations of 𝜆→N and M→
N,

and gives alternative descriptions. The translations are extended to substitutions pointwise:

40

I. Pure call-by-name calculi

Figure I.4.3: The action of substitutions on terms of 𝜆→N and M
→
N

Figure I.4.3.a: Definition in 𝜆→N (left) and outside-out description in M
→
N

Stacks:
◽[𝜎] ≝ ◽

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N)[𝜎] ≝ (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N[𝜎])(𝑇N[𝜎])
Configurations:

𝑇N[𝜎] ≝ 𝑇N[𝜎]
(𝐶N𝑇N)[𝜎] ≝ (𝐶N[𝜎])(𝑇N[𝜎])

Stacks:
⋆N[𝜎] =⋆N

(𝑆N[𝑇N ∙⋆N∕⋆N])[𝜎] = 𝑆N[𝜎][(𝑇N[𝜎]) ∙⋆N∕⋆N]
Configurations:

⟨𝑇N∣⋆N⟩[𝜎] = ⟨𝑇N[𝜎]∣⋆N⟩[𝜎]
(𝐶N[𝑇N ∙⋆N∕⋆N])[𝜎] = 𝐶N[𝜎][(𝑇N[𝜎]) ∙⋆N∕⋆N]

Figure I.4.3.b: Inside-out description in 𝜆→N (left) and definition in M
→
N (right)

Stacks:
◽[𝜎] = ◽

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑇N)[𝜎] = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N[𝜎]) ◽(𝑇N[𝜎])
Configurations:
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N)[𝜎] = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N[𝜎]) 𝑇N[𝜎]

Stacks:
⋆N[𝜎] ≝⋆N

(𝑇N ∙ 𝑆N)[𝜎] ≝ (𝑇N[𝜎]) ∙(𝑆N[𝜎])
Configurations:
⟨𝑇N∣𝑆N⟩[𝜎] ≝ ⟨𝑇N[𝜎]∣𝑆N[𝜎]⟩

Figure I.4.3.c: Expanded descriptions in 𝜆→N (top) and M
→
N (bottom)

Stacks:
(◽𝑇1N…𝑇𝑞N)[𝜎] = ◽(𝑇1N[𝜎]) … (𝑇𝑞N[𝜎])
Configurations:
(𝑇0N𝑇1N…𝑇𝑞N)[𝜎] = 𝑇0N[𝜎](𝑇1N[𝜎]) … (𝑇𝑞N[𝜎])

Stacks:
(𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N)[𝜎] = (𝑇1N[𝜎]) ∙ … ∙(𝑇𝑞N[𝜎]) ∙⋆N

Configurations:
(⟨𝑇0N∣𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N⟩)[𝜎] = ⟨𝑇0N∣(𝑇1N[𝜎]) ∙ … ∙(𝑇𝑞N[𝜎]) ∙⋆N⟩

41

I. Pure call-by-name calculi

Definition I.4.9: Extension of⇌ to substitutions

Given a substitution 𝜎 in 𝜆→N (resp. M→
N), we write 𝜎⃗

(resp. 𝜎
⃖
) for the substitution of

M→
N (resp. 𝜆

→
N) defined by

𝜎
⃗
(𝑥N) = 𝜎(𝑥N)

⃖⃖⃖⃖⃗
(resp. 𝜎⃖ (𝑥

N) = 𝜎(𝑥N)
⃖⃖ ⃖⃖⃖

)
Given two substitutions, 𝜎� in 𝜆

→
N and 𝜎� in M→

N, we write 𝜎� ⇌ 𝜎� for 𝜎�
⃖⃗

= 𝜎�, or
equivalently for 𝜎� = 𝜎�

⃖⃖
.

Remark I.4.10

Since expressions are the same in 𝜆→N and M
→
N, we have

𝜎� ⇌ 𝜎� ⇔ 𝜎� = 𝜎�
We nevertheless use the notation 𝜎� ⇌ 𝜎� because this will no longer be the case in
𝜆→n and Li

→
n .

Translations distribute over the action of substitutions, i.e. substitutions are compatible
with⇌:

Fact I.4.11: Compatibility of substitutions with⇌

We have
𝜎� ⇌ 𝜎� and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N ⇌ 𝑆�N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎�]⇌ 𝑆�N[𝜎�]

and
𝜎� ⇌ 𝜎� and 𝐶�

N ⇌ 𝐶�
N ⇒ 𝐶�

N[𝜎�]⇌ 𝐶�
N[𝜎�]

Proof

By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N / 𝐶�
N.

Disubstitutions

42

I. Pure call-by-name calculi

The translations are extended to disubstitutions in the expected way:

Definition I.4.12: Extension of⇌ to disubstitutions

Given a disubstitution 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) in 𝜆
→
N (resp. 𝜑 = 𝜎,⋆N ↦ 𝑆N in M→

N), we write 𝜎⃗(resp. 𝜎
⃖
) for the substitution of M→

N (resp. 𝜆
→
N) defined by

(𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N)
⃖⃖⃖⃖⃗

= 𝜎
⃗
,⋆N ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N

⃖⃗
(resp. 𝜎,⋆N ↦ 𝑆N

⃖⃖ ⃖⃖⃖⃖⃖⃖⃖
= (𝜎⃖ , 𝑆N⃖⃖))

Given two disubstitutions, 𝜑� in 𝜆
→
N and 𝜑� in M

→
N, we write 𝜑� ⇌ 𝜑� for 𝜑�

⃖⃗
= 𝜑�, or

equivalently for 𝜑� = 𝜑�
⃖⃖
.

The translations distribute over the translations:

Fact I.4.13: Compatibility of disubstitutions with⇌

We have
𝜑� ⇌ 𝜑� and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N ⇌ 𝑆�N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜑�]⇌ 𝑆�N[𝜑�]

and
𝜑� ⇌ 𝜑� and 𝐶�

N ⇌ 𝐶�
N ⇒ 𝐶�

N[𝜑�]⇌ 𝐶�
N[𝜑�]

Proof

This holds for substitutions 𝜎 by Fact I.4.11 and for disubstitutions of the shape 𝜑� =
(Id, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) (resp. 𝜑� =⋆N ↦ 𝑆N) by Fact I.4.7. We can therefore conclude by Fact I.3.2.

Reductions

The definitions of the operational reduction M of 𝜆→N and M→
N are recalled in Figure I.4.4a.

These two definitions correspond to each other through⇌:

Fact I.4.14: Compatibility of M with⇌

We have
𝐶�
N ⇌ 𝐶�

N and 𝐶�′
N ⇌ 𝐶�′

N ⇒ (𝐶�
N

M 𝐶�′
N ⇔ 𝐶�

N
M 𝐶�′

N)

Proof

By compatibility of disubstitutions with⇌ (Fact I.4.13).

43

I. Pure call-by-name calculi

Figure I.4.4: Operational reduction in 𝜆→N and M
→
N

Figure I.4.4.a: Definition in 𝜆→N (left) and M
→
N (right)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N
M

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N
M

→ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]

M ≝ M

→ ∪
M

m

⟨𝑇N𝑈N∣𝑆N⟩
M

m ⟨𝑇N∣𝑈N ∙ 𝑆N⟩
⟨𝜆𝑥N.𝑇N∣𝑈N ∙ 𝑆N⟩ M

→ ⟨𝑇N[𝑈N∕𝑥N]∣𝑆N⟩
M ≝ M

→ ∪
M

m

Figure I.4.4.b: Outside-out description in 𝜆→N (left) and M
→
N (right)

𝑇N𝑈N
M 𝑇N𝑈N

(𝜆𝑥N.𝑇N)𝑈N
M 𝑇N[𝑈N∕𝑥N]

𝐶N
M 𝐶′N

𝐶N𝑈N
M 𝐶′N𝑈N

⟨𝑇N𝑈N∣⋆N⟩ M ⟨𝑇N∣𝑈N ∙⋆N⟩

⟨𝜆𝑥N.𝑇N∣𝑈N ∙⋆N⟩ M ⟨𝑇N[𝑈N∕𝑥N]∣⋆N⟩

𝐶N
M 𝐶′N

𝐶N[𝑇N ∙⋆N∕⋆N] M 𝐶′N[𝑇N ∙⋆N∕⋆N]

Figure I.4.4.c: Inside-out description in 𝜆→N (left) and M
→
N (right)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N
M 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N
M 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]

⟨𝑇N𝑈N∣𝑆N⟩
M ⟨𝑇N∣𝑈N ∙ 𝑆N⟩

⟨𝜆𝑥N.𝑇N∣𝑈N ∙ 𝑆N⟩ M ⟨𝑇N[𝑈N∕𝑥N]∣𝑆N⟩

44

I. Pure call-by-name calculi

Figures I.4.4b and I.4.4c give inside-out and outside-out descriptions via inferrence rules,
which are of course equivalent:

Fact I.4.15

In 𝜆→N (resp. M→
N), the definition of

M (Figure I.4.4a) is equivalent to its outside-out
description (Figure I.4.4b), and to its inside-out description (Figure I.4.4c).

Proof

• definition⇔ inside-out Trivial.

• definition⇔ outside-out Thinking of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N) as being an outside-out
stack, the ⇒ implication holds by induction on the stack, and the ⇐ holds by
induction on the derivation.

The fact that stacks should be inside-out in Figure I.4.4c would be clearer if we were to
give a similar inside-out description of the strong reduction . For example, wewould have

𝑈N 𝑈′
N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑈N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑈N

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N

An inside-out description of in 𝜆→n and Li
→
n is given in . We do not given one in 𝜆→N and

M→
N because these calculi are not the right setting to study the strong reduction .

45

I. Pure call-by-name calculi

I.5. Translations between 𝛌→
N and 𝜆→

N

Focus insertion and erasure

We start by defining the focus-erasing translation ⌈ ⋅ ⌉ from 𝜆→N to 𝛌→
N in Figure I.5.1 that

removes the underlinement in 𝐶N, and the corresponding translation fromM→
N to 𝛌

→
N, which

we denote by the same symbol.

Figure I.5.1: The focus-erasing translations ⌈ ⋅ ⌉ ∶ 𝜆→N → 𝛌→
N and ⌈ ⋅ ⌉ ∶ M

→
N → 𝛌→

N

Figure I.5.1.a: Definition in 𝜆→N (left) and outside-out description in M
→
N (right)

⌈𝑇N⌉ ≝ 𝑇N

⌈𝐶N𝑇N⌉ ≝ ⌈𝐶N⌉𝑇N

⌈⟨𝑇N∣⋆N⟩⌉ ≝ 𝑇N

⌈𝐶N[𝑇N ∙⋆N∕⋆N]⌉ ≝ ⌈𝐶N⌉[𝑇N ∙⋆N∕⋆N]

Figure I.5.1.b: Inside-out description in 𝜆→N (left) and definition in M
→
N (right)

⌈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⌉ ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⌈⟨𝑇N∣𝑆N⟩⌉ ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
⃖⃖

𝑇N

These two translations of course correspond to each other through⇌:

Fact I.5.1

We have
𝐶�
N ⇌ 𝐶�

N ⇒ ⌈𝐶�
N⌉ = ⌈𝐶�

N⌉

Proof

Immediate.

Erasing the underlinement preserves disubsitutions:

Fact I.5.2

For any configuration 𝐶N and disubstitution 𝜑, ⌈𝐶N[𝜑]⌉ = ⌈𝐶N⌉[𝜑].

Proof

Immediate.

The focus-erasing translation is a left inverse of ⋅ and ⟨-∣⋆N⟩:

46

I. Pure call-by-name calculi

Fact I.5.3

For any expression 𝑇N, we have

⌈𝑇N⌉ = 𝑇N and ⌈⟨𝑇N∣⋆N⟩⌉ = 𝑇N

Proof

Immediate.

Composing these two maps in the opposite order yields the identity only up to M

m reduc-
tions:

Fact I.5.4

For any configuration 𝐶N of 𝜆
→
N (resp. M

→
N), we have

⌈𝐶N⌉
M ∗
m 𝐶N (resp. ⟨⌈𝐶N⌉∣⋆N⟩ M ∗

m 𝐶N)
i.e. for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N) and term 𝑇N of 𝜆

→
N (resp. M

→
N), we have

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N
M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N (resp. ⟨𝑆N⃖⃖ 𝑇N ∣⋆N⟩ M ∗

m ⟨𝑇N∣𝑆N⟩)

Proof

We have

⌈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⌉ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N
M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N (resp. ⟨⌈⟨𝑇N∣𝑆N⟩⌉∣⋆N⟩ = ⟨𝑆N⃖⃖ 𝑇N ∣⋆N⟩ M ∗

m ⟨𝑇N∣𝑆N⟩)
where the equality is given by Fact I.5.2, and the M ∗

m reduction sequence is obtained
by induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N).

Reductions through focus erasure

Since M

m reductions only move focus, they are erased by ⌈ ⋅ ⌉:

Fact I.5.5

If 𝐶N
M

m 𝐶′N then ⌈𝐶N⌉ = ⌈𝐶′N⌉.

Proof

By Fact I.5.2.

Conversely, two configurations whose image by ⌈ ⋅ ⌉ are equal are related by m steps:

47

I. Pure call-by-name calculi

Fact I.5.6

If ⌈𝐶N⌉ = ⌈𝐶′N⌉ then either 𝐶N
M ∗
m 𝐶′N or 𝐶N

M ∗
m 𝐶′N.

Proof

Applying Fact I.5.4 to both 𝐶N and 𝐶′N yields
𝐶N

M 𝑗
m ⌈𝐶N⌉ = ⌈𝐶′N⌉ M 𝑘

m 𝐶′N
By determinism of M , we can simplify this to get either 𝑗 = 0 or 𝑘 = 0.

The M

→ reductions of M→
N are preserved by focus erasure:

Fact I.5.7

If 𝐶N
M

→ 𝐶′N then ⌈𝐶N⌉ → ⌈𝐶′N⌉.

Proof

By Fact I.5.2.

Reductions through focus insertion

A top-level reduction → in 𝛌→
N becomes

M

m
M

→ in 𝜆→N:

Fact I.5.8

If 𝑇N → 𝑇′N then 𝑇N
M

m
M

→ 𝑇′N.

Proof

We have
(𝜆𝑥N.𝑇N)𝑈N

M

m (𝜆𝑥N.𝑇N)𝑈N
M

→ 𝑇N[𝑈N∕𝑥N]

The search for the redex is represented by a sequence of M

m reductions. The
M

m reduction
can find redexes under all operational contexts:

Fact I.5.9

For any operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N and expression 𝑇N, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N
M ∗
m 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N .

48

I. Pure call-by-name calculi

Proof

Since all operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N are stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, this is just Fact I.5.4.

We can therefore simulate → steps as follows:

Fact I.5.10

If 𝑇N → 𝑇′N then 𝑇N
M ∗
m

M

→
M ∗
m 𝑇′N.

Proof

We have
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N (𝜆𝑥N.𝑇N)𝑈N

M ∗
m 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N (𝜆𝑥N.𝑇N)𝑈N

M

m
M

→ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N[𝑈N∕𝑥N] M ∗
m 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N[𝑈N∕𝑥N]

where the M ∗
m and

M ∗
m reduction sequences are by Fact I.5.9.

We then look at sequences of reductions ∗
→ . The fact that the abstract machine does not

need to go back to the top of the expression, sometimes called refocusing [DanNie04], can
be expressed as follows:

Fact I.5.11

If 𝑇N
𝑘
→ 𝑇′N then 𝑇N (M ∗

m
M

→)𝑘 M ∗
m 𝑇′N.

Proof

The previous fact gives us
𝑇N (M ∗

m
M

→
M ∗
m)𝑘 𝑇′N

which can be rewritten (for 𝑘 ≥ 1) as

𝑇N
M ∗
m

M

→(M ∗
m

M ∗
m

M

→)𝑘−1 M ∗
m 𝑇′N

Since M

m is deterministic, this implies

𝑇N
M ∗
m

M

→((M ∗
m ∪

M ∗
m) →)𝑘−1 M ∗

m 𝑇′N
and since M

m and
M

→ have disjoint domains, we get

𝑇N
M ∗
m

M

→(M ∗
m

M

→)𝑘−1 M ∗
m 𝑇′N

i.e.
𝑇N (M ∗

m
M

→)𝑘 M ∗
m 𝑇′N

Since M

m steps are erased by ⌈ ⋅ ⌉, the above implication is an equivalence, so that:

[DanNie04] “Refocusing in Reduction Semantics”, Danvy and Nielsen, 2004

49

I. Pure call-by-name calculi

Proposition I.5.12

For any configurations 𝐶N and 𝐶′N, we have
⌈𝐶N⌉ ⊛ ⇔ 𝐶N

M⊛

In particular, for any expressions 𝑇N and 𝑇′N, we have
𝑇N

⊛ ⇔ 𝑇N
M⊛

Proof

• ⇒ Suppose that 𝑇N
⊛ 𝑇′N. By the previous fact, we have

𝑇N (M ∗
m

M

→)𝑘 𝐶′N M ∗
m 𝑇′N

for some 𝐶′N. Since
M

m is strongly normalizing (because the depth of the expres-
sion minus the depth of ⋅ in it strictly decreases at each M

m step), we can find
𝐶′′N such that

𝑇N (M ∗
m

M

→)𝑘 𝐶′N M⊛
m 𝐶′′N

M⊛
m 𝑇′N

It now suffices to show that 𝐶′′N
M

→ . By Fact I.5.5, we have
⌈𝐶′′N ⌉ = ⌈𝑇′N⌉ = 𝑇′N

so that having 𝐶′′N
M

→ would contradict the hypothesis 𝑇′N → by Fact I.5.7.

• ⇐ Suppose that𝐶N
M⊛ 𝐶′N. By Facts I.5.5 and I.5.7, we have ⌈𝐶N⌉ ∗ ⌈𝐶′N⌉. Since

𝐶′N
M , Fact I.5.10 allows to conclude that ⌈𝐶′N⌉ → .

50

I. Pure call-by-name calculi

I.6. A pure call-by-name 𝜆-calculus with focus: 𝜆→
n

In this section, we introduce the pure call-by-name 𝜆-calculus with focus 𝜆→n , which is the
𝜆-like syntax for the calculus we are really interested in: Li→n . While it is suboptimal from
a technical standpoint, we expect the 𝜆→n syntax to make understanding how Li→n computes
easier.
Section I.6.1 refines M→

N to allow decomposing the strong reduction, Section I.6.2 add lets
expressions, and Section I.6.3 describes the actual 𝜆→n calculus.

I.6.1. The simple fragment of the naive 𝜆→
n calculus

Decomposing the strong reduction

As we have seen in Section I.5, the operational reduction of 𝜆→N andM
→
N refines that of 𝛌

→
N by

making the implicit m steps explicit. This has the unfortunate consequence of damaging the
relationship between the operational reduction and the strong reduction . For example,
the expression (𝜆𝑥N.𝐼N𝑊N)𝑉N (where 𝐼N = 𝜆𝑦N.𝑦N) of 𝛌→

N is represented by (𝜆𝑥N.𝐼N𝑊N)𝑉N

Figure I.6.1: Example of strong reduction in subterms of abstract machines

Figure I.6.1.a: Example in 𝜆→N

(𝜆𝑥N.𝐼N𝑊N)𝑉N m (𝜆𝑥N.𝐼N𝑊N)𝑉N → 𝐼N𝑊N[𝑉N∕𝑥N]

m

→ → 𝐼N𝑊N[𝑉N∕𝑥N]

→

(𝜆𝑥N.𝑊N)𝑉N m (𝜆𝑥N.𝑊N)𝑉N → 𝑊N[𝑉N∕𝑥N]

Figure I.6.1.b: Example in 𝜆→n

(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n → 𝐼n𝑤n[𝑣n∕𝑥n]

m m m

(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n → 𝐼n𝑤n[𝑣n∕𝑥n]

→ → →

(𝜆𝑥n.𝑤n)𝑣n m (𝜆𝑥n.𝑤n)𝑣n → 𝑤n[𝑣n∕𝑥n]

51

I. Pure call-by-name calculi

in 𝜆→N and reduces as shown in Figure I.6.1a, where the inner reduction 𝐼N𝑊N 𝑊N can not
be refined as two steps → m because 𝐼N𝑊N has no underlined subterm.
A naive attempt atmodifying 𝜆→N to allow to explicitlymoving the focus in subterms can be

found in Figure I.6.2. Just like in 𝜆→N, commands 𝑐n (which correspond to configurations of
𝜆→N) are computations that can be reduced / evaluated by the operational reduction , while
an expression 𝑡n is only part of a computation meant to be combined with a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (or an
evaluation context 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n in the full calculus) to form a command. Of course, any expression 𝑡n
can be turned into a command by making it interact with the trivial stack ◽, which yields 𝑡n.
The distinction between commands and simple commands will become relevant later when
we add let-expressions (and the distinction between stacks and simple stacks will become

Figure I.6.2: The simple fragment of the naive call-by-name 𝜆-calculus with focus 𝜆→n

Figure I.6.2.a: Syntax (naive)

Expressions / values: Stacks / simple stacks:
𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝑐n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, �̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽

∣𝜆𝑥n.𝑐n ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝑡n
Commands: Simple commands:

𝑐n ⩴ �̊�n �̊�n ⩴ 𝑡n
∣ �̊�n𝑡n

Figure I.6.2.b: Expanded description of commands and stacks (naive)

Simple commands: Stacks / simple stacks:
�̊�n ⩴ 𝑡n𝑢1n …𝑢

𝑞
n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, �̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽𝑢1n …𝑢

𝑞
n

Figure I.6.2.c: Operational reduction (naive)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n �̊�n m 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n �̊�n
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n. �̊�n)𝑡n → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n �̊�n[𝑡n∕𝑥n]

≝ m ∪ →

Figure I.6.2.d: Expanded description of the operational reduction (naive)

𝑡n𝑣1n … 𝑣
𝑞
n𝑤1

n …𝑤𝑟
n m 𝑡n𝑣1n … 𝑣

𝑞
n𝑤1

n …𝑤𝑟
n

(𝜆𝑥n.𝑡n𝑣1n … 𝑣
𝑞
n)𝑤0

n𝑤1
n …𝑤𝑟

n → 𝑡n[𝑤0
n∕𝑥n](𝑣1n [𝑤0

n∕𝑥n]) … (𝑣𝑞n [𝑤0
n∕𝑥n])𝑤1

n …𝑤𝑟
n

52

I. Pure call-by-name calculi

relevant in call-by-value).
The main difference with 𝜆→N is that some subterms are now also represented with com-

mands, which allows the strong reduction to move focus in subterms: the expression
(𝜆𝑥N.𝐼N𝑊N)𝑉N of 𝛌→

N can be represented in 𝜆
→
n by

(𝜆𝑥n.𝐼n𝑤n)𝑣n with 𝐼n = 𝜆𝑦n.𝑦n

and reduces as shown in Figure I.6.1b.

Focus erasure in place of focus movement

Since subcommands now already have their own focused subterm, the reduction now erases
the underlinement ⋅ instead of moving it. For example, the reduction

(𝜆𝑥N.𝐼N𝑊N)𝑉N m (𝜆𝑥N.𝐼N𝑊N)𝑉N → 𝐼N𝑊N[𝑉N∕𝑥N]
becomes

(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n → 𝐼n𝑤n[𝑣n∕𝑥n]

where the first step erases the focus under (𝜆𝑥n.𝐼n𝑤n)𝑣n and the second step erases the fo-
cus under 𝜆𝑥n.𝐼n𝑤n and reduces the 𝛽-redex. The result 𝐼n𝑤n[𝑣n∕𝑥n] is the body 𝐼n𝑤n of the
function 𝜆𝑥n.𝐼n𝑤n with the substitution 𝑥n ↦ 𝑣n applied to it. Erasing the focus, instead of
moving it, is a way of ensuring the focus in subcommands can be moved by m indepen-
dently of what happens above: if we decide to first apply the reduction

(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n
then the body is now 𝐼n𝑤n and after performing the same two m → steps, we get 𝐼n𝑤n[𝑣n∕𝑥n]
as expected.

I.6.2. The naive 𝜆→
n calculus

Stack deferrals

We now add let-expressions to our naive 𝜆→n , which yields Figure I.6.3. The most important
difference is that stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n can now be moved by the operational reduction via the defer
operation. Indeed, in the simple fragment, we only had simple commands for which defer
only plugs the simple command in the stack:

defer(𝑡n #”𝑣𝑛,◽ # ”𝑤𝑛) = (◽ # ”𝑤𝑛) 𝑡n #”𝑣𝑛 = 𝑡n #”𝑣𝑛 # ”𝑤𝑛

Having let-expressions allows us to form non-simple commands for which defer moves the
stack to the body of the let expression when this body is a simple command

defer(let𝑥n = 𝑡n in

𝑢n #”𝑣𝑛
,◽ # ”𝑤𝑛) = let𝑥n = 𝑡n in

defer(𝑢n #”𝑣𝑛,◽ # ”𝑤𝑛)
= let𝑥n = 𝑡n in

(◽ # ”𝑤𝑛) 𝑢n #”𝑣𝑛

= let𝑥n = 𝑡n in

𝑢n #”𝑣𝑛 # ”𝑤𝑛

53

I. Pure call-by-name calculi

Figure I.6.3: The call-by-name 𝜆-calculus with focus 𝜆→n (naive)

Figure I.6.3.a: Syntax (naive)

Expressions / values: Stacks / simple stacks:
𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝑐n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, �̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽

∣𝜆𝑥n.𝑐n ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝑡n
Commands: Simple commands:

𝑐n ⩴ �̊�n �̊�n ⩴ 𝑡n
∣ let𝑥n ∶= 𝑡n in 𝑐n ∣ �̊�n𝑡n

Figure I.6.3.b: Stack deferral (naive)

defer(�̊�n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n �̊�n
defer(let𝑥n ∶= 𝑡n in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) if 𝑥n fresh w.r.t. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n

Figure I.6.3.c: Operational reduction (naive)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐n 𝜇 defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)
let𝑥n ∶= 𝑡n in 𝑐n let 𝑐n[𝑡n∕𝑥n]

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n.𝑐n)𝑡n → defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

≝ m ∪ let ∪ →

and further down if that body is again a let-expression
defer(let𝑥n

1 = 𝑡1n in
⋮

let𝑥n
𝑞 = 𝑡𝑞n in

𝑢n #”𝑣𝑛

,◽ # ”𝑤𝑛) = … = let𝑥n
1 = 𝑡1n in

⋮
let𝑥n

𝑞 = 𝑡𝑞n in
defer(𝑢n #”𝑣𝑛,◽ # ”𝑤𝑛)

= let𝑥n
1 = 𝑡1n in
⋮

let𝑥n
𝑞 = 𝑡𝑞n in

(◽ # ”𝑤𝑛) 𝑢n #”𝑣𝑛

= let𝑥n
1 = 𝑡1n in
⋮

let𝑥n
𝑞 = 𝑡𝑞n in

𝑢n #”𝑣𝑛 # ”𝑤𝑛

𝜇 as a generalization of m and

The 𝜇 reduction therefore does two things: it erases the underline and moves the stack:

(let𝑥n
1 = 𝑡1n in
⋮

let𝑥n
𝑞 = 𝑡𝑞n in

𝑢n #”𝑣𝑛) # ”𝑤𝑛 𝜇 let𝑥n
1 = 𝑡1n in
⋮

let𝑥n
𝑞 = 𝑡𝑞n in

𝑢n #”𝑣𝑛 # ”𝑤𝑛

54

I. Pure call-by-name calculi

The reduction m of the simple fragment of 𝜆
→
n corresponds to the case where there are 𝑞 = 0

nested let-expressions, and the reduction of 𝛌→
N corresponds to

(let𝑥n ∶= 𝑡n in𝑢n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in𝑢n𝑤n

i.e. to the case where there is 𝑞 = 1 let-expression whose body is underlined (i.e. ◽ #”𝑣𝑛 =
◽) and the moved stack contains a single value (i.e. ◽ # ”𝑤𝑛 = ◽𝑤1

n). The reduction 𝜇 can
therefore be though of as a combination of the reduction m that simply moves focus and
of a strenghened variant of that can move several arguments at once, and move them
through several let-expressions at once. This strengthening ensures that 𝜇 steps commute
with each other. Indeed, being able to move several values allows for

(let𝑥n ∶= 𝑡n in𝑢n)𝑣n𝑤n 𝜇 (let𝑥n ∶= 𝑡n in𝑢n)𝑣n𝑤n

𝜇 𝜇

(let𝑥n ∶= 𝑡n in𝑢n𝑣n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in𝑢n𝑣n𝑤n

and being able to move through let-expressions allows for

(let𝑥n ∶= 𝑡n in let 𝑦n ∶= 𝑢n in 𝑣n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in(let 𝑦n ∶= 𝑢n in 𝑣n)𝑤n

𝜇 𝜇

(let𝑥n ∶= 𝑡n in let 𝑦n ∶= 𝑢n in 𝑣n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in let 𝑦n ∶= 𝑢n in 𝑣n𝑤n

See for a more formal statement.

Underlines as potential places of interaction

One way to think about the
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐n 𝜇 defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

reduction is that it moves the stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽ # ”𝑤𝑛 at the next point in 𝑐n where it might interact
with an expression. In non-simple commands 𝑐n = let𝑥n ∶= 𝑡n in 𝑐0n , that next point of
interaction of the stack with an expression is necessarily in the subcommand 𝑐0n , while for
simple commands 𝑐n = 𝑡n #”𝑣𝑛, the stack may interact with an expression that comes from
reducing 𝑡n #”𝑣𝑛 so we leave it here. Leaving it here does not mean that it will interact here,
only that it will follow ◽ #”𝑣𝑛 around until all values of ◽ #”𝑣𝑛 have been consumed. For example,
if 𝑡n is a non-simple command, it will be moved together with ◽ #”𝑣𝑛:

(let𝑥n ∶= 𝑢1n in𝑢2n) #”𝑣𝑛 # ”𝑤𝑛 𝜇 (let𝑥n ∶= 𝑢1n in𝑢2n) #”𝑣𝑛 # ”𝑤𝑛 𝜇 let𝑥n ∶= 𝑢1n in𝑢2n #”𝑣𝑛 # ”𝑤𝑛

Note that this interpretation of underlines marking points of interaction also works for let-
expressions: a non-simple command

let𝑥n ∶= 𝑡n in 𝑐n
is an interaction between a term 𝑡n and an evaluation context

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n = let𝑥n ∶= ◽ in 𝑐n

55

I. Pure call-by-name calculi

Reducing let-expressions

Note that
let𝑥n ∶= 𝑣n in 𝑐n and (𝜆𝑥n.𝑐n)𝑣n

do not reduce in the same way. Indeed, while (𝜆𝑥n.𝑐n)𝑣n can be reduced under an arbitrary
stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, let𝑥n ∶= 𝑡n in 𝑐n can not:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n.𝑐n)𝑣n → defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) for any 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, while
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n let defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) only for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽

(and for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n ≠ ◽, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n is not even in the syntax). This somewhat surprising
weakness of let compensates for the strength of defer (and hence of the 𝜇 reduction) on
let-expressions:

defer((𝜆𝑥n.𝑐n)𝑣n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) = (𝜆𝑥n.defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n))𝑣n only for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽, while
defer(let𝑥n ∶= 𝑡n in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) = let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) for any 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n

Indeed, the expected reduction of a let-expression under a stack can be simulated via
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n 𝜇 let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) let defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

The difference between let𝑥n ∶= 𝑡n in 𝑐n and (𝜆𝑥n.𝑐n)𝑣n is therefore that defer understands
that let𝑥n ∶= 𝑡n in 𝑐n will reduce without interacting with the surrounding stack, but has no
such knowledge for (𝜆𝑥n.𝑐n)𝑣n5. This implies that 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n is 𝜇 reducible, and
since we want to be deterministic (and 𝑙1 and 𝑙2 to have disjoint domains for 𝑙1 ≠ 𝑙2), it
can not be let-reducible, which is why let is weaker than expected.

Undesirable strong reductions

In this naive version of 𝜆→n , the strong reduction 6 is somewhat unsatisfying because we
do not have

𝑐n 𝑐′n, and
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n is in the syntax

} ⇒ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n
but only

𝑐n 𝑐′n,
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n is in the syntax, and
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n is in the syntax

⎫

⎬
⎭

⇒ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n

5Note that 𝜇 sometimes failing to recognize that a termwill not interactwith the surrounding stack is perfectly
reasonable: “interacting with the surrounding stack” is an undecidable property (e.g. because a closed term
interacts with the surrounding stack if and only if it terminates), so that 𝜇 is necessarily an approximation.

6The strong reduction can be defined either by

𝓉 𝓉′ ≝ ∃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n,∃𝑐n,∃𝑐′n,
⎧

⎨
⎩

𝑐n 𝑐′n,
𝓉 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n , and
𝓉′ = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n

or equivalently by the expected inferrence rules.

56

I. Pure call-by-name calculi

For example, the reduction
𝑐n = (let𝑥n ∶= 𝑡n in𝑢n)𝑣n 𝜇 let𝑥n ∶= 𝑡n in𝑢n𝑣n = 𝑐′n

is not preserved under 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n = ◽𝑤n because (let𝑥n ∶= 𝑡n in𝑢n𝑣n)𝑤n is not in the syntax:

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n= =

(◽𝑤n) (let𝑥n ∶= 𝑡n in𝑢n)𝑣n (◽𝑤n) let𝑥n ∶= 𝑡n in𝑢n𝑣n

= =
(let𝑥n ∶= 𝑡n in𝑢n)𝑣n𝑤n 𝜇 (let𝑥n ∶= 𝑡n in𝑢n𝑣n)𝑤n

This is due to a reduction
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n 𝜇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n)

only being valid when there is no potential interaction between defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n , because
if there is, the the syntax requires making it with ⋅ , i.e. writing 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) . In other
words, since 𝜇 erases ⋅ , it must ensure that there is no potential interaction at that ⋅ by
deferring the whole stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n .
This can also be understood as stemming from the fact that simple commands are not

stable under 𝜇: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n is a simple command and can hence be plugged in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n while remaining
within the syntax, while defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) is simple only if 𝑐n is, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) is therefore in
the syntax only if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n = ◽ or 𝑐n is simple.

I.6.3. The 𝜆→
n calculus

Explicit command boundaries

The pure untyped call-by-name 𝜆-calculus with focus 𝜆→n is defined in Figure I.6.4. It deals
with the aforementioned quirks of the strong reduction by explicitlymarking the top of com-
mands with a constructor comn, i.e. replacing

𝑐n ⩴ �̊�n by 𝑐n ⩴ comn(�̊�n),
and restricting by only allowing it to reduce objects that have comn above them. This pre-
vents the problematic 𝜇 reductions because there is no comn around 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n in comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n),
and it can therefore not be reduced on its own. Adding the comn yields an invalid term
comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n)), unless we also add a ⋅ , which yields comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n)) for which
the problematic is disallowed by the extra ⋅ (and comn).
The need for comn was to be expected. Indeed, the calculus 𝜆→n was built as an outside-out

representation of Li→n (defined in the next section), and commands ⟨𝑡n∣𝑒n⟩ of Li→n have both
an explicit marker | for the point of potential interaction between 𝑡n and 𝑒n; and an explicit
marker ⟨ ⋅ ⟩ for the top of the command. It therefore makes sense for commands comn(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑡n)
of 𝜆→n to have both an explicit marker ⋅ for the point of interaction between 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n and 𝑡n; and
an explicit marker comn for the top of the command.

57

I. Pure call-by-name calculi

Figure I.6.4: The pure call-by-name 𝜆-calculus with focus 𝜆→n

Figure I.6.4.a: Syntax
Expressions / values: Stacks / simple stacks:
𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣ctotn(𝑐n) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, �̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽

∣𝜆𝑥n.𝑐n ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝑡n
Commands: Incomplete simple commands:

𝑐n ⩴ comn(�̊�n) �̊�n ⩴ instkn(𝑡n)
∣comn(let𝑥n ∶= 𝑡n in 𝑐n) ∣ �̊�n𝑡n

Figure I.6.4.b: Notations
Evaluation contexts: Simple commands: Terms:
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n instkn(◽) 𝑐simplen ⩴ comn(�̊�n) 𝓉⩴ 𝑡n∣ �̊�n∣𝑐n
∣ let𝑥n ∶= ◽ in 𝑐n

Figure I.6.4.c: Deferred stacks

defer(�̊�n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n �̊�n
defer(let𝑥n ∶= 𝑡n in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

Figure I.6.4.d: Deferred stacks (in evaluation contexts)

defer(�̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n �̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛
defer(let𝑥n ∶= ◽ in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ let𝑥n ∶= ◽ in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

Figure I.6.4.e: Operational reduction

comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐n) 𝜇 defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)
comn(let𝑥n ∶= 𝑡n in 𝑐n) let 𝑐n[𝑡n∕𝑥n]

comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n.𝑐n)𝑡n) → defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

≝ 𝜇 ∪ let ∪ →

Figure I.6.4.f: Top-level 𝜂-expansion

𝑡n 𝜇 ctotn(𝑡n)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n let let𝑥n ∶= ◽ in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑥n if 𝑥n fresh w.r.t. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n
𝑡n → 𝜆𝑥n.𝑡n𝑥n if 𝑥n fresh w.r.t. 𝑡n

≝ 𝜇 ∪ let ∪ →

58

I. Pure call-by-name calculi

Coercions

In addition to explicit command boundaries comn, 𝜆→n has an explicit coercion ctotn from
command 𝑐n to expessions 𝑡n (hence the name 𝑐to𝑡) and an explicit marker instkn around
underlines ⋅ that will be placed within a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n. Both comn and instkn are often left im-
plicit because the former is only relevant when definining , and the latter is only relevant
when studying translations between 𝜆→n and Li

→
n . In particular, we will often denote simple

commands by �̊�n instead of comn(�̊�n). While ctotn could also often be left implicit, not distin-
guishing the command 𝑐n from the expression ctotn(𝑐n)may lead to some confusion, and we
therefore keep ctotn explicit for the sake of clarity.

Evaluation contexts

Evaluation contexts 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n form a superset of stacks that are not required to define 𝜆→n . Com-
mands are exactly terms of the shape comn(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑡n) (see), and evaluation contexts are there-
fore useful whenever this inside-out description of commands is, e.g. when studying at
translations between 𝜆→n and Li

→
n .

The difference between a stack and an evaluation context is that an a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n can be
deferred so that something else is computed first, while a non-stack evaluation context 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n
can not. For example, placing 𝑡n = let𝑥n ∶= 𝑣n in𝑥n under 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽𝑤n results in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n being
moved

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑡n = (let𝑥n ∶= 𝑣n in𝑥n)𝑤n 𝜇 let𝑥n ∶= 𝑣n in𝑥n𝑤n = let𝑥n ∶= 𝑣n in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑥n

while placing it inside 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n = let 𝑦n ∶= ◽ in 𝑐n results in this let-expressiong being evaluated
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑡n = let 𝑦n ∶= (let𝑥n ∶= 𝑣n in𝑥n) in 𝑐n let 𝑐n[let𝑥n ∶= 𝑣n in𝑥n∕𝑦n] = 𝑐n[𝑡n∕𝑦n]

Disubstitution

Disubstitutions of 𝜆→n are defined just like in 𝜆
→
n , with plugging replaced by defer:

Definition I.6.1

A disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) composed of a substitution 𝜎 and a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n.
The action of a disubstitution 𝜑 = (𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) on commands (resp. evaluations contexts)
is defined by

𝑐n[𝜑] ≝ defer(𝑐n[𝜎], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) (resp. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n ≝ defer(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n))
and its action on expressionsa is defined by

𝑡n[𝜑] ≝ 𝑡n[𝜎]
The composition 𝜑1[𝜑2] of two disubstitutions is defined by

(𝜎1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n)[𝜎2, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n] ≝ (𝜎1[𝜎2], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n[𝜎2])
aSee .

59

I. Pure call-by-name calculi

Fact I.6.2

The set of disubstitutions 𝜑n has a monoid structure
(𝜑n,⚪, (Id𝒱 ,◽)) where 𝜑2 ⚪ 𝜑1 ≝ 𝜑1[𝜑2]

and this monoid acts on commands, expressions, and evaluation contexts via
𝜑 ⚫ 𝓉 ≝ 𝓉[𝜑]

In particular, defer is associative: for any command 𝑐n and stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n , we have
defer(defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n) = defer(𝑐n, defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n))

Proof

Reductions

We write for the contextual closure of , for the contextual closure of , for ∪
and for ∪ (i.e. ∪ ∪ ∪). The 𝜂-expansion for functions is the usual one
with a conversion - from expressions to commands added, and the other 𝜂-expansions are
easier to understand in the Li→n where they look natural, and can safely be ignored for now.
The reductions have the properties announced in Figure ?? (see Section .2 for details).

60

I. Pure call-by-name calculi

I.7. Translations between 𝛌→
N and 𝜆→

n

61

I. Pure call-by-name calculi

I.8. A pure call-by-name intuitionistic L calculus: Li→n

In this section, we recall the intuitionistic call-by-name fragments of 𝜆𝜇𝜇 [CurHer00], which
we call Li→n .

I.8.1. From the M→
N abstract machine to the Li→n calculus

Decomposing the strong reduction

Just like in 𝜆→N, the strong reduction is unsatisfying in M→
N because it can not be decom-

posed like can, as shown in Figure I.8.1a. The naive Li→n calculus defined in Figure I.8.2
fixes this, as shown in Figure I.8.1b (where 𝐼n = 𝜆𝑦n.⟨𝑦n∣⋆n⟩), in the same way that 𝜆→n did:
by representing the body of 𝜆-abstraction by configurations / commands.

Pattern matching stacks

In the actual simple fragment of the Li→n calculus described in Figure I.8.3, the stack⋆n is
thought of as being a stack variable, and 𝜆-abstractions 𝜆𝑥n.𝑐n are denoted by 𝜇(𝑥n ∙⋆n).𝑐n to
emphasize that⋆n is bound in 𝜇(𝑥n ∙⋆n).𝑐n, and hence that the disubstitution⋆n ↦ 𝑠n acts
trivially on 𝜇(𝑥n ∙⋆n).𝑐n:

(𝜇(𝑥n ∙⋆n).𝑐n)[𝑠n∕⋆n] = 𝜇(𝑥n ∙⋆n).𝑐n
This allows for a more succinct description of the → reduction

⟨𝜇(𝑥n ∙⋆n).𝑐n∣𝑣n ∙ 𝑠n⟩ → 𝑐n[𝑣n∕𝑥n, 𝑠n∕⋆n]
which can be though of as pattern-maching the stack 𝑣n ∙ 𝑠n against the stack pattern 𝑥n ∙⋆n

and applying the unifier 𝑥n ↦ 𝑣n,⋆n ↦ 𝑠n to the command 𝑐n.

Stack variable names

Note that just like the same name 𝑥 can be used for several unrelated value variables 𝑥n

in the same expression, the name⋆ can be used for several unrelated stack variables. For
example,

𝐼n𝐼n = (𝜆𝑥n.𝑥n)(𝜆𝑥n.𝑥n)
stands for

(𝜆𝑥n
1.𝑥

n
1)(𝜆𝑥n

2.𝑥
n
2)

and similarly
⟨𝐼n∣𝐼n ∙⋆n⟩ = ⟨𝜇(𝑥n ∙⋆n).⟨𝑥n∣⋆n⟩∣(𝜇(𝑥n ∙⋆n).⟨𝑥n∣⋆n⟩) ∙⋆n⟩

stands for
⟨𝜇(𝑥n

1 ∙⋆1n).⟨𝑥n
1∣⋆1n⟩∣(𝜇(𝑥n

2 ∙⋆2n).⟨𝑥n
2∣⋆2n⟩) ∙⋆0n⟩

The difference is that we have infinitely many value variables available, and can therefore
always rename the bound ones to avoid such name clashes, but only one stack variable in
Li→n and can therefore not avoid such clashes. The stack variable ⋆n can alternatively be
thought of as being the 0 de Bruijn index for stack variables. The difference between the

[CurHer00] “The duality of computation”, Curien and Herbelin, 2000

62

I. Pure call-by-name calculi

Figure I.8.1: Example of strong reduction in subterms of abstract machines

Figure I.8.1.a: Example in M→
N

⟨(𝜆𝑥N.𝐼N𝑊N)𝑉N∣⋆N⟩ m ⟨𝜆𝑥N.𝐼N𝑊N∣𝑉N ∙⋆N⟩ → ⟨𝐼N𝑊N[𝑉N∕𝑥N]∣⋆N⟩

m
⟨𝐼N∣𝑊N[𝑉N∕𝑥N] ∙⋆N⟩

→

⟨(𝜆𝑥n.⟨𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝑊N[𝑉N∕𝑥N]∣⋆N⟩

Figure I.8.1.b: Example in naive Li→n

⟨(𝜆𝑥n.⟨𝐼n𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝐼n𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n𝑤n[𝑣n∕𝑥n]∣⋆⟩

m m m

⟨(𝜆𝑥n.⟨𝐼n∣𝑤n ∙⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝐼n∣𝑤n ∙⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n∣𝑤n[𝑣n∕𝑥n] ∙⋆n⟩

→ → →

⟨(𝜆𝑥n.⟨𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝑤n[𝑣n∕𝑥n]∣⋆n⟩

Figure I.8.1.c: Example in Li→n

⟨(𝜇(𝑥n ∙⋆n).⟨𝐼n𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ 𝜇 ⟨𝜇(𝑥n ∙⋆n).⟨𝐼n𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n𝑤n[𝑣n∕𝑥n]∣⋆⟩
𝜇 𝜇 𝜇

⟨(𝜇(𝑥n ∙⋆n).⟨𝐼n∣𝑤n ∙⋆n⟩)𝑣n∣⋆n⟩ 𝜇 ⟨𝜇(𝑥n ∙⋆n).⟨𝐼n∣𝑤n ∙⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n∣𝑤n[𝑣n∕𝑥n] ∙⋆n⟩

→ → →

⟨(𝜇(𝑥n ∙⋆n).⟨𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ 𝜇 ⟨𝜇(𝑥n ∙⋆n).⟨𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝑤n[𝑣n∕𝑥n]∣⋆n⟩

two interpretations is only relevant when looking at the inclusion of Li→n into L→
n , and will

be discussed in Section I.10.

Binding the stack variable

Since we think of⋆n as a variable, one can add a binder 𝜇⋆n.𝑐n for it, with the reduction
⟨𝜇⋆n.𝑐n∣𝑠n⟩ 𝜇 𝑐n[𝑠n∕⋆n]

and define 𝑡n𝑢n as a notation for 𝜇⋆n.⟨𝑡n∣𝑢n ∙⋆n⟩. Indeed, with this notation, the reduction
⟨𝑡n𝑢n∣𝑠n⟩ m ⟨𝑡n∣𝑢n ∙ 𝑠n⟩

63

I. Pure call-by-name calculi

Figure I.8.2: The simple fragment of the naive Li→n calculus

Figure I.8.2.a: Syntax (naive)

Terms / values: Stacks:
𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝑡n𝑢n 𝑠n ⩴⋆n

∣𝜆𝑥n.𝑐n ∣𝑡n ∙ 𝑠n
Commands:

𝑐n ⩴ ⟨𝑡n∣𝑠n⟩

Figure I.8.2.b: Operational reduction (naive)

⟨𝑡n𝑢n∣𝑠n⟩ m ⟨𝑡n∣𝑢n ∙ 𝑠n⟩
⟨𝜆𝑥n.⟨𝑡n∣ # ”𝑤𝑛 ∙⋆n⟩∣𝑣0n ∙ #”𝑣𝑛 ∙⋆n⟩ → ⟨𝑡n[𝑣0n∕𝑥n]∣ # ”𝑤𝑛[𝑣0n∕𝑥n] ∙ #”𝑣𝑛 ∙⋆n⟩

≝ m ∪ →

Figure I.8.3: The simple fragment of the Li→n calculus

Figure I.8.3.a: Syntax

Terms / values: Stacks:
𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝜇⋆n.𝑐n 𝑠n ⩴⋆n

∣𝜇(𝑥n ∙⋆n).𝑐n ∣𝑡n ∙ 𝑠n
Commands:

𝑐n ⩴ ⟨𝑡n∣𝑠n⟩

Figure I.8.3.b: Operational reduction

⟨𝜇⋆n.𝑐n∣𝑠n⟩ 𝜇 𝑐n[𝑠n∕⋆n]
⟨𝜇(𝑥n ∙⋆n).𝑐n∣𝑣n ∙ 𝑠n⟩ → 𝑐n[𝑣n∕𝑥n, 𝑠n∕⋆n]

≝ 𝜇 ∪ →

is a special case of 𝜇:
⟨𝑡n𝑢n∣𝑠n⟩ = ⟨𝜇⋆n.⟨𝑡n∣𝑢n ∙⋆n⟩∣𝑠n⟩ 𝜇 ⟨𝑡n∣𝑢n ∙ 𝑠n⟩

64

I. Pure call-by-name calculi

Remark I.8.1

For this particular calculus, removing 𝑡n𝑢n from the syntax and adding 𝜇⋆n.𝑐n does
not change the calculus much. However, in L calculi with more constructors, more
expressions can be expressed with 𝜇⋆n.𝑐n, so that the calculus with 𝜇⋆n.𝑐n ends up
being simpler. More precisely, without 𝜇⋆n.𝑐n, every stack constructor (e.g. 𝑢n ∙ 𝑠n)
needs to have an associated expression constructor (e.g. 𝑡n𝑢n), while with 𝜇⋆n.𝑐n, the
expression constructors can be defined as notation (e.g. 𝑡n𝑢n

ntn= 𝜇⋆n.⟨𝑡n∣𝑠n ∙⋆n⟩). The
gain is therefore linear in the number of stack constructors. Here, nothing is gained
because there is only one stack constructor, but for larger calculi such as those in
Chapter IV, the gain is non-negligible.

I.8.2. The Li→n calculus

Let-expressions and 𝜇

The full Li→n calculus, described in Figure I.8.4, is its simple fragment extended by com-
mands ⟨𝑡n∣𝜇𝑥n.𝑐n⟩ that represent let-expressions let𝑥n ∶= 𝑡n in 𝑐n (and 𝜇𝑥n.𝑐n that represents
let𝑥n ∶= ◽ in 𝑐n). Their reduction is exactly what one would expect:

⟨𝑡n∣𝜇𝑥n.𝑐n⟩ 𝜇 𝑐n[𝑡n∕𝑥n]
Note that commands could be defined without refering to evaluationg contexts 𝑒n:

𝑐n ⩴ ⟨𝑡n∣𝑠n⟩∣⟨𝑡n∣𝜇𝑥n.𝑐n⟩
Indeed, 𝜇𝑥n.𝑐n can only appear inside contexts of the shape ⟨𝑡n∣◽⟩. It is nevertheless useful to
have 𝜇𝑥n.𝑐n be a term on its own because it makes the calculus more symmetric and makes
expressing some definitions nicer (e.g. 𝜂-expansion).

Coercions

Disubstitutions

Disubstitutions have the properties announced in (see Section .1 for details).

Reductions

The reductions have the properties announced in Figure ?? (see Section .2 for details).

65

I. Pure call-by-name calculi

Figure I.8.4: The Li→n calculus

Figure I.8.4.a: Syntax

Terms / values: Stacks:
𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝜇⋆n.𝑐n 𝑠n ⩴⋆n

∣𝜇(𝑥n ∙⋆n).𝑐n ∣𝑡n ∙ 𝑠n
Commands: Evaluation contexts:

𝑐n ⩴ ⟨𝑡n∣𝑒n⟩ 𝑒n ⩴ stkn(𝑠n)∣𝜇𝑥n.𝑐n

Figure I.8.4.b: Notations

𝑡n𝑢n
ntn= 𝜇⋆n.⟨𝑡n∣𝑢n ∙⋆n⟩

Figure I.8.4.c: Operational reduction

⟨𝜇⋆n.𝑐n∣𝑠n⟩ 𝜇 𝑐n[𝑠n∕⋆n]
⟨𝑡n∣𝜇𝑥n.𝑐n⟩ 𝜇 𝑐n[𝑡n∕𝑥n]

⟨𝜇(𝑥n ∙⋆n).𝑐n∣𝑣n ∙ 𝑠n⟩ → 𝑐n[𝑣n∕𝑥n, 𝑠n∕⋆n]

≝ 𝜇 ∪ 𝜇 ∪ →

Figure I.8.4.d: 𝜂-expansion

𝑡n 𝜇 𝜇⋆n.⟨𝑡n∣⋆n⟩
𝑒n let 𝜇𝑥n.⟨𝑥n∣𝑒n⟩ if 𝑥n fresh w.r.t. 𝑒n
𝑡n → 𝜇(𝑥n ∙⋆n).⟨𝑡n∣𝑥n ∙⋆n⟩ if 𝑥n fresh w.r.t. 𝑡n

≝ 𝜇 ∪ 𝜇 ∪ →

66

I. Pure call-by-name calculi

I.9. Equivalence between 𝜆→
n and Li→n

67

I. Pure call-by-name calculi

I.10. A pure call-by-name classical L calculus: L→
n

68

I. Pure call-by-name calculi

I.11. Simply-typed L calculi

69

II. Pure call-by-value calculi

70

II. Pure call-by-value calculi

II.1. A pure call-by-value 𝜆-calculus: 𝛌→
V

71

II. Pure call-by-value calculi

II.2. A pure call-by-value 𝜆-calculus with focus: 𝜆→
v

72

II. Pure call-by-value calculi

II.3. A pure call-by-value intuitionistic L calculus: Li→v

73

II. Pure call-by-value calculi

II.4. A pure call-by-value classical L calculus: L→
v

74

Part B.

Untyped polarized calculi

75

Introduction

76

III. Pure polarized calculi

77

III. Pure polarized calculi

III.1. Relative expresiveness of call-by-name and
call-by-value

78

III. Pure polarized calculi

III.2. A pure polarized 𝜆-calculus: 𝛌→⇑⇓
P

79

III. Pure polarized calculi

III.3. A pure polarized 𝜆-calculus with focus: 𝜆→⇑⇓
p

80

III. Pure polarized calculi

III.4. A pure polarized intuitionistic L-calculus: Li→⇑⇓
p

81

III. Pure polarized calculi

III.5. A pure polarized classical L-calculus: L→⇑⇓
p

82

IV. Polarized calculi with pairs and sums

83

IV. Polarized calculi with pairs and sums

IV.1. A polarized 𝜆-calculus with pairs and sums: 𝛌→&⇑⊗⊕⇓
P

84

IV. Polarized calculi with pairs and sums

IV.2. CBPV as a subcalculus of 𝛌→&⇑⊗⊕⇓
P

Call-by-push-value (CBPV) [Lev01; Lev04; Lev06] is a well-known calculus that subsumes
both call-by-name and call-by-value (including in the presence of side effects). It does so by
decomposing Moggi’s computation monad [Mog89] as an adjunction. Typed models of LJ𝜂𝑝
(i.e. of Li→&⇑⊗⊕⇓

p) have been shown to generalize that of CBPV in [CurFioMun16]. In this
section, we explain how 𝛌→&⇑⊗⊕⇓

p can be though of as being CBPV “completed” by adding
positive expressions, and in Section IV.6, we will explain how the CBPV abstract machine
relates to Li→&⇑⊗⊕⇓

p .

IV.2.1. CBPV

Syntax

We recall the syntax of Call-by-Push-Value (CBPV) in Figure IV.2.1a1, with a few minor
differences: we only have binary sum and negative pairs (and not those of arbitrary finite
arity), we write (𝑉pv,𝑊pv)pv for a pair instead of ⟨𝑉,𝑊⟩, and we add pv subscripts and super-
scripts. In CBPV, return(𝑉pv) is sometimes called produce(𝑉pv), and application 𝑇pv𝑉pv and
(resp. projection 𝑇pv𝑖) are sometimes written in the reverse order 𝑉pv ‘𝑇pv (resp. 𝑖 ‘𝑇pv).

Operational semantics

We recall the big-step operational semantics of CBPV Figure IV.2.1d2, where𝑇pv ⇓ 𝑅pv stands
for “the computation 𝑇pv terminates and its result is 𝑅pv”. Results form a subset of the set of
computations, and their grammar is described in Figure IV.2.1c.

Complex values

Figure IV.2.1b3 extends CBPV with complex values such as pm𝑥pv as[(𝑦pv, 𝑧pv)pv .𝑦pv]. These
are usefulwhen looking at the semantics of CBPV, but not suitable for operational semantics
because “they detract from the rigid sequential nature of the language, because they can be
evaluated at any time” [Lev06]. Adding complex values has no effect on what computations
can be expressed (see Proposition 14 of [Lev06]), because CBPV with complex values can be
translated to CBPV without complex values (see Figure 13 of [Lev06]).

1This figure corresponds to figure 3.1 of [Lev01], figure 2.1 of [Lev04], figure 2 of [Lev06].
2This figure corresponds to Figure 4 of [Lev06].
3This figure corresponds to Figure 12 of [Lev06].
[Lev01] “Call-by-push-value”, Levy, 2001
[Lev04] Call-By-Push-Value: A Functional/Imperative Synthesis, Levy, 2004
[Lev06] “Call-by-push-value: Decomposing call-by-value and call-by-name”, Levy, 2006
[Mog89] “Computational Lambda-Calculus and Monads”, Moggi, 1989
[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

85

IV. Polarized calculi with pairs and sums

Figure IV.2.1: Call-by-Push-Value

Figure IV.2.1.a: Syntax

Values:
𝑉pv ⩴ 𝑥pv

∣(𝑉pv,𝑊pv)pv

∣(1, 𝑉pv)pv∣(2, 𝑉pv)pv
∣thunk(𝑇pv)

Expressions / computations:
𝑇pv, 𝑈pv ⩴ 𝑉pv∣ let𝑥pv be𝑉pv.𝑈pv

∣𝜆𝑥pv.𝑇pv∣𝑇pv𝑉pv

∣𝜆pv[1.𝑇pv ∣ 2.𝑈pv]∣𝑇pv1∣𝑇pv2
∣return(𝑉pv)∣𝑇pv to𝑥pv.𝑈pv

∣pm𝑉pv as[(𝑥pv, 𝑦pv)pv .𝑈pv]
∣pm𝑉pv as[(1, 𝑥pv

1)
pv .𝑈1

pv ∣ (2, 𝑥pv
2)

pv .𝑈2
pv]

∣force(𝑉pv)

Figure IV.2.1.b: Syntax with complex values

Complex values:
𝑉cv ,𝑊cv ⩴ 𝑥pv∣ let𝑥pv be𝑉cv .𝑊cv

∣(𝑉cv ,𝑊cv)
pv∣pm𝑉cv as[(𝑥pv, 𝑦pv)pv .𝑊cv]

∣(1, 𝑉cv)
pv∣(2, 𝑉cv)

pv∣pm𝑉cv as[(1, 𝑥pv
1)

pv .𝑊1
cv ∣ (2, 𝑥pv

2)
pv .𝑊2

cv]
∣thunk(𝑇cv)

Expressions / computations (with complex values):
𝑇cv , 𝑈cv ⩴ (Same production rules as 𝑇pv

with all occurrences of 𝑉pv replaced by 𝑉cv .
See Figure IV.2.2.)

86

IV. Polarized calculi with pairs and sums

Figure IV.2.1.c: Syntax of results

Results:
𝑅pv ⩴ return(𝑉pv)∣𝜆𝑥pv.𝑇pv∣𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv]

Figure IV.2.1.d: Big-step operational semantics

𝑇pv[𝑉pv∕𝑥pv] ⇓ 𝑅pv

let𝑥pv be𝑉pv.𝑇pv ⇓ 𝑅pv

𝜆𝑥pv.𝑇pv ⇓ 𝜆𝑥pv.𝑇pv

𝑇pv ⇓ 𝜆𝑥pv.𝑈pv 𝑈pv[𝑉pv∕𝑥pv] ⇓ 𝑅pv

𝑇pv𝑉pv ⇓ 𝑅pv

𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv] ⇓ 𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv]
𝑇pv ⇓ 𝜆pv[1.𝑈1

pv ∣ 2.𝑈2
pv] 𝑈𝑖

pv ⇓ 𝑅pv

𝑇pv𝑖 ⇓ 𝑅pv

return(𝑉pv) ⇓ return(𝑉pv)
𝑇pv ⇓ return(𝑉pv) 𝑈pv[𝑉pv∕𝑥pv] ⇓ 𝑅pv

𝑇pv to𝑥pv.𝑈pv ⇓ 𝑅pv

𝑇pv ⇓ 𝑅pv

force(thunk(𝑇pv)) ⇓ 𝑅pv

𝑇pv[𝑉pv∕𝑥pv,𝑊pv∕𝑦pv] ⇓ 𝑅pv

pm(𝑉pv,𝑊pv)pv as[(𝑥pv, 𝑦pv)pv .𝑇pv] ⇓ 𝑅pv

𝑇𝑖pv[𝑉pv∕𝑥pv
𝑖] ⇓ 𝑅pv

pm(𝑖, 𝑉pv)pv as[(1, 𝑥pv
1)

pv .𝑇1pv ∣ (2, 𝑥pv
2)

pv .𝑇2pv] ⇓ 𝑅pv

87

IV. Polarized calculi with pairs and sums

IV.2.2. Embedding CBPV into 𝛌→&⇑⊗⊕⇓
P

Embedding values and computations

88

IV.
Polarized

calculiw
ith

pairsand
sum

s

Figure IV.2.2: Syntax of 𝛌→&⇑⊗⊕⇓
P (left) and CBPV (right)

Positive values: Values:
𝑉+,𝑊+ ⩴ 𝑥+ 𝑉pv ⩴ 𝑥pv

∣(𝑉+⊗𝑊+) ∣(𝑉pv,𝑊pv)pv

∣ 𝜄1(𝑉+)∣ 𝜄2(𝑉+) ∣(1, 𝑉pv)pv∣(2, 𝑉pv)pv
∣box(𝑉−) ∣thunk(𝑇pv)

Negative values / expressions: Expressions / computations:
𝑉−,𝑊−, 𝑇−, 𝑈− ⩴ 𝑥− ∣ let𝑥+ ∶= 𝑇+ in𝑈−∣ let𝑥− ∶= 𝑇− in𝑈− 𝑇pv, 𝑈pv ⩴ 𝑉pv∣ let𝑥pv be𝑉pv.𝑈pv

∣𝜆𝑥+.𝑇−∣𝑇−𝑉+ ∣𝜆𝑥pv.𝑇pv∣𝑇pv𝑉pv

∣(𝑇−&𝑈−)∣𝜋1(𝑇−)∣𝜋2(𝑇−) ∣𝜆pv[1.𝑇pv ∣ 2.𝑈pv]∣𝑇pv1∣𝑇pv2
∣freeze(𝑇+) ∣return(𝑉pv)∣ 𝑇pv to𝑥pv.𝑈pv

∣match 𝑇+ with[(𝑥+⊗𝑦+).𝑈−] ∣pm𝑉pv as[(𝑥pv, 𝑦pv)pv .𝑈pv]
∣match 𝑇+ with[𝜄1(𝑥+

1).𝑈1
𝜀 | 𝜄2(𝑥+

2).𝑈2
−] ∣pm𝑉pv as[(1, 𝑥pv

1)
pv .𝑈1

pv ∣ (2, 𝑥pv
2)

pv .𝑈2
pv]

∣ match 𝑇+ with[box(𝑥−).𝑈−] ∣force(𝑉pv)
Positive expressions: Complex values:

𝑇+, 𝑈+ ⩴ 𝑉+ 𝑉cv ,𝑊cv ⩴ 𝑥pv∣(𝑉cv , 𝑊cv)pv∣(1, 𝑉cv)pv∣(2, 𝑉cv)pv∣thunk(𝑇pv)

∣ let𝑥+ ∶= 𝑇+ in 𝑈+ ∣ let𝑥− ∶= 𝑇− in𝑈+ ∣ let𝑥pv be𝑉cv .𝑊cv

∣ unfreeze(𝑇−) ∣

∣match 𝑇+ with[(𝑥+⊗𝑦+). 𝑈+] ∣pm𝑉cv as[(𝑥pv, 𝑦pv)pv .𝑊cv]
∣match 𝑇+ with[𝜄1(𝑥+

1). 𝑈1
+ | 𝜄2(𝑥+

2). 𝑈2
+] ∣pm𝑉cv as[(1, 𝑥pv

1)
pv .𝑊cv ∣ (2, 𝑥pv

2)
pv .𝑊cv]

∣ match 𝑇+ with[box(𝑥+).𝑈+]

89

IV. Polarized calculi with pairs and sums

The syntaxes of 𝛌→&⇑⊗⊕⇓
P and CBPV are shown side by side in Figure IV.2.2, with ex-

pressions and values that correspond to each other placed on the same line, and things
that are present in one calculus but not the other highlighted. Values 𝑉pv of CBPV cor-
respond to positive values 𝑉+ of 𝛌→&⇑⊗⊕⇓

P , and expressions 𝑇pv of CBPV correspond to neg-
ative expressions 𝑇− of 𝛌→&⇑⊗⊕⇓

P . For shifts (see Figure IV.2.3), thunk(𝑇pv) corresponds to
box(𝑇−), force(𝑉pv) to unbox(𝑉+), and return(𝑉pv) to freeze(val(𝑉+)) (i.e. the restriction of
the general freeze(𝑇+) to values). The “inverse” 𝑇pv to𝑥pv.𝑈pv of return(𝑉pv) corresponds to
let𝑥+ ∶= unfreeze(𝑇−) in𝑈−. The values types𝐴pv and computation type 𝐵pv of CBPV (which
are not described here) correspond to positive types 𝐴+ and negative types 𝐵− respectively,
with Fpv(𝐴pv) corresponding to ⇑𝐴+ and Upv(𝐵pv) to ⇓𝐵−

4. More precisely, the translation

⋅
P
∶CBPV → 𝛌→&⇑⊗⊕⇓

P
described in Figure IV.2.4 is an embedding:

Fact IV.2.1

The translation ⋅
P
∶CBPV → 𝛌→&⇑⊗⊕⇓

p is injective.

Proof

By induction on the syntax.

Fact IV.2.2

The translation ⋅
P
is substitutive: for any computation 𝑇pv (resp. value 𝑉pv), variable

𝑥pv, and value𝑊pv, we have
𝑇pv[𝑊pv∕𝑥pv]

P
= 𝑇pv

P[𝑊pv
P∕𝑥

+] (resp. 𝑉pv[𝑊pv∕𝑥pv]
P
= 𝑉pv

P[𝑊pv
P∕𝑥

+])

Proof

By induction on the syntax of 𝑇pv (resp. 𝑉pv).

Differences between CBPV and 𝛌→&⇑⊗⊕⇓
P

With these correspondances in mind, there are two main differences between CBPV and
𝛌→&⇑⊗⊕⇓
P :

• There are no negative variables 𝑥− in CBPV, and hence no let𝑥− ∶= 𝑉− in𝑈𝜀. The
only other use of negative variables in 𝛌→&⇑⊗⊕⇓

P , namelymatch 𝑇+ with[box(𝑥−).𝑈−], is
4For this correspondance, one can remember that Upv unfortunately does not corresponds to the Upshift ⇑, or
notice that both ⊃ and⇒ are common symbols for implication, and that applying the same rotation to both
of them yields Upv and ⇓.

90

IV. Polarized calculi with pairs and sums

Figure IV.2.3: Shifts in 𝛌→&⇑⊗⊕⇓
P (left) and CBPV (right)

𝐕+ 𝐕− 𝐓−

𝐓+

⊆

box =

freeze

𝐕pv 𝐓pv
return

thunk

Figure IV.2.4: Embedding ⋅
P
of CBPV into 𝛌→&⇑⊗⊕⇓

P

Values:
⋅
P
∶ 𝐕pv → 𝐕+

𝑥pv
P
≝ 𝑥+

(𝑉pv,𝑊pv)pv
P
≝ (𝑉pv

P
⊗𝑊pv

P)
(𝑖, 𝑉pv)pv

P
≝ 𝜄𝑖(𝑉pv

P)
thunk(𝑇pv)

P
≝ box(𝑇pv

P)
Expressions:

⋅
P
∶ 𝐓pv → 𝐓−

pm𝑉pv as[(𝑥pv, 𝑦pv)pv .𝑇pv]
P
≝ match 𝑉pv

P
with[(𝑥+⊗𝑦+).𝑇pv

P]
pm𝑉pv as[(1, 𝑥pv

1)
pv .𝑇1pv ∣ (2, 𝑥pv

2)
pv .𝑇2pv]

P
≝ match 𝑉pv

P
with[𝜄1(𝑥+

1).𝑉pv
P
| 𝜄2(𝑥+

2).𝑇2pv
P]

force(𝑉pv)
P
≝ unbox(𝑉pv

P)
let𝑥pv be𝑉pv.𝑇pv

P
≝ let𝑥+ ∶= 𝑉pv

P
in𝑇pv

P

𝜆𝑥pv.𝑇pv
P
≝ 𝜆𝑥+.𝑇pv

P

𝑇pv𝑉pv
P
≝ 𝑇pv

P
𝑉pv

P

𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv]
P
≝ (𝑇1pvP&𝑇2pvP)

𝑇pv𝑖
P
≝ 𝜋𝑖(𝑇pv

P)
return(𝑉pv)

P
≝ freeze(𝑉pv

P)
𝑇pv to𝑥pv.𝑈pv

P
≝ let𝑥+ ∶= unfreeze(𝑇pv

P) in𝑈pv
P

91

IV. Polarized calculi with pairs and sums

restricted to the cases where 𝑇+ is a value 𝑇+ = 𝑉+ and𝑈− = 𝑥−, i.e. to unbox(𝑉+), and
is denoted by force(𝑉pv).

• There are no non-value positive expressions 𝑇+ in CBPV (without complex values),
which corresponds to replacing 𝑇+ by 𝑉+ everywhere in the syntax of 𝛌→&⇑⊗⊕⇓

P . Since
unfreeze(𝑇−) is a positive expression, it is no longer expressible, and is therefore re-
placed by 𝑇pv to𝑥pv.𝑈pv which corresponds to its composition with a let-expression
let𝑥+ ∶= unfreeze(𝑇+) in𝑈−.

Complex values and positive expressions

Complex values 𝑉cv are very similar to positive expressions 𝑇+, but neither of the set of com-
plex values nor the set of positive expressions is contained in the other:

• unfreeze(𝑇−) corresponds to no complex value; and

• (((𝜆𝑥pv.return(𝑥pv))𝑉pv),𝑊pv)pv is a complex value, while (((𝜆𝑥+.freeze(𝑥+))𝑉+)⊗𝑊+) is
not a positive term (because (𝜆𝑥+.freeze(𝑥+))𝑉+ is not a value).

Complex values can nevertheless be represented by positive terms via let-expansions, e.g.
(((𝜆𝑥pv.return(𝑥pv))𝑉pv),𝑊pv)pv corresponds to let 𝑦+ ∶= (𝜆𝑥+.freeze(𝑥+))𝑉+ in(𝑦+⊗𝑊+)
More generally, if 𝑉cv corresponds to 𝑇+, and𝑊cv to 𝑈+, then the complex value

(𝑉cv ,𝑊cv)
pv corresponds to let𝑥+ ∶= 𝑇+ in let 𝑦+ ∶= 𝑈+ in(𝑥+⊗𝑦+)

Expanding CBPV with positive terms (i.e. to 𝛌→&⇑⊗⊕⇓
p) has the same advantages as extend-

ing it with complex values (i.e. it makes it better suited for semantic endeavors), but avoids
the complications of the operational semantics induced by complex values: the choice of
when to evaluate complex values is pushed to the “user” through the need for let-expression
to express some complex values. Of course, in an actual programming language, we would
want to be able to write (𝑇+⊗𝑈+), but this could be a notation for let𝑥+ ∶= 𝑇+ in let 𝑦+ ∶=
𝑈+ in(𝑥+⊗𝑦+), and can therefore be ignored for theoretical purposes.

Preservation of operational semantics

In 𝛌→&⇑⊗⊕⇓
p , we have a small-step operational semantics , which induces a big-step opera-

tional semantics given by
𝑇𝜀 ⇓ 𝑇′𝜀 ≝ 𝑇𝜀

∗ 𝑇′𝜀
Through the translation ⋅

P
, the big-step operational semantics of CBPV corresponds exactly

to the one of 𝛌→&⇑⊗⊕⇓
p :

Proposition IV.2.3

For any closed expression 𝑇pv, 𝑇pv ⇓ 𝑅pv if and only if 𝑇pv
P
⇓ 𝑅pv

P
.

92

IV. Polarized calculi with pairs and sums

Proof

• ⇒ Wehave𝑇pv
P

∗ 𝑅pv
P
by induction on the derivation of𝑇pv ⇓ 𝑅pv andFact IV.2.2,

and 𝑅pv
P

by case analysis on the syntax of 𝑅pv.

• ⇐ By induction on the length of the reduction 𝑇pv
P

∗ 𝑅pv
P
.

93

IV. Polarized calculi with pairs and sums

IV.3. A polarized 𝜆-calculus with focus: 𝜆→&⇑⊗⊕⇓
p

94

IV. Polarized calculi with pairs and sums

IV.4. A polarized intuitionistic L calculus: Li→&⇑⊗⊕⇓
p

95

IV. Polarized calculi with pairs and sums

IV.5. A polarized classical L calculus: L→&⇑⊗⊕⇓
p

96

IV. Polarized calculi with pairs and sums

IV.6. The CBPV abstract machine as a subcalculus of
𝜆→&⇑⊗⊕⇓
p

97

V. Polarized calculi with arbitrary
constructors

V.1. A (classical) polarized L-calculus: L
#”𝜏
p . 99

V.2. Intuitionistic and minimalistic polarized L-calculi: Li
#”𝜏
p and Lm

#”𝜏
p 121

V.3. A polarized 𝜆-calculus with focus equivalent to Lm
#”𝜏
p: 𝜆

#”𝜏
p 142

V.4. Equivalence between 𝜆
#”𝜏
p and Lm

#”𝜏
p . 158

V.5. A polarized 𝜆-calculus: 𝛌
#”𝜏
P . 164

98

V. Polarized calculi with arbitrary constructors

V.1. A (classical) polarized L-calculus: L
#”𝜏
p

V.1.1. Syntax

Type formers

Everything starts with a (finite) set of positive type formers 𝜏1+,… , 𝜏𝑛+ and negative type for-
mers 𝜏1−,… , 𝜏𝑚− that generate positive types 𝐴+ and negative types 𝐴− as described in Fig-
ure V.1.1a. With the usual type formers, this yields Figure V.1.1e. For binary type formers
(e.g. →), we often use the infix notation (e.g. we write𝐴+→𝐵− for→(𝐴+, 𝐵−)). Even though
the notation 𝜏𝑗𝜀 (#”𝐴) may suggested it, the type formers 𝜏𝑗𝜀 do not take arbitrary sequence #”𝐴
of arguments: the arity of each 𝜏𝑗𝜀 is fixed (e.g. →(𝐴−) would be invalid), and the polarity of
each argument is also fixed (e.g. →(𝐴+, 𝐵+) would also be invalid). A more precise notation
would be

𝜏𝑗𝜀 (𝐴1
pol(𝜏𝑗𝜀 ,1),… , 𝐴

ar(𝜏𝑗𝜀)
pol(𝜏𝑗𝜀 ,ar(𝜏𝑗𝜀)))

where ar(𝜏𝑗𝜀) is the arity of 𝜏𝑗𝜀 , and pol(𝜏𝑗𝜀 , 𝑘) is the polarity of the 𝑘th argument of 𝜏𝑗𝜀 . In other
words, when we write 𝜏𝑗𝜀 (#”𝐴), the length and shape of #”𝐴 depends on 𝜏𝑗𝜀 , but we do not make
this dependence explicit in the notations.

Value and stack constructors

We denote by 𝑎 and call argument any value 𝑣 or stack 𝑠, and write #”𝑎 for an arbitrary list
𝑎1,… , 𝑎𝑞 of arguments. We denote by 𝜒1 and call variable any value variable 𝑥𝜀 or stack
variable 𝛼𝜀, and write #”𝜒 for an arbitrary list 𝜒1,… , 𝜒𝑞 of variables.
As depicted in Figure V.1.2, each positive type former 𝜏𝑗+ (resp. negative type former 𝜏

𝑗
−)

has 𝑙+𝑗 ∈ ℕ (positive) value constructors v𝜏
𝑗
+
1 ,… , v

𝜏𝑗+
𝑙+𝑗
(resp. 𝑙−𝑗 ∈ ℕ (negative) stack construc-

tors ‘𝜏
𝑗
−
1 ,… , ‘

𝜏𝑗−
𝑙−𝑗
), which can be applied to suitable arguments to form positive values v𝜏

𝑗
+
𝑘 (

#”𝑎)

(resp. negative stacks ‘𝜏
𝑗
−
𝑘 (

#”𝑎))2, and a positive stack (resp. negative value)

𝜇[v𝜏𝑗+1 (# ”𝜒1). 𝑐1
⋮

v
𝜏𝑗+
𝑙+𝑗 (

”𝜒𝑙+𝑗). 𝑐𝑙+𝑗] (resp. 𝜇< ‘𝜏𝑗−1 (# ”𝜒1). 𝑐1
⋮

‘
𝜏𝑗−
𝑙−𝑗 (

”𝜒𝑙−𝑗). 𝑐𝑙−𝑗 >)
that matches over all values (resp. stacks) formed using these constructors. This stack (resp.
value) is often denoted by

𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v
𝜏𝑗+
𝑙+𝑗 (

”𝜒𝑙+𝑗).𝑐𝑙+𝑗] (resp. 𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏
𝑗
−
𝑙−𝑗 (

”𝜒𝑙−𝑗).𝑐𝑙−𝑗 >)
When 𝑙+𝑗 = 1 (resp. 𝑙−𝑗 = 1), we sometimes write these without the [⋅] (resp. <⋅>), e.g.
1Mnemonic: the symbol for variables 𝜒 looks like the symbol for value variables 𝑥 and is from the Greek
alphabet just like the symbol for stack variables 𝛼 .

2Note that even though we write v𝜏
𝑗
+
𝑘 (

#”𝑎) (resp. ‘𝜏
𝑗
+
𝑘 (

#”𝑎)), the length and shape of #”𝑎 depend on 𝜏𝑗+ and v
𝜏𝑗+
𝑘 (resp.

𝜏𝑗− and ‘𝜏
𝑗
−
𝑘), just like we wrote write 𝜏

𝑗
𝜀 (#”𝐴) even though the length and shape of #”𝐴 could depend on 𝜏𝑗𝜀 .

99

V. Polarized calculi with arbitrary constructors

Figure V.1.1: Types generated by a set of type formers #”𝜏

Figure V.1.1.a: Types generated by #”𝜏 = 𝜏1+… 𝜏𝑛+𝜏1−… 𝜏𝑚−

Positive types: Negative types:
𝐴+, 𝐵+ ⩴ 𝜏1+(

#”𝐴) 𝐴−, 𝐵− ⩴ 𝜏1−(#”𝐴)
∣⋮ ∣⋮
∣𝜏𝑛+(

#”𝐴) ∣𝜏𝑚− (#”𝐴)

Figure V.1.1.b: Types generated by #”𝜏 =→−

Positive types: Negative types:
𝐴+, 𝐵+ ⩴ (none) 𝐴−, 𝐵− ⩴ 𝐴− →− 𝐵−

Figure V.1.1.c: Types generated by #”𝜏 =→+⇓

Positive types: Negative types:
𝐴+, 𝐵+ ⩴ ⇓𝐴− 𝐴−, 𝐵− ⩴ 𝐴+ →+ 𝐵+

Figure V.1.1.d: Types generated by #”𝜏 =→⇓⇑

Positive types: Negative types:
𝐴+, 𝐵+ ⩴ 𝐴−, 𝐵− ⩴ 𝐴+ → 𝐵−

∣⇓𝐴− ∣⇑𝐴+

Figure V.1.1.e: Types generated by #”𝜏 =→⇓⇑¬−¬+⊗`⊕&1⊥0⊤
Positive types: Negative types:
𝐴+, 𝐵+ ⩴ 𝐴−, 𝐵− ⩴ 𝐴+ → 𝐵−

∣⇓𝐴− ∣⇑𝐴+

∣¬+(𝐴−) ∣¬−(𝐴+)
∣𝐴+ ⊗ 𝐵+ ∣𝐴− ` 𝐵−

∣𝐴+ ⊕ 𝐵+ ∣𝐴− & 𝐵−

∣1 ∣⊥
∣0 ∣⊤

100

V. Polarized calculi with arbitrary constructors

Figure V.1.2: Examples of value and stack constructors

Figure V.1.2.a: Examples of value constructors and value pattern-matchings

Positive type former Value constructors Value pattern match
⇓ v

⇓
1(𝑣−) = {𝑣−} 𝜇{𝑥−}.𝑐

¬+ v
¬+
1 (𝑠−) = ¬+(𝑠−) 𝜇¬+(𝛼−).𝛼𝑐

⊗ v
⊗
1 (𝑣+, 𝑤+) = (𝑣+⊗𝑤+) 𝜇(𝑥+⊗𝑦+).𝑐

⊕ v
⊕
1 (𝑣+) = 𝜄1(𝑣+) 𝜇[𝜄1(𝑥+

1). 𝑐1
𝜄2(𝑥+

2). 𝑐2]v
⊕
2 (𝑣+) = 𝜄2(𝑣+) 𝜇[𝜄1(𝑥+

1). 𝑐1
𝜄2(𝑥+

2). 𝑐2]
1 v11() = () 𝜇().𝑐
0 (none) 𝜇[]

Figure V.1.2.b: Examples of stack constructors and stack pattern-matchings

Negative type former Stack constructors Stack pattern match
→ ‘

→
1 (𝑣+, 𝑠−) = 𝑣+ ∙ 𝑠− 𝜇(𝑥+ ∙ 𝛼−).𝑐

→− ‘
→−
1 (𝑣−, 𝑠−) = 𝑣− −∙ 𝑠− 𝜇(𝑥− −∙ 𝛼−).𝑐

→+ ‘
→+
1 (𝑣+, 𝑠+) = 𝑣+ +∙ 𝑠+ 𝜇(𝑥+ +∙ 𝛼+).𝑐

⇑ ‘
⇑
1(𝑠+) = {𝑠+} 𝜇{𝑥+}.𝑐

¬− ‘
¬−
1 (𝑣+) = ¬−(𝑣+) 𝜇¬−(𝑥+).𝑥𝑐

` ‘1̀ (𝑠1−, 𝑠2−) = (𝑠1−`𝑠2−) 𝜇(𝛼−`𝛽−).𝑐
& ‘&1(𝑠−) = 𝜋1 ∙ 𝑠− 𝜇<(𝜋1 ∙ 𝛼−

1). 𝑐1
(𝜋2 ∙ 𝛼−

2). 𝑐2>‘&2(𝑠−) = 𝜋2 ∙ 𝑠− 𝜇<(𝜋1 ∙ 𝛼−
1). 𝑐1

(𝜋2 ∙ 𝛼−
2). 𝑐2>

⊥ ‘⊥1() = (̃) 𝜇(̃).𝑐
⊤ (none) 𝜇<>

101

V. Polarized calculi with arbitrary constructors

writing
𝜇{𝑥+}.𝑐 for 𝜇[{𝑥+}.𝑐] (resp. 𝜇{𝛼−}.𝑐 for 𝜇<{𝛼−}.𝑐>)

To simplify notations, we sometimes assume that constructors take value arguments be-
fore stack arguments:

Definition V.1.1

A constructor v𝜏
𝑗
+
𝑘 (resp. ‘𝜏

𝑗
−
𝑘) is said to be vs-sorted when its value arguments are on

the left of its stack arguments, i.e. when

v
𝜏𝑗+
𝑘 (

#”𝑎) = v𝜏
𝑗
+
𝑘 (

#”𝑣 , #”𝑠) (resp. ‘𝜏𝑗−𝑘 (#”𝑎) = ‘𝜏
𝑗
−
𝑘 (

#”𝑣 , #”𝑠))

Replacing a constructor v𝜏
𝑗
+
𝑘 (resp. ‘𝜏

𝑗
−
𝑘) by another one that takes its arguments in another

order changes nothing for our purposes, and we therefore assume that all constructors are
vs-sorted when convenient.

Syntax

The syntax of L
#”𝜏
p is given inFigureV.1.3a, and the result of instanciating itwith #”𝜏 =→⇓⇑¬−¬+⊗`⊕&1⊥0⊤

is given in Figure V.1.4a. The polarities 𝜀 on commands ⟨⋅∣⋅⟩𝜀, and + and − on the coer-
cions val+ and stk− are there to ensure that the induced grammar of fragments (see) is
non-ambiguous, but are superfluous in the grammar of terms (i.e. removing them does not
make the grammar of terms ambiguous). The coercions val+ and stk= are often left implicit3.

V.1.2. Reductions

Definitions

The operational reduction (which is also the top-level 𝛽-reduction in L
#”𝜏
p) is defined de-

fined in Figure V.1.3c, and the top-level 𝜂-expansion is defined in Figure V.1.3d. The result
of instanticating these with #”𝜏 = →⇓⇑¬−¬+⊗`⊕&1⊥0⊤ is described in Figure V.2.3b and
Figure V.2.3c respectively. The strong reduction is defined as the contextual closure𝓚
of the operational reduction , and the 𝜂-expansion as the contextual closure𝓚 of the
top-level 𝜂-expansion . The reduction ¬o is defined as the closure (𝓚 ⧵ {◽}) of the oper-
ational reduction under non-trivial contexts. Alternative definitions of these closures via
inferrence rules can be found in .

3We only use these coercions when defining the 𝜂-expansions 𝜇 and 𝜇 (see Remark V.1.2), and for everything
else, we leave these coercions implicit.

102

V. Polarized calculi with arbitrary constructors

Figure V.1.3: The L
#”𝜏
p calculus

Figure V.1.3.a: Syntax

Positive values: Positive stacks / evaluation contexts:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+, 𝑒+ ⩴ 𝛼+∣𝜇𝑥+.𝑐

∣v𝜏
1
+
1 (

#”𝑎)∣ … ∣v𝜏
1
+
𝑙+1
(#”𝑎) ∣𝜇[v𝜏1+1 (# ”𝜒1).𝑐1∣…∣v

𝜏1+
𝑙+1 (

”𝜒𝑙+1).𝑐𝑙+1]
∣⋮ ∣⋱∣⋮ ∣⋮

∣v𝜏
𝑛
+
1 (

#”𝑎)∣ … ∣v𝜏
𝑛
+
𝑙+𝑛
(#”𝑎) ∣𝜇[v𝜏𝑛+1 (# ”𝜒1).𝑐1∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝜒𝑙+𝑛).𝑐𝑙+𝑛]
Positive expressions:

𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇𝛼+.𝑐
Negative values / expressions: Negative stacks:
𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣𝜇𝛼−.𝑐 𝑠− ⩴ 𝛼−

∣𝜇<‘𝜏1−1 (# ”𝜒1).𝑐1∣…∣‘𝜏
1
−
𝑙−1 (

”𝜒𝑙−1).𝑐𝑙−1 > ∣‘𝜏
1
−
1 (

#”𝑎)∣ … ∣‘𝜏
1
−
𝑙−1
(#”𝑎)

∣⋮ ∣⋮ ∣⋱∣⋮
∣𝜇<‘𝜏𝑚−1 (# ”𝜒1).𝑐1∣…∣‘𝜏

𝑚
−
𝑙−𝑚(

”𝜒𝑙−𝑚).𝑐𝑙−𝑚> ∣‘𝜏
𝑚
−
1 (

#”𝑎)∣ … ∣‘𝜏
𝑚
−
𝑙−𝑚
(#”𝑎)

Negative evaluation contexts:
𝑒− ⩴ stk−(𝑠−)∣𝜇𝑥−.𝑐

Commands:
𝑐 ⩴ ⟨𝑡+∣𝑒+⟩+∣⟨𝑡−∣𝑒−⟩−

Figure V.1.3.b: Notations

Polarities: Arguments: Variables: Term:
𝜀 ⩴ +∣ − 𝑎 ⩴ 𝑣𝜀∣𝑠𝜀 𝜒 ⩴ 𝑥𝜀∣𝛼𝜀 𝓉⩴ 𝑡𝜀∣𝑣𝜀∣𝑒𝜀∣𝑠𝜀∣𝑐

103

V. Polarized calculi with arbitrary constructors

Figure V.1.3.c: Operational reduction

⟨𝜇𝛼𝜀.𝑐∣𝑠𝜀⟩𝜀 𝜇 𝑐[𝑠𝜀∕𝛼𝜀]
⟨𝑣𝜀∣𝜇𝑥𝜀.𝑐⟩𝜀 𝜇 𝑐[𝑣𝜀∕𝑥𝜀]

⟨𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏
𝑗
−
𝑙 (

#”𝜒𝑙).𝑐𝑙>∣‘𝜏𝑗−𝑘 (#”𝑎)⟩− 𝜏𝑗−
𝑐𝑘[#”𝑎 ∕ # ”𝜒𝑘]

⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v
𝜏𝑗+
𝑙 (

#”𝜒𝑙).𝑐𝑙]⟩+ 𝜏𝑗+
𝑐𝑘[#”𝑎 ∕ # ”𝜒𝑘]

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (
⋃

𝑗 𝜏𝑗+)

Figure V.1.3.d: Top-level 𝜂-expansion

𝑡𝜀 𝜇 𝜇𝛼𝜀.⟨𝑡𝜀∣𝛼𝜀⟩𝜀 if 𝛼𝜀 fresh w.r.t. 𝑡𝜀
𝑒𝜀 𝜇 𝜇𝑥𝜀.⟨𝑥𝜀∣𝑒𝜀⟩

𝜀 if 𝑥𝜀 fresh w.r.t. 𝑒𝜀

𝑣− 𝜏𝑗−
𝜇<‘𝜏𝑗−1 (# ”𝜒1). ⟨𝑣−∣‘𝜏𝑗−1 (# ”𝜒1)⟩−

⋮
‘
𝜏𝑗−
𝑙 (

#”𝜒𝑙). ⟨𝑣−∣‘𝜏𝑗−𝑙 (#”𝜒𝑙)⟩−> if # ”𝜒1,… , #”𝜒𝑙 fresh w.r.t. 𝑣−

𝑠+ 𝜏𝑗+
𝜇[v𝜏𝑗+1 (# ”𝜒1). ⟨v𝜏𝑗+1 (# ”𝜒1)∣𝑠+⟩

+

⋮

v
𝜏𝑗+
𝑙 (

#”𝜒𝑙). ⟨v𝜏𝑗+𝑙 (#”𝜒𝑙)∣𝑠+⟩+] if # ”𝜒1,… , #”𝜒𝑙 fresh w.r.t. 𝑠+

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (
⋃

𝑗 𝜏𝑗+)

104

V. Polarized calculi with arbitrary constructors

Figure V.1.4: The L→⇓⇑¬−¬+⊗`⊕&1⊥0⊤
p calculus

Figure V.1.4.a: Syntax

Positive values: Positive stacks / evaluation contexts:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+, 𝑒+ ⩴ 𝛼+∣𝜇𝑥+.𝑐

∣(𝑣+⊗𝑤+) ∣𝜇(𝑥+⊗𝑦+).𝑐
∣ 𝜄1(𝑣+)∣ 𝜄2(𝑣+) ∣𝜇[𝜄1(𝑥+

1).𝑐1∣𝜄2(𝑥+
2).𝑐2]

∣{𝑣−} ∣𝜇{𝑥−}.𝑐
∣¬+(𝑠−) ∣𝜇¬+(𝛼−).𝛼𝑐
∣() ∣𝜇().𝑐

∣𝜇[]
Positive expressions:

𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇𝛼+.𝑐
Negative values / expressions: Negative stacks:
𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣𝜇𝛼−.𝑐 𝑠− ⩴ 𝛼−

∣𝜇(𝑥+ ∙ 𝛼−).𝑐 ∣𝑣+ ∙ 𝑠−
∣𝜇(𝛼−`𝛽−).𝑐 ∣(𝑠1−`𝑠2−)
∣𝜇<(𝜋1 ∙ 𝛼−

1).𝑐1∣(𝜋2 ∙ 𝛼−
2).𝑐2> ∣𝜋1 ∙ 𝑠−∣𝜋2 ∙ 𝑠−

∣𝜇{𝛼+}.𝑐 ∣{𝑠+}
∣𝜇¬−(𝑥+).𝑥𝑐 ∣¬−(𝑣+)
∣𝜇(̃).𝑐 ∣(̃)
∣𝜇<>

Negative evaluation contexts:
𝑒− ⩴ stk−(𝑠−)∣𝜇𝑥−.𝑐

Commands:
𝑐 ⩴ ⟨𝑡+∣𝑒+⟩+∣⟨𝑡−∣𝑒−⟩−

105

V. Polarized calculi with arbitrary constructors

Figure V.1.4.b: Operational reduction

⟨𝜇𝛼𝜀.𝑐∣𝑠𝜀⟩𝜀 𝜇 𝑐[𝑠𝜀∕𝛼𝜀]
⟨𝑣𝜀∣𝜇𝑥𝜀.𝑐⟩𝜀 𝜇 𝑐[𝑣𝜀∕𝑥𝜀]

⟨𝜇(𝑥+ ∙ 𝛼−).𝑐∣𝑣+ ∙ 𝑠−⟩− → 𝑐[𝑣+∕𝑥+, 𝑠−∕𝛼−]
⟨𝜇{𝛼+}.𝑐∣{𝑠+}⟩− ⇑ 𝑐[𝑠+∕𝛼+]

⟨𝜇¬−(𝑥+).𝑥𝑐∣¬−(𝑣+)⟩− ¬− 𝑐[𝑣+∕𝑥+]
⟨𝜇(𝛼−`𝛽−).𝑐∣(𝑠1−`𝑠2−)⟩

−
` 𝑐[𝑠1−∕𝛼−, 𝑠2−∕𝛽−]

⟨𝜇<(𝜋1 ∙ 𝛼−
1).𝑐1∣(𝜋2 ∙ 𝛼−

2).𝑐2>∣𝜋𝑖 ∙ 𝑠−⟩− & 𝑐𝑖[𝑠−∕𝛼−
𝑖]

⟨𝜇(̃).𝑐∣(̃)⟩− ⊥ 𝑐
(⊤ is trivial)

⟨{𝑣−}∣𝜇{𝑥−}.𝑐⟩+ ⇓ 𝑐[𝑣−∕𝑥−]
⟨¬+(𝑠−)∣𝜇¬+(𝛼−).𝛼𝑐⟩+ ¬+ 𝑐[𝑠−∕𝛼−]

⟨(𝑣+⊗𝑤+)∣𝜇(𝑥+⊗𝑦+).𝑐⟩+ ⊗ 𝑐[𝑣+∕𝑥+, 𝑤+∕𝑦+]
⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+

1).𝑐1∣𝜄2(𝑥+
2).𝑐2]⟩

+
⊕ 𝑐𝑖[𝑣+∕𝑥+

𝑖]
⟨()∣𝜇().𝑐⟩+ 1 𝑐

(0 is trivial)

≝ 𝜇 ∪ 𝜇 ∪ → ∪ ` ∪ & ∪ ⇑ ∪ ¬− ∪ ⊥ ∪ ⊗ ∪ ⊕ ∪ ⇓ ∪ ¬+ ∪ 1

106

V. Polarized calculi with arbitrary constructors

Figure V.1.4.c: Top-level 𝜂-expansion

𝑡𝜀 𝜇 𝜇𝛼𝜀.⟨𝑡𝜀∣𝛼𝜀⟩𝜀 if 𝛼𝜀 fresh w.r.t. 𝑡𝜀
𝑒𝜀 𝜇 𝜇𝑥𝜀.⟨𝑥𝜀∣𝑒𝜀⟩

𝜀 if 𝑥𝜀 fresh w.r.t. 𝑒𝜀
𝑣− → 𝜇(𝑥+ ∙ 𝛼−).⟨𝑣−∣𝑥+ ∙ 𝛼−⟩− if 𝑥+ and 𝛼− fresh w.r.t. 𝑣−
𝑣− ⇑ 𝜇{𝛼+}.⟨𝑣−∣{𝛼+}⟩− if 𝛼+ fresh w.r.t. 𝑣−
𝑣− ¬− 𝜇¬−(𝑥+).𝑥⟨𝑣−∣¬−(𝑥+)⟩− if 𝑥+ fresh w.r.t. 𝑣−
𝑣− ` 𝜇(𝛼−`𝛽−).⟨𝑣−∣(𝛼−`𝛽−)⟩− if 𝛼− and 𝛽− fresh w.r.t. 𝑣−
𝑣− & 𝜇<(𝜋1 ∙ 𝛼−

1).⟨𝑣−∣𝛼−
1 ⟩

−∣(𝜋2 ∙ 𝛼−
2).⟨𝑣−∣𝛼−

2 ⟩
−> if 𝛼−

1 and 𝛼
−
2 fresh w.r.t. 𝑣−

𝑣− ⊥ 𝜇(̃).⟨𝑣−∣(̃)⟩−
𝑣− ⊤ 𝜇<>
𝑠+ ⇓ 𝜇{𝑥−}.⟨{𝑥−}∣𝑠+⟩+ if 𝑥− fresh w.r.t. 𝑠+
𝑠+ ¬+ 𝜇¬+(𝛼−).𝛼⟨¬+(𝛼−)∣𝑠+⟩+ if 𝛼− fresh w.r.t. 𝑠+
𝑠+ ⊗ 𝜇(𝑥+⊗𝑦+).⟨(𝑥+⊗𝑦+)∣𝑠+⟩+ if 𝑥+ and 𝑦+ fresh w.r.t. 𝑠+
𝑠+ ⊕ 𝜇[𝜄1(𝑥+

1).⟨𝜄1(𝑥+
1)∣𝑠+⟩

+∣𝜄2(𝑥+
2).⟨𝜄2(𝑥+

2)∣𝑠+⟩
+] if 𝑥+

1 and 𝑥
+
2 fresh w.r.t. 𝑠+

𝑠+ 1 𝜇().⟨()∣𝑠+⟩+
𝑠+ 0 𝜇[]

≝ 𝜇 ∪ 𝜇 ∪ → ∪ ⇑ ∪ ¬− ∪ ` ∪ & ∪ ⊥ ∪ ⊤ ∪ ⇓ ∪ ¬+ ∪ ⊗ ∪ ⊕ ∪ 1 ∪ 0

107

V. Polarized calculi with arbitrary constructors

Remark V.1.2

Note that the coercions val+ (resp. stk−) are what ensures that the syntax is closed
under 𝜂-expansions. Indeed, if we removed val+ (resp. stk−), then we would have

𝑣+ 𝜇 𝜇𝛼+.⟨𝑣+∣𝛼+⟩+ (resp. 𝑠− 𝜇 𝜇𝑥−.⟨𝑥−∣𝑠−⟩−)
and hence

(𝑣+⊗𝑤+) ((𝜇𝛼+.⟨𝑣+∣𝛼+⟩+)⊗𝑤+) (resp. 𝑣+ ∙ 𝑠− 𝑣+ ∙(𝜇𝑥−.⟨𝑥−∣𝑠−⟩))
With the coercions, this problemdisapears because 𝑣+ (resp. 𝑠−) cannot be 𝜂-expanded
on its own, and (val+(𝑣+)⊗𝑤+) (resp. 𝑣+ ∙ stk−(𝑠−)) is not within the syntaxa.
aOf course, one can also fix this by allowing expressions (resp. evaluation contexts) in value and stack
constructors, see .

Remark V.1.3

We could also add coercions val− (resp. stk+), i.e. define negative expressions (resp.
positive evaluation contexts) by

𝑡−, 𝑢− ⩴ val−(𝑣−) (resp. 𝑒+ ⩴ stk+(𝑠+))
While this could be useful in future calculi, here it would be completely superfluous
(because these coercions would be bijections), while requiring duplications in the
definition of :

𝑡− 𝜇 𝜇𝛼−.⟨𝑡−∣𝛼−⟩− (resp. 𝑒+ 𝜇𝑥+.⟨𝑥+∣𝑒+⟩+)
would need to be replaced by

𝑣− 𝜇 𝜇𝛼−.⟨𝑣−∣𝛼−⟩− (resp. 𝑠+ 𝜇𝑥+.⟨𝑥+∣𝑠+⟩+)
to ensure that e.g.

{𝑣−} 𝜇 {𝜇𝛼−.⟨𝑣−∣𝛼−⟩−} (resp. {𝑠+} {𝜇𝑥+.⟨𝑥+∣𝑠+⟩+})
while

𝑡+ 𝜇 𝜇𝛼+.⟨𝑡+∣𝛼+⟩+ (resp. 𝑒− 𝜇𝑥−.⟨𝑥−∣𝑒−⟩−)
can not bemade to act on 𝑣+ (resp. 𝑠−) if onewants 𝜂-expansion to preserve the syntax.

Normal forms, clashes and waiting commands

There are several kinds of -normal forms:

Definition V.1.4

A command 𝑐 is said to be:

108

V. Polarized calculi with arbitrary constructors

• a clash when it is of one of the following shapes:

𝑐 = ⟨v𝜏𝑗1+𝑘 (#”𝑎)∣𝜇[v𝜏𝑗2+1 (# ”𝜒1).𝑐1∣…∣v
𝜏𝑗2+
𝑙 (

#”𝜒𝑙).𝑐𝑙]⟩+ with 𝜏𝑗1+ ≠ 𝜏𝑗2+ , or

𝑐 = ⟨𝜇<‘𝜏𝑗1−1 (# ”𝜒1).𝑐1∣…∣‘𝜏
𝑗1−
𝑙 (

#”𝜒𝑙).𝑐𝑙>∣‘𝜏𝑗2−𝑘 (#”𝑎)⟩−with 𝜏𝑗1− ≠ 𝜏𝑗2−

• waiting when it is of one of the following shapes:

𝑐 = ⟨𝑥𝜀∣𝛼𝜀⟩𝜀, 𝑐 = ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝛼+⟩+, 𝑐 = ⟨𝑥+∣𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v
𝜏𝑗+
𝑙 (

#”𝜒𝑙).𝑐𝑙]⟩+,
𝑐 = ⟨𝑥−∣‘𝜏𝑗−𝑘 (#”𝑎)⟩−, or 𝑐 = ⟨𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏

𝑗
−
𝑙 (

#”𝜒𝑙).𝑐𝑙>∣𝛼−⟩−

Example V.1.5

The commands
⟨𝜄1(𝑣+)∣𝜇(𝑥+⊗𝑦+).𝑐⟩+ and ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝜇[]⟩+

are clashes.

These two definitions cover exactly all -normal commands:

Fact V.1.6

A command is -normal if and only if it is either a clash or a waiting command, and
those two cases are mutually exclusive.

Proof

By case analysis on the command.

We now look at the effect of disubstitutions on -normal commands. For clashes, disub-
stitutions have no effect:

Fact V.1.7

The set of clashes is disubstitutive: for any clash 𝑐 and disubstitution 𝜑, the command
𝑐[𝜑] is a clash.

Proof

By case analysis on 𝑐.

Waiting commands are waiting on a particular variable, and until this variable is substi-
tuted by a non-variable, they remain waiting:

109

V. Polarized calculi with arbitrary constructors

Definition V.1.8

A command 𝑐 is said to be:

• waiting for 𝑥− if it is of the shape 𝑐 = ⟨𝑥−∣𝛼−⟩− or 𝑐 = ⟨𝑥−∣‘𝜏𝑗−𝑘 (#”𝑎)⟩−;
• waiting for 𝛼+ if it is of the shape 𝑐 = ⟨𝑥+∣𝛼+⟩+ or 𝑐 = ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝛼+⟩+;
• waiting for 𝛼− if it is of the shape 𝑐 = ⟨𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏

𝑗
−
𝑙 (

#”𝜒𝑙).𝑐𝑙>∣𝛼−⟩−;
• waiting for 𝑥+ if it is of the shape 𝑐 = ⟨𝑥+∣𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v

𝜏𝑗+
𝑙 (

#”𝜒𝑙).𝑐𝑙]⟩+.
Fact V.1.9

If 𝑐 is waiting for 𝜒 then there exists an argument 𝑎 such that 𝑐[𝑎∕𝜒] is reducible.

Proof

Defining 𝑎 as 𝜇⋆−.𝑐, 𝜇𝑥+.𝑐, ‘𝜏
𝑗
−
𝑘 (

#”𝑎) or v𝜏
𝑗
+
𝑘 (

#”𝑎)works when 𝜒 is 𝑥−, 𝛼+, 𝛼− and 𝑥+ respec-
tively (with 𝜏𝑗𝜀 being the type former of the displayed 𝜇<…> or 𝜇[…]).

Fact V.1.10

If 𝑐 is waiting for 𝜒 then for any disubstitution 𝜑 such that 𝜑(𝜒) is a variable, 𝑐[𝜑] is
waiting for 𝜑(𝜒).

Proof

By case analysis on 𝑐.

Remark V.1.11

If 𝑐 is waiting for 𝜒 then given a non-variable 𝑎, 𝑐[𝑎∕𝜒]may be:

• reducible, e.g.

⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝛼+⟩+[𝜇𝑥+.𝑐∕𝛼+] = ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝜇𝑥+.𝑐⟩+
is reducible;

• a clash, e.g.

⟨v𝜏𝑗1+𝑘 (#”𝑎)∣𝛼+⟩+[𝜇[v𝜏𝑗2−1 (𝜒1).𝑐1∣…∣v𝜏𝑗2−𝑙 (𝜒𝑙).𝑐𝑙]∕𝛼+]

110

V. Polarized calculi with arbitrary constructors

is a clash when 𝑗1 ≠ 𝑗2;

• waiting for another variable, e.g. ⟨𝑥−∣𝛼−⟩− is waiting for 𝑥− and
⟨𝑥−∣𝛼−⟩−[𝜇(𝑦+ ∙ 𝛽−).𝑐∕𝑥−] = ⟨𝜇(𝑦+ ∙ 𝛽−).𝑐∣𝛼−⟩−

is waiting for 𝛼−.

This last case could make us want to say that ⟨𝑥−∣𝛼−⟩− waits for both 𝑥− and 𝛼− but
this is not really the case because

⟨𝑥−∣𝛼−⟩−[𝜇𝛽−.𝑐∕𝑥−] = ⟨𝜇𝛽−.𝑐∣𝛼−⟩−

is not waiting for 𝛼− in general (e.g. it -diverges whenever 𝑐 does).

Definition V.1.12

A command 𝑐 is said to:

• converge to 𝑐′, written 𝑐 ⇓ 𝑐′ or 𝑐 ⊛ 𝑐′, when 𝑐 ∗ 𝑐′ ;

• converge, written 𝑐 ⇓ or 𝑐 ⊛, when there exists some 𝑐′ it converges to;

• diverge, written 𝑐 ⇑ or 𝑐 𝜔, when there is an infinite reduction sequence
𝑐 𝑐′ 𝑐′′ …

starting at 𝑐.

There are three possible outcomes for a command:

Fact V.1.13

Any command either diverges, converges to a clash, or converges to a waiting com-
mand, and those three cases are mutually exclusive.

Proof

By determinism of , it either converges or diverges, and by Fact V.1.6, the -normal
command it converges to is either a clash or a waiting command.

Properties

Just like we distinguish substitution from disubstitutions, we distinguish substitutivity from
disubstitutivity:

111

V. Polarized calculi with arbitrary constructors

Definition V.1.14

A reduction⇝ of L
#”𝜏
p is said to be substitutive (resp. disubstitutive) when for any terms

𝓉 and #”𝓉 , and substitution 𝜎 (resp. disubstitution 𝜑), we have
𝓉⇝ 𝓉′ ⇒ 𝓉[𝜎]⇝ 𝓉′[𝜎] (resp. 𝓉⇝ 𝓉′ ⇒ 𝓉[𝜑]⇝ 𝓉′[𝜑])

The properties of the reductions are summarized in Figure V.1

Table V.1.: Properties of reductions in the L
#”𝜏
p calculus

¬o

Substitutive ✓ ✓ ✓ ✓
Disubstitutive ✓ ✓ ✓ ✓

Deterministic ✓ ✗ ✗ ✗
Confluent ✓ ✓ ✓ ✓

Postpones after ✓ ✓ ✓ ✓

The proofs of all of these properties are either trivial or routine, and are therefore relegated
to in the appendix. Confluence and postponement are proven in a standard way using a
parallel reduction [Tak95; Bar84]. The only slightly non-standard choice is the definition
of :

Remark V.1.15

The most common definitions of the parallel reduction contain rules two kinds of
rules: those that simply combine reduction sequences on subterms such as
𝑡𝜀 𝑡′𝜀 𝑒𝜀 𝑒′𝜀
⟨𝑡𝜀∣𝑒𝜀⟩

𝜀 ⟨𝑡′𝜀 ∣𝑒′𝜀 ⟩
𝜀 ,

𝑣+ 𝑣′+
𝜄𝑖(𝑣+) 𝜄𝑖(𝑣+)

, and
𝑐1 𝑐′1 𝑐2 𝑐′2

𝜇[𝜄1(𝑥+
1). 𝑐1

𝜄2(𝑥+
2). 𝑐2] 𝜇[𝜄1(𝑥+

1). 𝑐′1
𝜄2(𝑥+

2). 𝑐′2]
and those that add a reduction step such as

𝑣+ 𝑣′+ 𝑐1 𝑐′1 𝑐2 𝑐′2

⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+
1). 𝑐1

𝜄2(𝑥+
2). 𝑐2]⟩

+
𝑐′𝑖 [𝑣′+∕𝑥+

𝑖]

Let be the restriction of defined by 𝓉 𝓉′ meaning that there exists a deriva-
tion of 𝓉 𝓉′ whose last rule is not a step rule. With the usual definition of , the

[Tak95] “Parallel Reductions in 𝜆-Calculus”, Takahashi, 1995
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

112

V. Polarized calculi with arbitrary constructors

two following rules are admissible:
𝓉 𝓉′

𝓉 𝓉′
and

𝓉 𝓉′ 𝓉′ 𝓉′′

𝓉 𝓉′′

For L
#”𝜏
p, since there are four kinds of reductions (namely 𝜇, 𝜇, 𝜏𝑗−

, and 𝜏𝑗+
), the

usual definition of has four step rules. It is hence slightly easier to define and
by mutual induction by adding the two rules above in the definition, removing

the step rules, and strenghening the other rules to remember that no step was taken
at the top-level, e.g.
𝑡𝜀 𝑡′𝜀 𝑒𝜀 𝑒′𝜀
⟨𝑡𝜀∣𝑒𝜀⟩

𝜀 ⟨𝑡′𝜀 ∣𝑒′𝜀 ⟩
𝜀 ,

𝑣+ 𝑣′+
𝜄𝑖(𝑣+) 𝜄𝑖(𝑣+)

, and
𝑐1 𝑐′1 𝑐2 𝑐′2

𝜇[𝜄1(𝑥+
1). 𝑐1

𝜄2(𝑥+
2). 𝑐2] 𝜇[𝜄1(𝑥+

1). 𝑐′1
𝜄2(𝑥+

2). 𝑐′2]
The usual step rules are then derivable, e.g.

𝑣+ 𝑣′+
𝜄𝑖(𝑣+) 𝜄𝑖(𝑣′+)
𝜄𝑖(𝑣+) 𝜄𝑖(𝑣′+)

𝑐1 𝑐′1 𝑐2 𝑐′2
𝜇[𝜄1(𝑥+

1). 𝑐1
𝜄2(𝑥+

2). 𝑐2] 𝜇[𝜄1(𝑥+
1). 𝑐′1

𝜄2(𝑥+
2). 𝑐′2]

𝜇[𝜄1(𝑥+
1). 𝑐1

𝜄2(𝑥+
2). 𝑐2] 𝜇[𝜄1(𝑥+

1). 𝑐′1
𝜄2(𝑥+

2). 𝑐′2]
⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+

1). 𝑐1
𝜄2(𝑥+

2). 𝑐2]⟩
+ ⟨𝜄𝑖(𝑣′+)∣𝜇[𝜄1(𝑥+

1). 𝑐′1
𝜄2(𝑥+

2). 𝑐′2]⟩
+ ⟨𝜄𝑖(𝑣′+)∣𝜇[𝜄1(𝑥+

1). 𝑐′1
𝜄2(𝑥+

2). 𝑐′2]⟩
+

𝑐′𝑖 [𝑣′+∕𝑥+
𝑖]

⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+
1). 𝑐1

𝜄2(𝑥+
2). 𝑐2]⟩

+
𝑐′𝑖 [𝑣′+∕𝑥+

𝑖]

This alternative definition of also has the advantage of disentangling the part of
that depends on from the rest, which makes parametric in .

V.1.3. Well-typed and well-polarized terms

Well-typed terms

Simply typed L
#”𝜏
p is described in Figure V.1.5. Each type former 𝜏

𝑗
+ (resp. 𝜏

𝑗
−) has logic rules

(⊢v𝜏𝑗+𝑘) (resp. (‘𝜏𝑗−𝑘 ⊢)) that introduce its constructors, and (𝜏𝑗+⊢)(resp. (⊢𝜏𝑗−)) that introduces
the correspond pattern match. Of course, in these logic rules, sequence of types given to 𝜏𝑗𝜀
in the conclusions depends on the type in the premises, and if one wants the subformula
property to hold, on should require { #”𝐴} ⊆ { #”𝐵 } in (‘𝜏𝑗−𝑘 ⊢) and (⊢v𝜏

𝑗
+
𝑘) and { #”𝐴, #”𝐵 } ⊆ { #”𝐶 } in

(⊢𝜏𝑗−) and (𝜏𝑗+⊢).

113

V. Polarized calculi with arbitrary constructors

Figure V.1.5: Simply typed L
#”𝜏
p

Figure V.1.5.a: Core rules

𝑥𝜀∶𝐴𝜀 ⊢ 𝑥𝜀∶𝐴𝜀 ∣
(⊢ax)

∣ 𝛼𝜀∶𝐴𝜀 ⊢ 𝛼𝜀∶𝐴𝜀

(ax⊢)

𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝐴𝜀, 𝛥)
𝛤 ⊢ 𝜇𝛼𝜀.𝑐∶𝐴𝜀 ∣ 𝛥

(⊢𝜇)
𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢ 𝛥)
𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝐴𝜀 ⊢ 𝛥

(𝜇⊢)

𝛤1 ⊢ 𝑡𝜀∶𝐴𝜀 ∣ 𝛥1 𝛤2 ∣ 𝑒𝜀∶𝐴𝜀 ⊢ 𝛥2
⟨𝑡𝜀∣𝑒𝜀⟩

𝜀∶(𝛤1, 𝛤2 ⊢ 𝛥1, 𝛥2)
(cut)

Figure V.1.5.b: Structural rules (commands)

𝑐∶(𝛤 ⊢ 𝛥)
𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝐴𝜀, 𝛥)

(⊢w𝑐)
𝑐∶(𝛤 ⊢ 𝛼𝜀

1∶𝐴𝜀, 𝛼𝜀
2∶𝐴𝜀, 𝛥)

𝑐[𝛽𝜀∕𝛼𝜀
1, 𝛽

𝜀∕𝛼𝜀
2]∶(𝛤 ⊢ 𝛽𝜀∶𝐴𝜀, 𝛥)

(⊢c𝑐)

𝑐∶(𝛤 ⊢ 𝛥)
𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢ 𝛥)

(w𝑐⊢)
𝑐∶(𝛤, 𝑥𝜀

1∶𝐴𝜀, 𝑥𝜀
2∶𝐴𝜀 ⊢ 𝛥)

𝑐[𝑦𝜀∕𝑥𝜀
1, 𝑦

𝜀∕𝑥𝜀
2]∶(𝛤, 𝑦𝜀∶𝐴𝜀 ⊢ 𝛥)

(c𝑐⊢)

𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀
1∶𝐴𝜀, 𝛼𝜀

2∶𝐴𝜀, 𝛥2)
𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀

2∶𝐴𝜀, 𝛼𝜀
1∶𝐴𝜀, 𝛥2)

(⊢p𝑐)
𝑐∶(𝛤1, 𝑥𝜀

1∶𝐴𝜀, 𝑥𝜀
2∶𝐴𝜀, 𝛤2 ⊢ 𝛥)

𝑐∶(𝛤1, 𝑥𝜀
2∶𝐴𝜀, 𝑥𝜀

1∶𝐴𝜀, 𝛤2 ⊢ 𝛥)
(p𝑐⊢)

Figure V.1.5.c: Structural rules (expressions)

𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥

𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛼
𝜀∶𝐵𝜀, 𝛥

(⊢w𝑡)
𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛼

𝜀
1∶𝐵𝜀, 𝛼𝜀

2∶𝐵𝜀, 𝛥

𝛤 ⊢ 𝑡𝜀0[𝛽𝜀∕𝛼𝜀
1, 𝛽

𝜀∕𝛼𝜀
2]∶𝐴𝜀0 ∣ 𝛽

𝜀∶𝐵𝜀, 𝛥
(⊢c𝑡)

𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥

𝛤, 𝑥𝜀∶𝐵𝜀 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥
(w𝑡⊢)

𝛤, 𝑥𝜀
1∶𝐵𝜀, 𝑥𝜀

2∶𝐵𝜀 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥

𝛤, 𝑥𝜀∶𝐵𝜀 ⊢ 𝑡𝜀0[𝑥𝜀∕𝑥𝜀
1, 𝑥

𝜀∕𝑥𝜀
2]∶𝐴𝜀0 ∣ 𝛥

(c𝑡⊢)

𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥1, 𝛼
𝜀
1∶𝐵𝜀, 𝛼𝜀

2∶𝐵𝜀, 𝛥2
𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥1, 𝛼

𝜀
2∶𝐵𝜀, 𝛼𝜀

1∶𝐵𝜀, 𝛥2
(⊢p𝑡)

𝛤1, 𝑥𝜀
1∶𝐵𝜀, 𝑥𝜀

2∶𝐵𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥

𝛤1, 𝑥𝜀
2∶𝐵𝜀, 𝑥𝜀

1∶𝐵𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥
(p𝑡⊢)

114

V. Polarized calculi with arbitrary constructors

Figure V.1.5.d: Structural rules (evaluation contexts)

𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥

𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛼𝜀∶𝐵𝜀, 𝛥
(⊢w𝑒)

𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛼𝜀
1∶𝐵𝜀, 𝛼𝜀

2∶𝐵𝜀, 𝛥

𝛤 ∣ 𝑒𝜀0[𝛽𝜀∕𝛼𝜀
1, 𝛽

𝜀∕𝛼𝜀
2]∶𝐴𝜀0 ⊢ 𝛽𝜀∶𝐵𝜀, 𝛥

(⊢c𝑒)

𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥

𝛤, 𝑥𝜀∶𝐵𝜀 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥
(w𝑒⊢)

𝛤, 𝑥𝜀
1∶𝐵𝜀, 𝑥𝜀

2∶𝐵𝜀 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥

𝛤, 𝑥𝜀∶𝐵𝜀 ∣ 𝑒𝜀0[𝑥𝜀∕𝑥𝜀
1, 𝑥

𝜀∕𝑥𝜀
2]∶𝐴𝜀0 ⊢ 𝛥

(c𝑒⊢)

𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥1, 𝛼𝜀
1∶𝐵𝜀, 𝛼𝜀

2∶𝜀, 𝛥2
𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥1, 𝛼𝜀

2∶𝐵𝜀, 𝛼𝜀
1∶𝜀, 𝛥2

(⊢p𝑒)
𝛤1, 𝑥𝜀

1∶𝐵𝜀, 𝑥𝜀
2∶𝐵𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥

𝛤1, 𝑥𝜀
2∶𝐵𝜀, 𝑥𝜀

1∶𝐵𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥
(p𝑒⊢)

Figure V.1.5.e: General shape of logic rules

𝛤1 ⊢ 𝑣1𝜀1∶𝐴
1
𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝐴

𝑞
𝜀𝑞 ∣ 𝛥𝑞

𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝐴
𝑞+1
𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝐴

𝑞+𝑟
𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟

𝛤1,… , 𝛤𝑞+𝑟 ∣ ‘𝜏
𝑗
−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 ,… , 𝑠𝑟𝜀𝑞+𝑟)∶𝜏𝑗−(#”𝐵) ⊢ 𝛥1,… , 𝛥𝑞+𝑟

(‘𝜏𝑗−𝑘 ⊢)

𝑐1∶(𝛤, # ”𝑥1∶
”

𝐴1 ⊢ # ”𝛼1∶
”

𝐵1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶
”

𝐴𝑙 ⊢ #”𝛼𝑙 ∶
#”

𝐵𝑙, 𝛥)
𝛤 ⊢ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣‘𝜏

𝑗
−
𝑙 (

#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙>∶𝜏𝑗−(#”𝐶) ∣ 𝛥
(⊢𝜏𝑗−)

𝛤1 ⊢ 𝑣1𝜀1∶𝐴
1
𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝐴

𝑞
𝜀𝑞 ∣ 𝛥𝑞

𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝐴
𝑞+1
𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝐴

𝑞+𝑟
𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟

𝛤1,… , 𝛤𝑞 ⊢ v
𝜏𝑗+
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 ,… , 𝑠𝑟𝜀𝑞+𝑟)∶𝜏𝑗+(#”𝐵) ∣ 𝛥1,… , 𝛥𝑞

(⊢v𝜏𝑗+𝑘)

𝑐1∶(𝛤, # ”𝑥1∶
”

𝐴1 ⊢ # ”𝛼1∶
”

𝐵1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶
”

𝐴𝑙 ⊢ #”𝛼𝑙 ∶
#”

𝐵𝑙, 𝛥)
𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣v

𝜏𝑗+
𝑙 (

#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙]∶𝜏𝑗+(#”𝐶) ⊢ 𝛥
(𝜏𝑗+⊢)

115

V. Polarized calculi with arbitrary constructors

Figure V.1.5.f: Logic rules for multiplicative types

𝑐∶(𝛤, 𝑥+∶𝐴+ ⊢ 𝛼−∶𝐵−, 𝛥)
𝛤 ⊢ 𝜇(𝑥+ ∙ 𝛼−).𝑐∶𝐴+ → 𝐵− ∣ 𝛥

(⊢→)
𝛤1 ⊢ 𝑣+∶𝐴+ ∣ 𝛥1 𝛤2 ∣ 𝑠−∶𝐵− ⊢ 𝛥2
𝛤1, 𝛤2 ∣ 𝑣+ ∙ 𝑠−∶𝐴+ → 𝐵− ⊢ 𝛥1, 𝛥2

(→⊢)

𝑐∶(𝛤 ⊢ 𝛼−∶𝐴−, 𝛽−∶𝐵−, 𝛥)
𝛤 ⊢ 𝜇(𝛼−`𝛽−).𝑐∶𝐴− & 𝐵− ∣ 𝛥

(⊢`) 𝛤1 ∣ 𝑠1−∶𝐴1
− ⊢ 𝛥1 𝛤2 ∣ 𝑠2−∶𝐴2

− ⊢ 𝛥2
𝛤1, 𝛤2 ∣ (𝑠1−`𝑠2−)∶𝐴1

− & 𝐴2
− ⊢ 𝛥1, 𝛥2

(`⊢)

𝛤1 ⊢ 𝑣1+∶𝐴1
+ ∣ 𝛥1 𝛤2 ⊢ 𝑣2+∶𝐴2

+ ∣ 𝛥2
𝛤1, 𝛤2 ⊢ (𝑣1+⊗𝑣2+)∶𝐴+ ⊗ 𝐵+ ∣ 𝛥1, 𝛥2

(⊢⊗)
𝑐∶(𝛤, 𝑥+∶𝐴+, 𝑦+∶𝐵+ ⊢ 𝛥)

𝛤 ∣ 𝜇(𝑥+⊗𝑦−).𝑐∶𝐴+ ⊗ 𝐵+ ⊢ 𝛥
(⊗⊢)

𝑐∶(𝛤 ⊢ 𝛥)
𝛤 ⊢ 𝜇(̃).𝑐∶⊥ ∣ 𝛥

(⊢⊥)
∣ (̃)∶⊥ ⊢

(⊥⊢)

⊢ ()∶1 ∣
(1⊢)

𝑐∶(𝛤 ⊢ 𝛥)
𝛤 ∣ 𝜇().𝑐∶1 ⊢ 𝛥

(⊢1)

Figure V.1.5.g: Logic rules for additive types

𝑐1∶(𝛤 ⊢ 𝛼−
1 ∶𝐴

1
−, 𝛥) 𝑐2∶(𝛤 ⊢ 𝛼−

2 ∶𝐴
2
−, 𝛥)

𝛤 ⊢ 𝜇<(𝜋1 ∙ 𝛼−
1).𝑐1∣(𝜋2 ∙ 𝛼−

2).𝑐2>∶𝐴1
− & 𝐴2

− ∣ 𝛥
(⊢&)

𝛤 ∣ 𝑠−∶𝐴𝑖
− ⊢ 𝛥

𝛤 ∣ 𝜋𝑖 ∙ 𝑠−∶𝐴1
− & 𝐴2

− ⊢ 𝛥
(&⊢)

𝛤 ⊢ 𝑣+∶𝐴𝑖
+ ∣ 𝛥

𝛤 ⊢ 𝜄𝑖(𝑣+)∶𝐴1
+ ⊕𝐴2

+ ∣ 𝛥
(⊢⊕)

𝑐1∶(𝛤, 𝑥+
1 ∶𝐴

1
+ ⊢ 𝛥) 𝑐2∶(𝛤, 𝑥+

2 ∶𝐴
2
+ ⊢ 𝛥)

𝛤 ∣ 𝜇[𝜄1(𝑥+
1).𝑐1∣𝜄2(𝑥+

2).𝑐2]∶𝐴1
+ ⊕𝐴2

+ ⊢ 𝛥
(⊕⊢)

𝛤 ⊢ 𝜇<>∶⊤ ∣ 𝛥
(⊢⊤) (No (⊤⊢) rule)

(No (⊢0) rule)
𝛤 ∣ 𝜇[]∶0 ⊢ 𝛥

(0⊢)

116

V. Polarized calculi with arbitrary constructors

Figure V.1.5.h: Logic rules for shifts

𝑐∶(𝛤 ⊢ 𝛼+∶𝐴+, 𝛥)
𝛤 ⊢ 𝜇{𝛼+}.𝑐∶ ⇑𝐴+ ∣ 𝛥

(⊢⇑)
𝛤 ∣ 𝑠+∶𝐴+ ⊢ 𝛥

𝛤 ∣ {𝑠+}∶ ⇑𝐴+ ⊢ 𝛥
(⇑⊢)

𝛤 ⊢ 𝑣−∶𝐴− ∣ 𝛥

𝛤 ⊢ {𝑣−}∶ ⇓𝐴− ∣ 𝛥
(⊢⇓)

𝑐∶(𝛤, 𝑥−∶𝐴− ⊢ 𝛥)
𝛤 ∣ 𝜇{𝑥−}.𝑐∶ ⇓𝐴− ⊢ 𝛥

(⇓⊢)

Figure V.1.5.i: Logic rules for negations

𝑐∶(𝛤, 𝑥+∶𝐴+ ⊢ 𝛥)
𝛤 ⊢ 𝜇¬−(𝑥+).𝑥𝑐∶¬−(𝐴+) ∣ 𝛥

(⊢¬−)
𝛤 ⊢ 𝑣+∶𝐴+ ∣ 𝛥

𝛤 ∣ ¬−(𝑣+)∶¬−(𝐴+) ⊢ 𝛥
(¬−⊢)

𝛤 ∣ 𝑠−∶𝐴− ⊢ 𝛥

𝛤 ⊢ ¬+(𝑠−)∶¬+(𝐴−) ∣ 𝛥
(⊢¬+)

𝑐∶(𝛤 ⊢ 𝛼−∶𝐴−, 𝛥)
𝛤 ∣ 𝜇¬+(𝛼−).𝛼𝑐∶¬+(𝐴−) ⊢ 𝛥

(¬+⊢)

117

V. Polarized calculi with arbitrary constructors

Definition V.1.16

An expression 𝑡𝜀 (resp. evaluation context 𝑒𝜀) of L
#”𝜏
p is said to be of type 𝐴𝜀 when there

exists a derivation of
𝛤 ⊢ 𝑡𝜀∶𝐴𝜀 ∣ 𝛥 (resp. 𝛤 ∣ 𝑒𝜀∶𝐴𝜀 ⊢ 𝛥)

in the type sytem described in Figure V.1.5, and well-typed when it is of type 𝐴𝜀 for
some type 𝐴𝜀. A command 𝑐 is said to be well-typed when there exists a derivation of

𝑐∶(𝛤 ⊢ 𝛥)
in the type sytem described in Figure V.1.5. A term is said to be ill-typed when it is
not well-typed.

Alternative presentations

Presentations of simply typed L-calculi sometimes use a syntax of preterms (i.e. possibly ill-
typed terms) that treats polarities less rigidly, e.g. the syntax of preterms of [CurFioMun16,
Figure 1, p. 4] allows pairs (𝑉𝜀1⊗𝑊𝜀2) for values𝑉𝜀1 and𝑊𝜀2 of arbitrary polarities. Of course,
extending the syntax of preterms without really changing the type system leaves the set of
well-typed terms unchanged, e.g. extending simply typed L

#”𝜏
p with these pairs and the rules

𝛤1 ⊢ 𝑉𝜀1∶𝐴+ ∣ 𝛥1 𝛤2 ⊢ 𝑊𝜀2∶𝐵+ ∣ 𝛥2
𝛤1, 𝛤2 ⊢ (𝑉𝜀1⊗𝑊𝜀2)∶𝐴+ ⊗ 𝐵+

and
𝑐∶(𝛤, 𝑥𝜀1∶𝐴+, 𝑦𝜀2∶𝐵+ ⊢ 𝛥)

𝛤 ∣ 𝜇(𝑥𝜀1⊗𝑦𝜀2).𝑐∶𝐴+ ⊗ 𝐵+ ⊢ 𝛥
would not change anything since these rules can only be used with 𝜀1 = 𝜀2 = +. How-
ever, often, the typing rules also allow types of arbitrary polarities, e.g. the type system of
[CurFioMun16, Figure 2, p. 5] has the rules

𝛤1 ⊢ 𝑉𝜀1∶𝐴𝜀1 ∣ 𝛥1 𝛤2 ⊢ 𝑊𝜀2∶𝐵𝜀2 ∣ 𝛥2
𝛤1, 𝛤2 ⊢ (𝑉𝜀1⊗𝑊𝜀2)∶𝐴𝜀1 ⊗ 𝐵𝜀2

and
𝑐∶(𝛤, 𝑥𝜀1∶𝐴𝜀1 , 𝑦

𝜀2∶𝐵𝜀2 ⊢ 𝛥)
𝛤 ∣ 𝜇(𝑥𝜀1⊗𝑦𝜀2).𝑐∶𝐴𝜀1 ⊗ 𝐵𝜀2 ⊢ 𝛥

This corresponds to an instance of L
#”𝜏
p with several instances of the type former indexed by

the polarities of its argument, e.g. four type formers⊗ indexed by the polarities 𝜀1 and 𝜀2 of
the left and right arguments. These can often be though of as being combinations of a single
type former with shifts, e.g. we have isomorphisms

𝐴−

−,+
⊗ 𝐵+ ≅ ⇓𝐴−

+,+
⊗ 𝐵+, 𝐴+

+,−
⊗ 𝐵− ≅ 𝐴+

+,+
⊗ ⇓𝐵+ and 𝐴−

−,−
⊗ 𝐵− ≅ ⇓𝐴−

+,+
⊗ ⇓𝐵+

Conversely, while these presentations often do not define the shifts, they are often express-
ible:

⇑𝐴+ ≅ 1→ 𝐴+ and ⇓𝐴− ≅ 1⊗𝐴−

Most presentations therefore end up being more or less equivalent.

[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

118

V. Polarized calculi with arbitrary constructors

Well-polarized terms

The type system in Figure V.1.5 can be weakened by replacing each type 𝐴𝜀 by its polarity
𝜀, which yields the type system described in Figure .4.1 of the appendix. Terms that are
well-typed in this weaker system are called well-polarized:

Definition V.1.17

A termof L
#”𝜏
p is said to bewell-polarized (resp. ill-polarized) when it is well-typed (resp.

ill-typed) in the type system described in Figure .4.1.

Fact V.1.18

Well-typed terms are well-polarized.

Proof

By induction on the derivation, replacing each type 𝐴𝜀 by its polarity 𝜀.

Many presentations of L-calculi in the litterature mostly focus on well-typed terms, and
can hence choose a presentation that allows ill-polarized terms in the syntax for the sake
of simplicity. Here, however, we want to study an untyped L-calculus, and must therefore
reject the ill-polarized terms explicitly. The L

#”𝜏
p calculus (or rather its instances for specific

choices of #”𝜏) can be obtained from L-calculi of the litterature by restricting to well-polarized
terms.
The rigid treatment of polarities in the syntax of L

#”𝜏
p ensures that all terms arewell-polarized:

Fact V.1.19

For any command 𝑐 (resp. expression 𝑡𝜀, evaluation context 𝑒𝜀) of L
#”𝜏
p, we have

𝑐∶(𝛤 ⊢ 𝛥) (resp. 𝛤 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛥, 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛥)
if and only if 𝛤 and 𝛥map all free variables of 𝑐 (resp. 𝑡𝜀, 𝑒𝜀) to their polarities, i.e.

𝛤 = # ”𝑥+∶+, #”𝑦−∶ − and 𝛥 = # ”𝛼+∶+, # ”𝛽−∶ −
with
FV(𝑐) ⊆ { # ”𝑥+, #”𝑦+, # ”𝛼+, # ”𝛽−} (resp. FV(𝑡𝜀) ⊆ { # ”𝑥+, #”𝑦+, # ”𝛼+, # ”𝛽−}, FV(𝑒𝜀) ⊆ { # ”𝑥+, #”𝑦+, # ”𝛼+, # ”𝛽−})
In particular, all terms of L

#”𝜏
p are well-polarized.

Proof

The⇒ implication is by induction on the typing derivation, and the⇐ implication it
by induction on the syntax (using the structural rules to preserve the whole context

119

V. Polarized calculi with arbitrary constructors

through multiplicative rules).

120

V. Polarized calculi with arbitrary constructors

V.2. Intuitionistic and minimalistic polarized L-calculi: Li
#”𝜏
p

and Lm
#”𝜏
p

In this section, we start the process of transforming L
#”𝜏
p into a corresponding 𝜆-calculus (𝛌

#”𝜏
P

of Section V.5), by carving out its intuitionistic fragment Li
#”𝜏
p and its minimalistic fragment

Lm
#”𝜏
p. In a typed setting, those fragments correspond to the restrictions of classical logic to

minimal and intuitionistic logic respectively.

V.2.1. Intuitionistic and minimalistic fragments

Fragment definitions

It is well-known Gentzen’s sequent calculus for classical logic can be restricted to minimal
logic (resp. intuitionistic logic) by only considering sequents with exactly one (resp. at most
one) succedent. We define the minimalistic4 (resp. intuitionistic) fragment of L

#”𝜏
p similarly:

Definition V.2.1

Given a set of nice type formers #”𝜏, a term of L
#”𝜏
p is said to beminimalistically well-typed

(resp. intuitionisticallywell-typed) when there is a derivation of itswell-typedness that
only contains sequents with exactly one (resp. at most one) succedenta. This yields
the type system described in for minimalistically well-typed terms.
aThe number of conclusions of a sequent is the number of types on the right of the ⊢ symbol, so that
sequents with one succedent are those of the shape

𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝐴𝜀), 𝛤 ⊢ 𝑡𝜀∶𝐴𝜀 ∣, or 𝛤 ∣ 𝑒𝜀1 ∶𝐴𝜀1 ⊢ 𝛼𝜀2 ∶𝐴𝜀2

and sequents with zero succedents are those of the shape
𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝐴𝜀 ⊢

These restrictions can also be applied to the trivial type system that only accounts for
polarities:

Definition V.2.2

A term of L
#”𝜏
p is said to beminimalistically well-polarized (resp. intuitionistically well-

polarized), orminimalistic (resp. intuitionistic), when there is a derivation of its well-
polarization that only contains sequents with exactly one (resp. at most one) succe-
dent. This yields the type system described in Figure V.2.1 for minimalistically well-
typed terms. We call minimalistic fragment (resp. intuitionistic fragment) of L

#”𝜏
p, and

denote by Lm
#”𝜏
p (resp. Li

#”𝜏
p), the subset of L

#”𝜏
p that consists of all minimalistically (resp.

intuitionistically) well-polarized terms.

4Since we use this adjective for many kinds of objects, including some that are equipped with a preorder (e.g.
terms with the observational preorder), we use “minimalistic” instead of “minimal” to avoid any ambiguity.

121

V. Polarized calculi with arbitrary constructors

Figure V.2.1: Well polarized Lm
#”𝜏
p

Figure V.2.1.a: Core rules

𝑥𝜀∶𝜀 ⊢ 𝑥𝜀∶𝜀 ∣
(⊢ax)

∣ 𝛼𝜀∶𝜀 ⊢ 𝛼𝜀∶𝜀
(ax⊢)

𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀)
𝛤 ⊢ 𝜇𝛼𝜀.𝑐∶𝜀 ∣

(⊢𝜇)
𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)
𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟

(𝜇⊢)

𝛤1 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛤2 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟
⟨𝑡𝜀∣𝑒𝜀⟩

𝜀∶(𝛤1, 𝛤2 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)
(cut)

Figure V.2.1.b: Structural rules (commands)

(Inoperable (⊢w𝑐) rule) (Inoperable (⊢c𝑐) rule)

𝑐∶(𝛤 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)
𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)

(w𝑐⊢)
𝑐∶(𝛤, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)

𝑐[𝑦𝜀∕𝑥𝜀
1, 𝑦

𝜀∕𝑥𝜀
2]∶(𝛤, 𝑦𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)

(c𝑐⊢)

(Inoperable (⊢p𝑐) rule)
𝑐∶(𝛤1, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀, 𝛤2 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)

𝑐∶(𝛤1, 𝑥𝜀
2∶𝜀, 𝑥

𝜀
1∶𝜀, 𝛤2 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)

(p𝑐⊢)

Figure V.2.1.c: Structural rules (expressions)

(Inoperable (⊢w𝑡) rule) (Inoperable (⊢c𝑡) rule)

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣

𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣
(w𝑡⊢)

𝛤, 𝑥𝜀
1∶𝜀, 𝑥

𝜀
2∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣

𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0[𝑥𝜀∕𝑥𝜀
1, 𝑥

𝜀∕𝑥𝜀
2]∶𝜀0 ∣

(c𝑡⊢)

(Inoperable (⊢p𝑡) rule)
𝛤1, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣

𝛤1, 𝑥𝜀
2∶𝜀, 𝑥

𝜀
1∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣

(p𝑡⊢)

122

V. Polarized calculi with arbitrary constructors

Figure V.2.1.d: Structural rules (evaluation contexts)

(Inoperable (⊢w𝑒) rule) (Inoperable (⊢c𝑒) rule)

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟
𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟

(w𝑒⊢)
𝛤, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟

𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0[𝑥𝜀∕𝑥𝜀
1, 𝑥

𝜀∕𝑥𝜀
2]∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟

(c𝑒⊢)

(Inoperable (⊢p𝑒) rule)
𝛤1, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

𝛤1, 𝑥𝜀
2∶𝜀, 𝑥

𝜀
1∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

(p𝑒⊢)

Figure V.2.1.e: General shape of logic rules (assuming vs-sorted constructors)

𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣
𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝜀𝑞+1 ⊢ 𝛼𝜀𝑟∶𝜀𝑟

𝛤1,… , 𝛤𝑞+𝑟 ∣ ‘𝜏
𝑗
−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠𝜀𝑞+1)∶ − ⊢ 𝛼𝜀𝑟∶𝜀𝑟

(‘𝜏𝑗−𝑘 ⊢)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ 𝛼𝜀𝑟
1 ∶𝜀𝑟) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ 𝛼𝜀𝑟

𝑙 ∶𝜀𝑟)
𝛤 ⊢ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , 𝛼1).𝑐1∣…∣‘𝜏

𝑗
−
𝑙 (#”𝑥𝑙 , 𝛼𝑙).𝑐𝑙>∶ − ∣

(⊢𝜏𝑗−)

𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣

𝛤1,… , 𝛤𝑞 ⊢ v
𝜏𝑗+
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 ,… , 𝑠𝑟𝜀𝑞+𝑟)∶+ ∣

(⊢v𝜏𝑗+𝑘)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ 𝛼𝜀𝑟
𝑟 ∶𝜀𝑟) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ 𝛼𝜀𝑟

𝑟 ∶𝜀𝑟)

𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣v
𝜏𝑗+
𝑙 (

#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙]∶+ ⊢ 𝛼𝜀𝑟
𝑟 ∶𝜀𝑟

(𝜏𝑗+⊢)

123

V. Polarized calculi with arbitrary constructors

Figure V.2.1.f: Logic rules for multiplicative types

𝑐∶(𝛤, 𝑥+∶+ ⊢ 𝛼−∶ −)
𝛤 ⊢ 𝜇(𝑥+ ∙ 𝛼−).𝑐∶ − ∣

(⊢→)
𝛤1 ⊢ 𝑣+∶+ ∣ 𝛤2 ∣ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀

𝛤1, 𝛤2 ∣ 𝑣+ ∙ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀
(→⊢)

(Inoperable (⊢`) rule) (Inoperable (`⊢) rule)
𝛤1 ⊢ 𝑣1+∶+ ∣ 𝛤2 ⊢ 𝑣2+∶+ ∣

𝛤1, 𝛤2 ⊢ (𝑣1+⊗𝑣2+)∶+ ∣
(⊢⊗)

𝑐∶(𝛤, 𝛼+∶+, 𝑦+∶+ ⊢ 𝛼𝜀∶𝜀)
𝛤 ∣ 𝜇(𝑥+⊗𝑦−).𝑐∶+ ⊢ 𝛼𝜀∶𝜀

(⊗⊢)

(Inoperable (⊢⊥) rule) (Inoperable (⊥⊢) rule)

⊢ ()∶+ ∣
(1⊢)

𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀)
𝛤 ∣ 𝜇().𝑐∶+ ⊢ 𝛼𝜀∶𝜀

(⊢1)

Figure V.2.1.g: Logic rules for additive types

𝑐1∶(𝛤 ⊢ 𝛼−
1 ∶ −) 𝑐2∶(𝛤 ⊢ 𝛼−

2 ∶ −)
𝛤 ⊢ 𝜇<(𝜋1 ∙ 𝛼−

1).𝑐1∣(𝜋2 ∙ 𝛼−
2).𝑐2>∶ − ∣

(⊢&)
𝛤 ∣ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀

𝛤 ∣ 𝜋𝑖 ∙ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀
(&⊢)

𝛤 ⊢ 𝑣+∶+ ∣

𝛤 ⊢ 𝜄𝑖(𝑣+)∶+ ∣
(⊢⊕)

𝑐1∶(𝛤, 𝑥+
1 ∶+ ⊢ 𝛼𝜀∶𝜀) 𝑐2∶(𝛤, 𝑥+

2 ∶+ ⊢ 𝛼𝜀∶𝜀)
𝛤 ∣ 𝜇[𝜄1(𝑥+

1).𝑐1∣𝜄2(𝑥+
2).𝑐2]∶+ ⊢ 𝛼𝜀∶𝜀

(⊕⊢)

𝛤 ⊢ 𝜇<>∶ − ∣
(⊢⊤) (No (⊤⊢) rule)

(No (⊢0) rule)
𝛤 ∣ 𝜇[]∶+ ⊢ 𝛼𝜀∶𝜀

(0⊢)

Figure V.2.1.h: Logic rules for shifts

𝑐∶(𝛤 ⊢ 𝛼+∶+)
𝛤 ⊢ 𝜇{𝛼+}.𝑐∶ − ∣

(⊢⇑)
𝛤 ∣ 𝑠+∶+ ⊢ 𝛼𝜀∶𝜀

𝛤 ∣ {𝑠+}∶ − ⊢ 𝛼𝜀∶𝜀
(⇑⊢)

𝛤 ⊢ 𝑣−∶ − ∣

𝛤 ⊢ {𝑣−}∶+ ∣
(⊢⇓)

𝑐∶(𝛤, 𝑥−∶ − ⊢ 𝛼𝜀∶𝜀)
𝛤 ∣ 𝜇{𝑥−}.𝑐∶+ ⊢ 𝛼𝜀∶𝜀

(⇓⊢)

124

V. Polarized calculi with arbitrary constructors

Figure V.2.1.i: Logic rules for negations

(Inoperable (⊢¬−) rule) (Inoperable (¬−⊢) rule)

(Inoperable (⊢¬+) rule) (Inoperable (¬+⊢) rule)

125

V. Polarized calculi with arbitrary constructors

Inoperable rules

The restriction prevent the use of some some rules:

Definition V.2.3

A typing rule of L
#”𝜏
p is said to be operable in Lm

#”𝜏
p (resp. operable in Li

#”𝜏
p) when there ex-

ists a derivation that a term isminimalistically (resp. intuitionistically)well-polarized
that uses an instance of that typing rule.

Example V.2.4

The core rules, the left structural rules, and the logic rules for→, ⇓, ⇑,⊗,⊕, &, 1, 0,
and ⊤ are operable in Lm

#”𝜏
p, while the right structural rules and the logic rules for ¬−,

¬+, `, and ⊥ are not.

Note that removing type formers whose typing rules are not operable does not change the
calculus, e.g.

Lm→⇓⇑¬−¬+⊗`⊕&1⊥0⊤
p = Lm→⇓⇑⊗⊕&10⊤

p
Operability of logic rules in Lm

#”𝜏
p can be fully characterized via fairly simple criteria:

Fact V.2.5

For logic rules, we have:

(‘𝜏𝑗−𝑘 ⊢) is operable in Lm #”𝜏
p ⇔ ‘

𝜏𝑗−
𝑘 has a single stack argument

(⊢𝜏𝑗−) is operable in Lm #”𝜏
p ⇔ ∀𝑘, ‘𝜏

𝑗
−
𝑘 has a single stack argument

(⊢v𝜏𝑗+𝑘) is operable in Lm #”𝜏
p ⇔ v

𝜏𝑗+
𝑘 has a no stack argument

(𝜏𝑗+⊢) is operable in Lm
#”𝜏
p ⇔ ∀𝑘, v𝜏

𝑗
+
𝑘 has a no stack argument

Proof

Proofs that rules are not operable and the⇒ implications are by case analysis on the
number of succedents in each sequent of the rule. Proofs that rules are operable and
the ⇐ implications simply exhibit a derivation in Lm

#”𝜏
p that uses the rule. For (⊢𝜏𝑗−)

and (⊢v𝜏𝑗+𝑘), any derivation that
‘
𝜏𝑗−
𝑘 (

#”𝑥 , 𝛼𝜀, #”𝑦) and v
𝜏𝑗+
𝑘 (

#”𝑥)

are minimalistically well-polarized works, and for (𝜏𝑗−⊢) and (𝜏𝑗+⊢), any derivation

126

V. Polarized calculi with arbitrary constructors

that
𝜇<‘𝜏𝑗−1 (# ”𝑥1 , 𝛼

𝜀1
1 ,

#”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀1
1 ⟩

𝜀1

⋮
‘
𝜏𝑗−
𝑙 (#”𝑥𝑙 , 𝛼

𝜀𝑙
𝑙 ,

#”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙
𝑙 ⟩

𝜀𝑙 > and 𝜇[v𝜏𝑗+1 (# ”𝑥1). ⟨𝑦𝜀1∣𝛼𝜀⟩𝜀
⋮

v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). ⟨𝑦𝜀𝑙 ∣𝛼𝜀⟩𝜀]
are minimalistically well-polarized works.

Operability of rules in Li
#”𝜏
p is a bit more complex:

Example V.2.6

All rules that were operable in Lm
#”𝜏
p are still operable in Li

#”𝜏
p. Among rules that were

inoperable in Lm
#”𝜏
p, the right contraction rules, the right permutation rules, the weak-

ening rule for terms (⊢w𝑡), and the logic rule (⊢`) remain inoperable in Li #”𝜏
p, while

the left logic rules (⊥⊢), (¬−⊢), and (¬+⊢) become operable in Li
#”𝜏
p. The operability

of the remaining rules depends on the ability to instanciate enough of the premises
with sequents that have no succedents. The rule (⊢⊥) (resp. (⊢¬−)) is always oper-
able in Li

#”𝜏
p because this ability is provided by the corresponding left logic rule (⊥⊢)

(resp. (¬−⊢))a. The rules (⊢w𝑐), (⊢w𝑒), (`⊢), and (⊢¬+)may be operable in Li #”𝜏
p or

not depending on what type formers are in #”𝜏: none are operable in Li`¬+
p , the first two

are operable in Li`¬+0
p while the latter two are not, and all four are operable in Li`¬+⊥

p
and in Li⇑`¬+0

p .
aIndeed, the 𝜂-expansion of 𝑥−

𝜇(̃).⟨𝑥−∣(̃)⟩−, (resp. 𝜇¬−(𝑦+).𝑦⟨𝑥−∣¬−(𝑦+)⟩−)
is always in Li

#”𝜏
p (assuming that ⊥ ∈ #”𝜏 (resp. ¬− ∈ #”𝜏)).

This characterization can most likely be generalized to arbitrary type formers by defining
𝐗 = {𝜀 ∈ {+, − }∣the judgement 𝛤 ∣ 𝑠𝜀∶𝜀 ⊢ is derivable in Li

#”𝜏
p for some 𝑠𝜀 and 𝛤}

(which is such that − ∈ 𝐗 implies + ∈ 𝐗 because we can form 𝜇𝑥+.⟨𝑦−∣𝑠−⟩−) and using
conditions such as “‘𝜏

𝑗
−
𝑘 has at most one stack argument whose polarity is not in 𝐗”, but we

have no use for such a characterization, and therefore do not work out the details here.

Inclusions

We of course have inclusions:

Fact V.2.7

For any #”𝜏, we have
Lm

#”𝜏
p ⊆ Li

#”𝜏
p ⊊ L

#”𝜏
p

127

V. Polarized calculi with arbitrary constructors

Proof

The inclusions are immediate. We have Li
#”𝜏
p ⊉ L

#”𝜏
p because for 𝛼𝜀 ≠ 𝛽𝜀,

Li
#”𝜏
p ∌ ⟨𝜇𝛼𝜀.⟨𝑥𝜀∣𝛽𝜀⟩𝜀∣𝛽𝜀⟩𝜀 ∈ L

#”𝜏
p

The first inclusion may be an equality or not depending on #”𝜏:

Fact V.2.8

The following are equivalent:
• (i) there exists a derivation of well-polarization which is valid in Li

#”𝜏
p but not in

Lm
#”𝜏
p;

• (ii) there exists a derivation of well-polarization which is valid in Li
#”𝜏
p but not in

Lm
#”𝜏
p, and whose conclusion is of the shape

𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢
i.e. has no succedent;

• (iii) there exists a stack 𝑠𝜀 in Li
#”𝜏
p such that 𝛤 ∣ 𝑠𝜀∶𝜀 ⊢ is derivable for some 𝛤;

• (iv) at least one of the following holds:

– (a) there exists a stack constructor ‘𝜏
𝑗
−
𝑘 with zero stack arguments (e.g.

¬−(𝑣+) or (̃)); or

– (b) there exists a postitive type former 𝜏𝑗+ whose value constructors v
𝜏𝑗+
𝑘 all

have exactly one stack arguments (e.g. ¬+ or 0).

• (v) there exists a stack 𝑠𝜀 in Li
#”𝜏
p of the shape

𝑠𝜀 = ‘𝜏
𝑗
−
𝑘 (

#”𝑥) (e.g. ¬−(𝑥+) or (̃))
or

𝑠𝜀 = 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼
𝜀1
1 ,

#”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀1
1 ⟩

𝜀1

⋮
v
𝜏𝑗+
𝑙 (#”𝑥𝑙 , 𝛼

𝜀𝑙
𝑙 ,

#”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙
𝑙 ⟩

𝜀𝑙] (e.g. 𝜇¬+(𝛼−).𝛼⟨𝑥−∣𝛼−⟩− or 𝜇[])

Furthermore, if all positive type formers in #”𝜏 have at least one constructor (i.e. there
are no copies of 0), then these are also equivalent to:

• (vi) Lm
#”𝜏
p ⊊ Li

#”𝜏
p.

In particular, for #”𝜏 ⊆ {→⇓⇑¬−¬+⊗`⊕&1⊥⊤}a, we have
Lm

#”𝜏
p ⊊ Li

#”𝜏
p ⇔ #”𝜏 ∩ {¬−¬+⊥} ≠ ∅

aNote the absence of 0.

128

V. Polarized calculi with arbitrary constructors

Proof sketch (See page 189 for details)

The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i) ⇐ (iv) are either immediate or
by induction on the derivation, and in the particular case, the implication (v) ⇒ (iv)
is immediate.

Straightforwardly minimalistic type formers

The restriction to sequents with exactly one (resp. at most one) conclusion is mostly used in
systems in which “classical” type formers have already been removed, and for an arbitrary
set of type formers #”𝜏, there might be some subtleties that Definition V.2.2 fails to consider5.
However, for some sets of type formers, no such subtleties arise:

Definition V.2.9

A negative type former is said to be straightforwardly minimalistic when all its rules
are operable in Lm

#”𝜏
p, and a positive type former is said to be straightforwardly mini-

malisticwhen all its rules are operable in Lm
#”𝜏
p and it has at least one constructor (i.e.

it is not a copy of 0).

Example V.2.10

The type formers→,⇓,⇑,⊗,⊕,&, 1, and⊤ are straightforwardlyminimalistic, while
¬−, ¬+, `, 0, and ⊥ are not.

The restriction to type formers that are operable in Lm
#”𝜏
p is fairly natural: we remove un-

wanted type formers before applying the restriction. The rejection of 0 is a bit harder to
justify, but is not completely unheard of6, not completely arbitrary7, and fairly harmless:

5For example, negations can not be used in Lm
#”𝜏
p while some sequents with negations are provable in minimal

logic according to the ncatlab page on minimal logic.
6The type former 0 needs to be removed to ensure that the teleological version of 𝐈𝐋𝐋 is faithful [Gir11, p. 217].
7One could restrict

𝛤 ∣ 𝜇[]∶0 ⊢ 𝛥
(0⊢) to

∣ 𝜇[]∶0 ⊢
This would have no effect in L

#”𝜏
p since the full rule would be derivable by composing the restricted rule with

weakening rules, but this would make the rule (0⊢) inoperable in Lm
#”𝜏
p.

Furthermore, this restriction can be seen as an instance of a natural and systematic transformation of
additive rules that allows them to have different contexts in their premises and takes their unions in the
conclusions, e.g. replacing

𝑐1∶(𝛤, 𝑥+
1 ∶𝐴1

+ ⊢ 𝛥) 𝑐2∶(𝛤, 𝑥+
2 ∶𝐴2

+ ⊢ 𝛥)
𝛤 ∣ 𝜇[𝜄1(𝑥+

1).𝑐1∣𝜄2(𝑥+
2).𝑐2]∶𝐴1

+ ⊕𝐴2
+ ⊢ 𝛥

(⊕⊢) by
𝑐1∶(𝛤1, 𝑥+

1 ∶𝐴1
+ ⊢ 𝛥1) 𝑐2∶(𝛤2, 𝑥+

2 ∶𝐴2
+ ⊢ 𝛥2)

𝛤1 ∪ 𝛤2 ∣ 𝜇[𝜄1(𝑥+
1).𝑐1∣𝜄2(𝑥+

2).𝑐2]∶𝐴1
+ ⊕𝐴2

+ ⊢ 𝛥1 ∪ 𝛥2

For other additive types, this yields a more general rule which is derivable in L
#”𝜏
p by composing the normal

rules with weakening rules, but for (0⊢), since there are no premises, we get the neutral element for context
union, i.e. the empty context.

129

https://ncatlab.org/nlab/show/minimal+logic

V. Polarized calculi with arbitrary constructors

Fact V.2.11

Given a set of straightforwardly minimalistic type formers #”𝜏, for any term 𝓉, we have
𝓉′ ∈ Lm

#”𝜏0
p ⇔ ∃𝓉 ∈ Lm

#”𝜏
p,𝓉 ∗

0 𝓉′

i.e. terms of Lm
#”𝜏0
p are exactly those of Lm

#”𝜏
p with some positive stacks replaced by 𝜇[].

Proof

The ⇒ implication is by induction on the derivation that 𝓉′ ∈ Lm
#”𝜏0
p , and the ⇐ im-

plication follows from Lm
#”𝜏
p ⊆ Lm

#”𝜏0
p and closure of Lm

#”𝜏0
p under 0, which is proven by

induction on the derivation of 𝓉 0 𝓉′.

Restricting to straightforwardly minimalistic type formers forces all commands and eval-
uation contexts to have at least one free stack variable (which is crucial for):

Fact V.2.12

Given a set of straightforwardly minimalistic type formers #”𝜏, for any evaluation con-
text 𝑒𝜀 (resp. command 𝑐) of L

#”𝜏
p, we have

|FV𝒮(𝑒𝜀)| ≥ 1 (resp. |FV𝒮(𝑐)| ≥ 1)
In particular, there are no derivations whose conclusion is of the shape

𝛤 ∣ 𝑒𝜀∶𝜀 ⊢ (resp. 𝑐∶(𝛤 ⊢))

Proof

By induction on the derivation that 𝑒𝜀 (resp. 𝑐) is well-polarized. The restriction on
derivations follows by Fact V.1.19.

Note that this property fails if 0 ∈ #”𝜏:
𝛤 ∣ 𝜇[]∶+ ⊢ 𝛼𝜀∶𝜀 but FV𝒮(𝜇[]) = ∅

By forbidding these judgements, the restriction to straightforwardlyminimalistic type for-
mers erases the distinction between Lm

#”𝜏
p and Li

#”𝜏
p:

Fact V.2.13

For any set of straightforwardly minimalistic type formers #”𝜏, we have Lm
#”𝜏
p = Li

#”𝜏
p.

Proof

By the previous fact.

130

V. Polarized calculi with arbitrary constructors

V.2.2. A syntax for the minimalistic fragment

Characterization of Lm
#”𝜏
p via free stack variables

The Lm
#”𝜏
p calculus can be characterized as a subcalculus of L

#”𝜏
p as follows:

Proposition V.2.14

Given a set of straightforwardly minimalistic type formers #”𝜏, a term 𝓉 of L
#”𝜏
p is in Lm

#”𝜏
p,

if and only if all of the following hold:

• for any subexpression 𝑡𝜀 of 𝓉, |FV𝒮(𝑡𝜀)| = 0;

• for any sub-evaluation-context 𝑒𝜀 of 𝓉, |FV𝒮(𝑒𝜀)| = 1; and

• for any subcommand 𝑐 of 𝓉, |FV𝒮(𝑐)| = 1 (and this last condition on commands
is redundant).

Proof

• ⇒ The≤ inequalities are given byFactV.1.19 and the≥ inequalities byFactV.2.12.

• ⇐ It suffices to remove all right weakening rules in the derivation. More pre-
cisely, we show by induction on the derivation that

𝛤 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛥, (resp. 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛥, 𝑐∶(𝛤 ⊢ 𝛥))
implies

𝛤 ⊢m 𝑡𝜀∶𝜀 ∣, (resp. 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢m 𝛼𝜀⋆∶𝜀⋆, 𝑐∶(𝛤 ⊢m 𝛼𝜀⋆∶𝜀⋆))
for some 𝛼𝜀⋆ . For right weakening rules, we simply apply the induction hy-
pothesis to the premise, and for other rules, we apply the induction hypothesis
to the premises and then reapply the same rule. This works for the (⊢𝜏𝑗−) (resp.
(⊢𝜇)) rule because the |FV𝒮(𝜇<…>)| = 0 (resp. |FV𝒮(𝜇𝛼𝜀.𝑐)| = 0) hypothesis
ensures that the free stack variables it binds are exactly those that are free in the
subcommands, and for the (𝜏𝑗+⊢) rule of types with more than one constructor
because the condition |FV𝒮(𝜇[…])| = 1 ensures that all the variables 𝛼𝜀⋆ given
by the induction hypothesis are the same.

• The condition on commands is redundant because
|FV𝒮(⟨𝑡𝜀∣𝑒𝜀⟩𝜀)| = |FV𝒮(𝑡𝜀) ∪ FV𝒮(𝑒𝜀)| = |∅ ∪ FV𝒮(𝑒𝜀)| = |FV𝒮(𝑒𝜀)| = 1

Output polarities

The inferrence rules that define Lm
#”𝜏
p can be seen as production rules of a general grammar

whose non-terminal symbols are the judgements, and whose terminal symbols are paren-

131

V. Polarized calculi with arbitrary constructors

theses and rule names: an inferrence rule
first premise … last premise

conclusion
name

becomes a production rule
conlusion→ name((first premise),… , (last premise))

This grammar is not really a syntax (i.e. it is not context-free) because there are infinitely
many distinct judgements. By Proposition V.2.14, we can discard 𝛤. This is not sufficient be-
cause𝛼𝜀⋆ ranges over infinitelymanynames, andwe cannot discard it because𝜇𝛽𝜀.⟨𝑥𝜀⋆ ∣𝛼𝜀⋆⟩𝜀⋆
being in Lm

#”𝜏
p depends on whether 𝛼𝜀⋆ = 𝛽𝜀 or not. Instead, we switch to a presentation

where stack variable names 𝛼 are replace by de Bruijn indices ⋆0 , ⋆1 , and so on, and we
write⋆ for⋆0 . With this presentation, judgements are of the shape

𝛤 ⊢ 𝑡𝜀∶𝜀 ∣, 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢⋆𝜀⋆∶𝜀⋆, or 𝑐∶(𝛤 ⊢⋆𝜀⋆∶𝜀⋆)
and 𝜇𝛽𝜀.⟨𝑥𝜀⋆ ∣⋆𝜀⋆⟩𝜀⋆ is in Lm

#”𝜏
p if and only if 𝛽𝜀 = ⋆𝜀⋆ . By erasing 𝛤 and replacing it by ®, we

get a finite set of judgements:
® ⊢ 𝑡+∶+ ∣ ® ⊢ 𝑡−∶ − ∣

𝑐∶(® ⊢⋆+∶+) 𝑐∶(® ⊢⋆−∶ −)
® ∣ 𝑒+∶+ ⊢⋆+∶+ ® ∣ 𝑒+∶+ ⊢⋆−∶ −
® ∣ 𝑒−∶ − ⊢⋆+∶+ ® ∣ 𝑒−∶ − ⊢⋆−∶ −

We introduce concise notations that allowmaking explicit which one of these judgements
holds for the term under consideration:

Definition V.2.15

Given an evaluation context 𝑒𝜀 (resp. command 𝑐) of Lm
#”𝜏
p, we say that it has output

polarity 𝜀⋆ when there exists a derivation of
𝑐∶(𝛤 ⊢⋆𝜀⋆∶𝜀⋆) (resp. 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢⋆𝜀⋆∶𝜀⋆)

for some 𝛤. We write 𝑒𝜀↝𝜀⋆ (resp. 𝑐↝𝜀⋆) for evaluation contexts 𝑒𝜀 (resp. commands 𝑐)
of output polarity 𝜀⋆. We call the polarity 𝜀 of a term 𝑡𝜀 (resp. evaluation context 𝑒𝜀) its
interaction polarity, and sometimes also call the interaction polarity 𝜀 of an evaluation
context 𝑒𝜀↝𝜀⋆ its input polarity.

A BNF grammar for Lm
#”𝜏
p

132

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.2: The Lm
#”𝜏
p calculus

Figure V.2.2.a: Syntax

Negative values / expressions: Negative stacks:
𝑣−, 𝑤− ⩴ 𝑥−∣𝜇⋆−.𝑐↝− 𝑠−↝𝜀 ⩴ ⋆−} 𝜀=−

∣𝜇<‘𝜏1−1 (# ”𝑥1 ,⋆𝜀1,1).𝑐1↝𝜀1,1 ∣…∣‘
𝜏1−
𝑙−1 (

”𝑥𝑙−1 ,⋆
𝜀1,𝑙−1).𝑐𝑙

−
1
↝𝜀1,𝑙−1 > ∣‘𝜏

1
−
1 (#”𝑣 , 𝑠𝜀1,1↝𝜀) ∣… ∣‘𝜏

1
−
𝑙−1 (

#”𝑣 , 𝑠𝜀1,𝑙−1 ↝𝜀)
∣⋮ ∣⋮ ∣⋱∣⋮
∣𝜇<‘𝜏𝑚−1 (# ”𝑥1 ,⋆𝜀𝑚,1).𝑐1↝𝜀𝑚,1 ∣…∣‘

𝜏𝑚−
𝑙−𝑚(

”𝑥𝑙−𝑚 ,⋆
𝜀𝑚,𝑙−𝑚).𝑐𝑙

−
𝑚
↝𝜀𝑚,𝑙−𝑚> ∣‘𝜏

𝑚
−
1 (#”𝑣 , 𝑠𝜀𝑚,1↝𝜀)∣… ∣‘𝜏

𝑚
−
𝑙−𝑚(

#”𝑣 , 𝑠𝜀𝑚,𝑙−𝑚↝𝜀)
Negative evaluation contexts:

𝑒−↝𝜀 ⩴ stk−(𝑠−↝𝜀)∣𝜇𝑥−.𝑐↝𝜀

Positive values: Positive stacks / evaluation contexts:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+↝𝜀, 𝑒+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀

∣v𝜏
1
+
1 (

#”𝑣)∣… ∣v𝜏
1
+
𝑙+1
(#”𝑣) ∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐
𝑙+1
↝𝜀]

∣⋮ ∣⋱∣⋮ ∣⋮

∣v𝜏
𝑛
+
1 (

#”𝑣)∣… ∣v𝜏
𝑛
+
𝑙+𝑛
(#”𝑣) ∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐
𝑙+𝑛
↝𝜀]

Positive expressions:
𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇⋆+.𝑐↝+

Commands:
𝑐↝𝜀 ⩴ ⟨𝑡+∣𝑒+↝𝜀⟩+∣⟨𝑡−∣𝑒−↝𝜀⟩−

133

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.2.b: Operational reduction

⟨𝜇⋆𝜀.𝑐↝𝜀∣𝑠𝜀⟩𝜀 𝜇 𝑐↝𝜀[𝑠𝜀∕⋆𝜀]
⟨𝑣𝜀1 ∣𝜇𝑥𝜀1 .𝑐↝𝜀2⟩

𝜀1
𝜇 𝑐↝𝜀2[𝑣𝜀1∕𝑥𝜀1]

⟨𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1).𝑐1↝𝜀𝑗,1 ∣…∣‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,⋆𝜀𝑗,𝑙).𝑐𝑙↝𝜀𝑗,𝑙>∣‘𝜏𝑗−𝑘 (#”𝑣 , 𝑠𝜀𝑗,𝑘↝𝜀)⟩− 𝜏𝑗−
𝑐𝑘↝𝜀𝑗,𝑘[#”𝑣 ∕ # ”𝑥𝑘 , 𝑠𝜀𝑗,𝑘↝𝜀∕⋆𝜀𝑗,𝑘]

⟨v𝜏𝑗+𝑘 (#”𝑣)∣𝜇[v𝜏𝑗+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v
𝜏𝑗+
𝑙 (𝑥𝑙).𝑐𝑙↝𝜀]⟩+ 𝜏𝑗+

𝑐𝑘↝𝜀[#”𝑣 ∕ # ”𝑥𝑘]

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (
⋃

𝑗 𝜏𝑗+)

Figure V.2.2.c: Top-level 𝜂-expansion

𝑡𝜀 𝜇 𝜇⋆𝜀.⟨𝑡𝜀∣⋆𝜀⟩𝜀

𝑒𝜀1↝𝜀2 𝜇 𝜇𝑥𝜀1 .⟨𝑥𝜀1 ∣𝑒𝜀1↝𝜀2⟩
𝜀1 if 𝑥𝜀1 fresh w.r.t. 𝑒𝜀1↝𝜀2

𝑣− 𝜏𝑗−
𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1). ⟨𝑣−∣‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1)⟩−

⋮
‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,⋆𝜀𝑗,𝑙). ⟨𝑣−∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙)⟩− >if # ”𝑥1 ,… , #”𝑥𝑙 fresh w.r.t. 𝑣−

𝑠+↝𝜀 𝜏𝑗+
𝜇[v𝜏𝑗+1 (# ”𝑥1). ⟨v𝜏𝑗+1 (# ”𝑥1)∣𝑠+↝𝜀⟩

+

⋮

v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). ⟨v𝜏𝑗+𝑙 (#”𝑥𝑙)∣𝑠+↝𝜀⟩+] if # ”𝑥1 ,… , #”𝑥𝑙 fresh w.r.t. 𝑠+↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ (
⋃

𝑗
𝜏𝑗−) ∪ (

⋃

𝑗
𝜏𝑗+)

134

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.3: The Lm→⇓⇑⊗⊕&10⊤
p calculus

Figure V.2.3.a: Syntax

Negative values / expressions: Negative stacks:
𝑣−, 𝑤− ⩴ 𝑥−∣𝜇⋆−.𝑐↝− 𝑠−↝𝜀 ⩴ ⋆−} 𝜀=−

∣𝜇(𝑥+ ∙⋆−).𝑐↝− ∣𝑣+ ∙ 𝑠−↝𝜀

∣𝜇<(𝜋1 ∙⋆−).𝑐1↝−∣(𝜋2 ∙⋆−).𝑐2↝−> ∣𝜋1 ∙ 𝑠−↝𝜀∣𝜋2 ∙ 𝑠−↝𝜀

∣𝜇{𝛼+}.𝑐 ∣{𝑠+↝𝜀}
∣𝜇<>

Negative evaluation contexts:
𝑒−↝𝜀 ⩴ stk−(𝑠−↝𝜀)∣𝜇𝑥−.𝑐↝𝜀

Positive values: Positive stacks / evaluation contexts:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+↝𝜀, 𝑒+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀

∣(𝑣+⊗𝑤+) ∣𝜇(𝑥+⊗𝑦+).𝑐↝𝜀

∣ 𝜄1(𝑣+)∣ 𝜄2(𝑣+) ∣𝜇[𝜄1(𝑥+
1).𝑐1↝𝜀∣𝜄2(𝑥+

2).𝑐2↝𝜀]
∣{𝑣−} ∣𝜇{𝑥−}.𝑐↝𝜀

∣() ∣𝜇().𝑐↝𝜀

Positive expressions:
𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇⋆+.𝑐↝+

Commands:
𝑐↝𝜀 ⩴ ⟨𝑡+∣𝑒+↝𝜀⟩+∣⟨𝑡−∣𝑒−↝𝜀⟩−

135

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.3.b: Operational reduction

⟨𝜇⋆𝜀.𝑐↝𝜀∣𝑠𝜀⟩𝜀 𝜇 𝑐↝𝜀[𝑠𝜀∕⋆𝜀]
⟨𝑣𝜀1 ∣𝜇𝑥𝜀1 .𝑐↝𝜀2⟩

𝜀1
𝜇 𝑐↝𝜀2[𝑣𝜀1∕𝑥𝜀1]

⟨𝜇(𝑥+ ∙⋆−).𝑐↝−∣𝑣+ ∙ 𝑠−↝𝜀⟩− → 𝑐↝−[𝑣+∕𝑥+, 𝑠−↝𝜀∕⋆−]
⟨𝜇{⋆+}.𝑐↝+∣{𝑠+↝𝜀}⟩− ⇑ 𝑐↝+[𝑠+↝𝜀∕⋆+]

⟨𝜇<(𝜋1 ∙⋆−).𝑐1↝−∣(𝜋2 ∙⋆−).𝑐2↝−>∣𝜋𝑖 ∙ 𝑠−↝𝜀⟩
−

& 𝑐𝑖↝−[𝑠−↝𝜀∕⋆−]
(⊤ is trivial)

⟨{𝑣−}∣𝜇{𝑥−}.𝑐↝𝜀⟩+ ⇓ 𝑐↝𝜀[𝑣−∕𝑥−]
⟨(𝑣+⊗𝑤+)∣𝜇(𝑥+⊗𝑦+).𝑐↝𝜀⟩+ ⊗ 𝑐↝𝜀[𝑣+∕𝑥+, 𝑤+∕𝑦+]

⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+
1).𝑐1↝𝜀∣𝜄2(𝑥+

2).𝑐2↝𝜀]⟩+ ⊕ 𝑐𝑖↝𝜀[𝑣+∕𝑥+
𝑖]

⟨()∣𝜇().𝑐↝𝜀⟩+ 1 𝑐↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ → ∪ & ∪ ⇑ ∪ ⊗ ∪ ⊕ ∪ ⇓ ∪ 1

136

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.3.c: Top-level 𝜂-expansion

𝑡𝜀 𝜇 𝜇⋆𝜀.⟨𝑡𝜀∣⋆𝜀⟩𝜀

𝑒𝜀1↝𝜀2 𝜇 𝜇𝑥𝜀1 .⟨𝑥𝜀1 ∣𝑒𝜀1↝𝜀2⟩
𝜀1 if 𝑥𝜀1 fresh w.r.t. 𝑒𝜀1↝𝜀2

𝑣− 𝜏𝑗−
𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1). ⟨𝑣−∣‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1)⟩−

⋮
‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,⋆𝜀𝑗,𝑙). ⟨𝑣−∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙)⟩− >if # ”𝑥1 ,… , #”𝑥𝑙 fresh w.r.t. 𝑣−

𝑠+↝𝜀 𝜏𝑗+
𝜇[v𝜏𝑗+1 (# ”𝑥1). ⟨v𝜏𝑗+1 (# ”𝑥1)∣𝑠+↝𝜀⟩

+

⋮

v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). ⟨v𝜏𝑗+𝑙 (#”𝑥𝑙)∣𝑠+↝𝜀⟩+] if # ”𝑥1 ,… , #”𝑥𝑙 fresh w.r.t. 𝑠+↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ (
⋃

𝑗
𝜏𝑗−) ∪ (

⋃

𝑗
𝜏𝑗+)137

V. Polarized calculi with arbitrary constructors

Given a set of straightforwardly minimalistic type formers #”𝜏, the syntax of the Lm
#”𝜏
p cal-

culus is given in Figure V.2.2a, where 𝜀𝑗,𝑘 denotes the (input) polarity of the stack argu-
ment of ‘𝜏

𝑗
−
𝑘 . Note that although it is not explicit in the BNF grammar, the restriction to

straightforwardly minimalistic types only allows strictly positive 𝑙+𝑗 . Instanciated with #”𝜏 =
→⇓⇑⊗⊕&10⊤, this yields Figure V.2.3a.
Since the main difference between the syntax of 𝑠𝜀↝+ and 𝑠𝜀↝− is only whether it contains

⋆𝜀 or not (with 𝑠+↝+ containing⋆+, 𝑠−↝− containing⋆−, and neither 𝑠+↝− nor 𝑠−↝+ containing
any⋆𝜀), we avoid duplications by having side conditions in the grammar, e.g.

𝑠+↝𝜀 ⩴ ⋆+} 𝜀=+
means that 𝑠+↝+ can be⋆+ but 𝑠+↝− can not. For example,

𝑠+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀

∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v
𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀]

∣⋮
∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀]

stands for
𝑠+↝+ ⩴⋆+∣𝜇𝑥+.𝑐↝+

∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝+∣…∣v
𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐
𝑙+1
↝+]

∣⋮
∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝+∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐
𝑙+𝑛
↝+]

and
𝑠+↝− ⩴ 𝜇𝑥+.𝑐↝−

∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝−∣…∣v
𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐
𝑙+1
↝−]

∣⋮
∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝−∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐
𝑙+𝑛
↝−]

Fact V.2.16

The grammar given in Figure V.2.2a describes exactly all minimalistic terms.

Proof

By Proposition V.2.14 and induction on the term.

138

V. Polarized calculi with arbitrary constructors

Remark V.2.17

For Li
#”𝜏
p, there are three additional kinds of judgements

𝑐∶(® ⊢), ® ∣ 𝑒+∶+ ⊢, and ® ∣ 𝑒−∶ − ⊢

Applying the same method as for Lm
#”𝜏
p, we could introduce extra non-terminal sym-

bols 𝑐↝∅, 𝑒+↝∅, and 𝑒−↝∅ for the judgements above. This would yield a grammar that
tracks the uses of right weakening rules, which makes it ambiguous: there are two
derivations

𝑐↝𝜀 → 𝜇[v𝜏𝑗+1 (# ”𝑥1 ,⋆𝜀).𝑐1↝𝜀∣…∣v
𝜏𝑗+
𝑙 (

#”𝑥𝑙 ,⋆𝜀).𝑐𝑙↝𝜀]→∗ 𝜇[v𝜏𝑗+1 (# ”𝑥1 ,⋆𝜀).𝑐1↝∅∣…∣v
𝜏𝑗+
𝑙 (

#”𝑥𝑙 ,⋆𝜀).𝑐𝑙↝∅]
and

𝑐↝𝜀 → 𝑐↝∅ → 𝜇[v𝜏𝑗+1 (# ”𝑥1 ,⋆𝜀).𝑐1↝∅∣…∣v
𝜏𝑗+
𝑙 (

#”𝑥𝑙 ,⋆𝜀).𝑐𝑙↝∅]
that correspond to applying (⊢w𝑡) before and after (𝜏𝑗+⊢) respectively. This grammar
can be made non-ambiguous by explicitly tracking the free stack variables, but the
resulting grammar would be fairly tedious to work with.

V.2.3. Properties

Disubstitutions

In Lm
#”𝜏
p, we are only interested in some disubstitutions:

Definition V.2.18

A disubstitution is said to beminimalistic if its image is contained in Lm
#”𝜏
p, and it acts

non-trivially on at most one stack variable⋆𝜀.

The Lm
#”𝜏
p calculus is closed under minimalistic disubstiutions:

Fact V.2.19

For any minimalistic term 𝓉 and minimalistic disubstitution 𝜑, 𝑜[𝜑] is minimalistic
(resp. intuitionistic).

Proof

By induction on 𝓉.

Since expressions have no free stacks variables, a minimalistic disubstitution can always
be written as the composition of a value substitution and a stack substitution:

139

V. Polarized calculi with arbitrary constructors

Fact V.2.20

For any minimalistic disubstitution 𝜑 = 𝜎,⋆𝜀1 ↦ 𝑠𝜀1↝𝜀2 and minimalistic term 𝓉, we
have

𝓉[𝜑] = 𝓉[𝜎][𝑠𝜀1↝𝜀2∕⋆
𝜀1]

Proof

By induction on 𝓉. The base case 𝓉 =⋆𝜀 is immediate, the base case 𝓉 = 𝑥𝜀 boils down
to the fact that 𝑥𝜀[𝜎] is an expression and therefore has no stack variable, and in all
the remaining cases, the induction hypothesis immediately allows to conclude.

Reductions

Descriptions of the restriction of and to Lm
#”𝜏
p are given inFiguresV.2.2b andV.2.2c. Note in

particular that these only involve minimalistic disubstitutions, and Lm
#”𝜏
p is therefore closed

under the operational reduction , top-level 𝜂-expansion , and 𝜂-reduction , and their re-
spective contextual closures , , and :

Fact V.2.21: Closure of Lm
#”𝜏
p under

If 𝓉 𝓉′ and 𝓉 is minimalistic then so is 𝓉′.

Proof

Closure under follows from closure underminimalistic disubstitution (Fact V.2.19).
Closure under and is immediate. Closure under their contextual closures , and
follows by induction on the derivation.

Thanks to this closure property, disubstitutivity, confluence, postponement and factoriza-
tion transfer from L

#”𝜏
p to Lm

#”𝜏
p:

Fact V.2.22

In Lm
#”𝜏
p, the reductions , , , are disubstitutive.

Proof

Suppose that 𝓉 is a minimalistic term such that that 𝓉 ⇝ 𝓉′ for some reduction
⇝ ∈ { , , , }, and let 𝜑 be a minimalistic (resp. intuitionistic) disubstitution. By
disubstitutivity in L

#”𝜏
p of⇝, we have 𝑐[𝜑]⇝ 𝑐′[𝜑]. By Fact V.2.19, 𝑐[𝜑] is minimalistic,

and by Fact V.2.21 so is 𝑐′[𝜑].

140

V. Polarized calculi with arbitrary constructors

Proposition V.2.23: Confluence of in Lm
#”𝜏
p

In Lm
#”𝜏
p, is confluent .

Proof

By confluence in L
#”𝜏
p (Proposition ??) and closure of Lm

#”𝜏
p under (Fact V.2.21).

Proposition V.2.24: Postponement of ¬o after in Lm
#”𝜏
p

In Lm
#”𝜏
p, ¬o postpones after : if 𝓉 ∗ 𝓉′ then 𝓉 ∗ ¬o ∗ 𝓉′.

Proof

By postponement in L
#”𝜏
p (Proposition ??) and closure of Lm

#”𝜏
p under (Fact V.2.21).

Proposition V.2.25: Factorization of ∗ as ∗ ¬o ∗ in Lm
#”𝜏
p

In Lm
#”𝜏
p, ∗ factorizes as ∗ = ∗ ¬o ∗.

Proof

By factorization in L
#”𝜏
p (Proposition ??) and closure of Lm

#”𝜏
p under (Fact V.2.21).

141

V. Polarized calculi with arbitrary constructors

V.3. A polarized 𝜆-calculus with focus equivalent to Lm
#”𝜏
p: 𝜆

#”𝜏
p

In this section, we continue the process of turning the L
#”𝜏
p calculus into a 𝜆-calculus by intro-

ducing the 𝜆
#”𝜏
p calculus, a polarized 𝜆-calculus with focus that serves as an alternative syntax

for Lm
#”𝜏
p that looks like the 𝜆-calculus with some underlinements -, and defining two inverse

translations that relate them:

𝜆
#”𝜏
p Lm

#”𝜏
p

⋅
⃖⃗

⋅
⃖⃖

The 𝜆
#”𝜏
p calculus is obtained by first building an outside-out description of Lm

#”𝜏
p, and then

simply renaming a few things. All operations operations on Lm
#”𝜏
p are then transferred to 𝜆

#”𝜏
p

by mapping their inputs through ⋅
⃖⃗
and their outputs through ⋅

⃖⃖
.

V.3.1. The outside-out description of the Lm
#”𝜏
p calculus

The first step towards building the 𝜆
#”𝜏
p calculus is to build the outside-out description of the

Lm
#”𝜏
p calculus8 described in Figure V.3.1. The basic idea is that every negative stack 𝑠−↝𝜀 is of

the shape
𝑠−↝𝜀 = ‘𝜏

𝑗𝑟−
𝑘𝑟 (#”𝑣𝑟, ‘𝜏

𝑗𝑟−1−
𝑘𝑟−1 (# ”𝑣𝑟−1,… ‘𝜏

𝑗2−
𝑘2 (#”𝑣2, ‘𝜏

𝑗1−
𝑘1 (

#”𝑣1, 𝑠0𝜀𝑗1 ,𝑘1↝𝜀))))
where 𝑠0𝜀𝑗1 ,𝑘1↝𝜀 is a stack variable⋆𝜀 or a 𝜇 binder, and can hence be decomposed as

𝑠−↝𝜀 = ‘𝜏
𝑗𝑟−
𝑘𝑟
(#”𝑣𝑟,⋆−)⚪ ‘𝜏

𝑗𝑟−1−
𝑘𝑟−1

(# ”𝑣𝑟−1,⋆−)⚪⋯⚪ ‘𝜏
𝑗2−
𝑘2
(#”𝑣2,⋆−)⚪ ‘𝜏

𝑗1−
𝑘1
(#”𝑣1,⋆𝜀𝑗1 ,𝑘1)⚪ 𝑠0𝜀𝑗1 ,𝑘1↝𝜀

where ⚪ is the associative operation defined by
𝑠�𝜀1↝𝜀2 ⚪ 𝑠▴𝜀2↝𝜀3 ≝ 𝑠�𝜀1↝𝜀2[𝑠▴𝜀2↝𝜀3∕⋆𝜀2]

The (inside-out) syntax of Lm
#”𝜏
p builds stacks from right-to-left as

𝑠−↝𝜀 = ‘𝜏
𝑗𝑟−
𝑘𝑟
(#”𝑣𝑟,⋆−)⚪ (‘𝜏𝑗𝑟−1−

𝑘𝑟−1
(# ”𝑣𝑟−1,⋆−)⚪ (⋯⚪ (‘𝜏𝑗2−𝑘2 (#”𝑣2,⋆−)⚪ (‘𝜏𝑗1−𝑘1 (#”𝑣1,⋆𝜀𝑗1 ,𝑘1)⚪ 𝑠0𝜀𝑗1 ,𝑘1↝𝜀))))

i.e. as
𝑠−↝𝜀 = ‘𝜏

𝑗𝑟−
𝑘𝑟
(#”𝑣𝑟,⋆𝜀𝑗𝑟 ,𝑘𝑟)[‘𝜏𝑗𝑟−1−

𝑘𝑟−1
(# ”𝑣𝑟−1,⋆𝜀𝑗𝑟−1 ,𝑘𝑟−1)[… ‘𝜏𝑗2−𝑘2 (#”𝑣2,⋆−)[‘𝜏𝑗1−𝑘1 (#”𝑣1,⋆𝜀𝑗1 ,𝑘1)[𝑠0𝜀𝑗1 ,𝑘1↝𝜀∕⋆𝜀𝑗1 ,𝑘1]∕⋆−] …∕⋆−]∕⋆−]

The outside-out description of Lm
#”𝜏
p instead builds them from the left-to-right as

𝑠−↝𝜀 = (((((⋆− ⚪ ‘𝜏
𝑗𝑟−
𝑘𝑟
(#”𝑣𝑟,⋆−))⚪ ‘𝜏𝑗𝑟−1−

𝑘𝑟−1
(# ”𝑣𝑟−1,⋆−))⚪ …)⚪ ‘𝜏𝑗2−𝑘2 (#”𝑣2,⋆−))⚪ ‘𝜏𝑗1−𝑘1 (#”𝑣1,⋆𝜀𝑗1 ,𝑘1))⚪ 𝑠0𝜀𝑗1 ,𝑘1↝𝜀

i.e. as
𝑠−↝𝜀 =⋆−[‘𝜏𝑗𝑟−𝑘𝑟 (#”𝑣𝑟,⋆−)∕⋆−][‘𝜏𝑗𝑟−1−

𝑘𝑟−1
(# ”𝑣𝑟−1,⋆−)∕⋆−] … [‘𝜏𝑗2−𝑘2 (#”𝑣2,⋆−)∕⋆−][‘𝜏𝑗1−𝑘1 (#”𝑣1,⋆𝜀𝑗1 ,𝑘1)∕⋆−][𝑠0𝜀𝑗1 ,𝑘1↝𝜀∕⋆𝜀𝑗1 ,𝑘1]

8In call-by-name (resp. call-by-value), the 𝜆-calculus with focus 𝜆→n (resp. 𝜆→v) could be build as an interme-
diate calculus between Li→n and 𝛌→N (resp. Li→v and 𝛌→V). While we could we could similarly build 𝜆

#”𝜏
p as an

intermediate calculus between Lm
#”𝜏
p and 𝛌

#”𝜏
P, this would involve a non-trivial amount of guesswork (because

𝛌 #”𝜏
P has not been defined yet), which is why we prefer the more systematic way of doing it described below.

142

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.1: Outside-out description of the Lm
#”𝜏
p calculus

Figure V.3.1.a: Commands, values, and expressions

Negative values / expressions: Incomplete simple commands:
𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣𝜇⋆−.𝑐↝− 𝑐↝𝜀 ⩴ 𝑡𝜀∣stk𝜀(⋆𝜀)

∣𝜇<‘𝜏1−1 (# ”𝑥1 ,⋆𝜀1,1).𝑐1↝𝜀1,1 ∣…∣‘
𝜏1−
𝑙−1 (

”𝑥𝑙−1 ,⋆
𝜀1,𝑙−1).𝑐𝑙

−
1
↝𝜀1,𝑙−1 > ∣𝑐↝−[‘𝜏1−1 (#”𝑣 ,⋆𝜀1,1)∕⋆−]

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝜀=𝜀1,1

∣… ∣𝑐↝−[‘𝜏1−𝑙−1 (#”𝑣 ,⋆𝜀1,𝑙−1)∕⋆−]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝜀=𝜀1,𝑙−1
∣⋮ ∣⋮ ∣⋱∣⋮
∣𝜇<‘𝜏𝑚−1 (# ”𝑥1 ,⋆𝜀𝑚,1).𝑐1↝𝜀𝑚,1 ∣…∣‘

𝜏𝑚−
𝑙−𝑚(

”𝑥𝑙−𝑚 ,⋆
𝜀𝑚,𝑙−𝑚).𝑐𝑙

−
𝑚
↝𝜀𝑚,𝑙−𝑚> ∣𝑐↝−[‘𝜏𝑚−1 (#”𝑣 ,⋆𝜀𝑚,1)∕⋆−]

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝜀=𝜀𝑚,1

∣… ∣𝑐↝−[‘𝜏𝑚−𝑙−𝑚(#”𝑣 ,⋆𝜀𝑚,𝑙−𝑚)∕⋆−]
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝜀=𝜀𝑚,𝑙−𝑚

Simple commands:
𝑐↝𝜀 ⩴ ⟨𝑐↝𝜀⟩

±

Positive values: Commands:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑐↝𝜀 ⩴ ⟨𝑐↝𝜀⟩

±∣⟨𝑐↝+[𝜇𝑥+.𝑐↝𝜀∕⋆+]⟩±∣⟨𝑡−∣𝜇𝑥−.𝑐↝𝜀⟩−

∣v𝜏
1
+
1 (

#”𝑣)∣… ∣v𝜏
1
+
𝑙+1
(#”𝑣) ∣⟨𝑐↝+[𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐
𝑙+1
↝𝜀]∕⋆+]⟩±

∣⋮ ∣⋱∣⋮ ∣⋮

∣v𝜏
𝑛
+
1 (

#”𝑣)∣… ∣v𝜏
𝑛
+
𝑙+𝑛
(#”𝑣) ∣⟨𝑐↝+[𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐
𝑙+𝑛
↝𝜀]∕⋆+]⟩±

Positive expressions:
𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇⋆+.𝑐↝+

143

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.1.b: Stacks and evaluation contexts

Negative simple stacks: Positive simple stacks:
𝑠−↝𝜀 ⩴ ⋆−} 𝜀=− 𝑠+↝𝜀 ⩴ ⋆+} 𝜀=+

∣𝑠−↝−[‘𝜏1−1 (#”𝑣 ,⋆𝜀1,1)∕⋆−]
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝜀=𝜀1,1

∣… ∣𝑠−↝−[‘𝜏1−𝑙−1 (#”𝑣 ,⋆𝜀1,𝑙−1)∕⋆−]
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝜀=𝜀1,𝑙−1
∣⋮ ∣⋱∣⋮
∣𝑠−↝−[‘𝜏𝑚−1 (#”𝑣 ,⋆𝜀𝑚,1)∕⋆−]
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝜀=𝜀𝑚,1

∣… ∣𝑠−↝−[‘𝜏𝑚−𝑙−𝑚(#”𝑣 ,⋆𝜀𝑚,𝑙−𝑚)∕⋆−]
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

𝜀=𝜀𝑚,𝑙−𝑚

Negative stacks: Positive stacks / evaluation contexts:
𝑠−↝𝜀 ⩴ 𝑠−↝𝜀∣𝑠−↝+[𝜇𝑥+.𝑐↝𝜀∕⋆+] 𝑠+↝𝜀, 𝑒+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀

∣𝑠−↝+[𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v
𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐
𝑙+1
↝𝜀]∕⋆+] ∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏1+
𝑙+1 (

”𝑥𝑙+1).𝑐
𝑙+1
↝𝜀]

∣⋮ ∣⋮

∣𝑠−↝+[𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v
𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐
𝑙+𝑛
↝𝜀]∕⋆+] ∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v

𝜏𝑛+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐
𝑙+𝑛
↝𝜀]

Negative evaluation contexts:
𝑒−↝𝜀 ⩴ stk−(𝑠−↝𝜀)∣𝜇𝑥−.𝑐↝𝜀

144

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.2: Outside-out description of the Lm→⇓⇑⊗⊕&10⊤
p calculus

Figure V.3.2.a: Commands, values, and expressions

Negative values / expressions: Incomplete simple commands:
𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣𝜇⋆−.𝑐↝− 𝑐↝− ⩴ 𝑡−∣stk−(⋆−)

∣𝜇(𝑥+ ∙⋆−).𝑐↝− ∣𝑐↝−[𝑣+ ∙⋆−∕⋆−]
∣𝜇<(𝜋1 ∙⋆−).𝑐1↝−∣(𝜋2 ∙⋆−).𝑐2↝−> ∣𝑐↝−[𝜋1 ∙⋆−∕⋆−]∣𝑐↝−[𝜋2 ∙⋆−∕⋆−]
∣𝜇<>
∣ 𝑐↝+ ⩴ 𝑡+∣stk+(⋆+)
∣𝜇{⋆+}.𝑐 ∣𝑐↝−[{⋆+}∕⋆−]

Simple commands:
𝑐↝𝜀 ⩴ ⟨𝑐↝𝜀⟩

±

Positive values: Commands:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑐↝𝜀 ⩴ ⟨𝑐↝𝜀⟩

±∣⟨𝑐↝+[𝜇𝑥+.𝑐↝𝜀∕⋆+]⟩±∣⟨𝑡−∣𝜇𝑥−.𝑐↝𝜀⟩−

∣(𝑣+⊗𝑤+) ∣⟨𝑐↝+[𝜇(𝑥+⊗𝑦+).𝑐↝𝜀∕⋆+]⟩±

∣ 𝜄1(𝑣+)∣ 𝜄2(𝑣+) ∣⟨𝑐↝+[𝜇[𝜄1(𝑥+
1).𝑐1↝𝜀∣𝜄2(𝑥+

2).𝑐2↝𝜀]∕⋆+]⟩±
∣{𝑣−} ∣⟨𝑐↝+[𝜇{𝑥−}.𝑐↝𝜀∕⋆+]⟩±

∣() ∣⟨𝑐↝+[𝜇().𝑐↝𝜀∕⋆+]⟩±

Positive expressions:
𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇⋆+.𝑐↝+

145

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.2.b: Stacks and evaluation contexts

Negative simple stacks: Positive simple stacks:
𝑠−↝− ⩴⋆− 𝑠+↝+ ⩴⋆+

∣𝑠−↝−[𝑣+ ∙⋆−∕⋆−]
∣𝑠−↝−[𝜋1 ∙⋆−∕⋆−]∣𝑠−↝−[𝜋2 ∙⋆−∕⋆−]

𝑠−↝+ ⩴ 𝑠+↝− ⩴
∣𝑠−↝−[{⋆+}∕⋆−]

Negative stacks: Positive stacks / evaluation contexts:
𝑠−↝𝜀 ⩴ 𝑠−↝𝜀∣𝑠−↝+[𝜇𝑥+.𝑐↝𝜀∕⋆+] 𝑠+↝𝜀, 𝑒+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀

∣𝑠−↝+[𝜇(𝑥+⊗𝑦+).𝑐↝𝜀∕⋆+] ∣𝜇(𝑥+⊗𝑦+).𝑐↝𝜀

∣𝑠−↝+[𝜇[𝜄1(𝑥+
1).𝑐1↝𝜀∣𝜄2(𝑥+

2).𝑐2↝𝜀]∕⋆+] ∣𝜇[𝜄1(𝑥+
1).𝑐1↝𝜀∣𝜄2(𝑥+

2).𝑐2↝𝜀]
∣𝑠−↝+[𝜇{𝑥−}.𝑐↝𝜀∕⋆+] ∣𝜇{𝑥−}.𝑐↝𝜀

∣𝑠−↝+[𝜇().𝑐↝𝜀∕⋆+] ∣𝜇().𝑐↝𝜀

Negative evaluation contexts:
𝑒−↝𝜀 ⩴ stk−(𝑠−↝𝜀)∣𝜇𝑥−.𝑐↝𝜀

146

V. Polarized calculi with arbitrary constructors

To turn this into a BNF-like description, we introduce simple stacks

�̊�−↝𝜀 =⋆−[‘𝜏𝑗𝑟−𝑘𝑟 (#”𝑣𝑟,⋆−)∕⋆−][‘𝜏𝑗𝑟−1−
𝑘𝑟−1

(# ”𝑣𝑟−1,⋆−)∕⋆−] … [‘𝜏𝑗2−𝑘2 (#”𝑣2,⋆−)∕⋆−][‘𝜏𝑗1−𝑘1 (#”𝑣1,⋆𝜀𝑗1 ,𝑘1)∕⋆−]
which are stacks 𝑠−↝𝜀 for which 𝑠0𝜀𝑗1 ,𝑘1↝𝜀 is not a 𝜇 binder, i.e. those whose outside-out descrip-
tion can be extended by yet another disubsitution. The same decompositions are used for
commands, with incomplete simple commands 𝑐↝𝜀2 = 𝑡𝜀1 ∣�̊�𝜀1↝𝜀2 (i.e. commands ⟨𝑡𝜀1 ∣�̊�𝜀1↝𝜀2⟩

𝜀1

formedwith a simple stack �̊�𝜀1↝𝜀2 minus the surrounding ⟨⋅⟩
𝜀1) playing the same role as simple

stacks for stacks.

Remark V.3.1

Since negative incomplete simple commands are built as

𝑐↝− = (𝑡𝜀∣�̊�𝜀↝−)[‘𝜏𝑗𝑟−𝑘𝑟 (#”𝑣𝑟,⋆−)∕⋆−] … [‘𝜏𝑗1−𝑘1 (#”𝑣1,⋆𝜀𝑗1 ,𝑘1)∕⋆−][𝑠0𝜀𝑗1 ,𝑘1↝𝜀∕⋆𝜀𝑗1 ,𝑘1]
the polarity 𝜀may only be available deep in 𝑐↝− whenwe eventually for the command
⟨𝑐↝−⟩

𝜀. While we could modify the description to keep track of 𝜀, this would make the
grammar more tedious to work with, so we instead write ± for the to-be-inferred po-
larity 𝜀. This has no practical consequences because the polarity annotations on com-
mands were superfluous in the first place: the syntax of Lm

#”𝜏
p remains unambiguous

without them.

Note that the grammar of commands, values, and expressions no longer refer to stacks
and evaluation contexts. Since stacks are required to define the reduction (and describing
evaluation contexts does not take much space), we nevertheless keep them in the syntax.
While not necessary, defining simple positive stacks sometimes allows to treat both polar-

ities at once, and may prove useful for some applications9.

V.3.2. The 𝜆
#”𝜏
p calculus

The 𝜆
#”𝜏
p calculus (resp. 𝜆

→⇓⇑⊗⊕&1⊤
p) described in Figure V.3.3a (resp. Figure V.3.4a) is obtained

from the outside-out description of Lm
#”𝜏
p (resp. Lm→⇓⇑⊗⊕&1⊤

p) by simply renaming things (see
for details): 𝑡𝜀∣⋆𝜀 is replaced by 𝑡𝜀, ⟨⋅⟩

𝜀 by com𝜀(⋅), 𝜇⋆𝜀.𝑐↝𝜀 by ctot𝜀(𝑐↝𝜀) (which stands for
“command to term”),⋆𝜀 by ◽𝜀, 𝜇𝑥𝜀.𝑐↝𝜀 by let𝑥𝜀 ∶= ◽𝜀 in 𝑐↝𝜀, and 𝜇[…] by match ◽+ with[…].
Uses of disubstitutions are replaced by plugging: 𝑐↝𝜀1[𝑠𝜀1↝𝜀2∕⋆

𝜀1] becomes 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 𝑐↝𝜀1 and
�̊�𝜀1↝𝜀2[𝑠𝜀2↝𝜀3∕⋆𝜀2] becomes 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀2↝𝜀3 �̊�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 .

9Very loosely, in a simple command, the stack only acts as data for the expression, and the expression can
choose to keep the control for the remainder of the computation, while in non-simple commands the ex-
pression is forced to eventually (diverge or) give back the control to the stack or evaluation context.

147

V. Polarized calculi with arbitrary constructors

Notation V.3.2

While adding ctot𝜀 and com𝜀 makes the translations between Lm
#”𝜏
p and 𝜆

#”𝜏
p (and a few

other things) easier to study, these are often superfluous when writing concrete ex-
pressions of 𝜆

#”𝜏
p sowe often leave them implicit, i.e. write 𝑐↝𝜀 for ctot𝜀(𝑐↝𝜀) and 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2 𝑡𝜀1

for com𝜀1(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2 𝑡𝜀1). However, the underlinement - is essential and will always be ex-
plicit.

For negative stacks, things are slightly more more complex. In the instances of the calcu-
lus that we have seen earlier, the stack constructors of 𝜆

#”𝜏
p and Lm

#”𝜏
p were not the same. For

example, for→, we had the stack constructor ‘→1(𝑣+, 𝑠−↝𝜀) = 𝑣+ ∙ 𝑠−↝𝜀 which corresponded to
the application 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 ◽−𝑣+ ; for ⇑, we had the stack constructor ‘⇑1(𝑠+↝𝜀) = {𝑠+↝𝜀} which corre-
sponded to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 unfreeze(◽−) ; and for &, we had two stack constructors ‘&1(𝑠−↝𝜀) = 𝜋1 ∙ 𝑠−↝𝜀

and ‘&2(𝑠−↝𝜀) = 𝜋2 ∙ 𝑠−↝𝜀 that corresponded to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 𝜋1(◽
−) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 𝜋2(◽

−) respectively. Note

that for each one of these examples, the negative stack constructor ‘𝜏
𝑗
−
𝑘 (#”𝑣 , 𝑠𝜀𝑗,𝑘↝𝜀) becomes

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝑗,𝑘↝𝜀 ‘
𝜏𝑗−
𝑘 (

#”𝑣 ,◽−) , where ‘→1 (𝑣+,◽−) = ◽−𝑣+, ‘⇑1(◽
−) = unfreeze(◽−), ‘&1(◽

−) = 𝜋1(◽−) and

‘&2(◽
−) = 𝜋2(◽−). In a way, the stack constructor ‘𝜏

𝑗
−
𝑘 is connected to some values #”𝑣 , the con-

text 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 that surrounds it, and a stack 𝑠𝜀𝑗,𝑘↝𝜀, and ‘𝜏
𝑗
−
𝑘 is connected to the same things with the

positions of 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝑠𝜀𝑗,𝑘↝𝜀 swapped. Very roughly,

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ‘𝜏
𝑗
−
𝑘 (#”𝑣 , 𝑠𝜀𝑗,𝑘↝𝜀) becomes 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝑗,𝑘↝𝜀 ‘

𝜏𝑗−
𝑘 (

#”𝑣 , 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) .

This does not hold for all𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 , but does hold for those of the shape𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 = ‘𝜏
𝑗𝑟−
𝑘𝑟 (#”𝑣𝑟,… ‘𝜏

𝑗1−
𝑘1
(#”𝑣1,◽𝜀𝑘1 ,𝑙𝑗1))

in Lm
#”𝜏
p and the corresponding ‘𝜏

𝑗1−
𝑘1 (#”𝑣1,… ‘

𝜏𝑗𝑟−
𝑘𝑟
(#”𝑣𝑟,◽−)) in 𝜆 #”𝜏

p:

‘
𝜏𝑗𝑟−
𝑘𝑟 (#”𝑣𝑟,… ‘𝜏

𝑗1−
𝑘1 (

#”𝑣1, 𝑠𝜀𝑗1 ,𝑘1↝𝜀)) becomes 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝑗1 ,𝑘1↝𝜀 ‘
𝜏𝑗1−
𝑘1 (#”𝑣1,… ‘

𝜏𝑗𝑟−
𝑘𝑟
(#”𝑣𝑟,◽−)) .

Combining these with expressions to form commands, we get that

⟨𝑡−∣‘𝜏𝑗𝑟−𝑘𝑟 (#”𝑣𝑟,… ‘𝜏
𝑗1−
𝑘1 (

#”𝑣1, 𝑠𝜀𝑗1 ,𝑘1↝𝜀))⟩− becomes com−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝑗1 ,𝑘1↝𝜀 ‘
𝜏𝑗1−
𝑘1 (#”𝑣1,… ‘

𝜏𝑗𝑟−
𝑘𝑟 (

#”𝑣𝑟, 𝑡−)))
Since they interact with negative stacks ‘𝜏

𝑗
−
𝑘 (

”𝑥𝑘 ,⋆𝜀𝑗,𝑘) that become ‘𝜏
𝑗
−
𝑘 (

”𝑥𝑘 ,◽−), negative ex-
pressions also need to be modified:

𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1).𝑐↝𝜀𝑗,1 ∣…∣‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,⋆𝜀𝑗,𝑙).𝑐↝𝜀𝑗,𝑙>
becomes

𝜆< ‘𝜏𝑗−1 (# ”𝑥1 ,◾−).𝑐↝𝜀𝑗,1 ∣…∣ ‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,◾−).𝑐↝𝜀𝑗,𝑙>
where we write ◾− instead of ◽− to to emphasize that it is part of the syntax of expressions,
and not a hole. The ◾− can be though of as marking the spot where the 𝜆<…> is in the
surrounding stack. In Lm

#”𝜏
p, the reduction

⟨𝜇(𝑥+ ∙⋆−).⟨𝑡−∣𝑤+ ∙⋆−⟩−∣𝑣1+ ∙ 𝑣2+ ∙⋆−⟩− → ⟨𝑡−∣𝑤+ ∙⋆−⟩−[𝜑] = ⟨𝑡−[𝑣1+∕𝑥+]∣(𝑤+[𝑣1+∕𝑥+]) ∙ 𝑣2+ ∙⋆−⟩−

148

V. Polarized calculi with arbitrary constructors

builds the disubstitution
𝜑 = 𝑥+ ↦ 𝑣1+,⋆+ ↦ 𝑣2+ ∙⋆−

by matching the stack pattern ‘→1(𝑥+,⋆−) = 𝑥+ ∙⋆− against the stack ‘→1(𝑣+, ‘→1(𝑤+,⋆−)) =
𝑣1+ ∙ 𝑣2+ ∙⋆−. In 𝜆

#”𝜏
p, this corresponds to the reduction

𝜆<(◾−𝑥+).𝑡−𝑤+>𝑣1+𝑣2+ → (𝑡−𝑤+)[𝜑] = (◽−𝑣2+) (𝑡−𝑤+)[𝑣1+∕𝑥+] = 𝑡−[𝑣1+∕𝑥+](𝑤+[𝑣1+∕𝑥+])𝑣2+
(where 𝜆<(◾−𝑥−).𝑐↝−> is a heavy way of writing 𝜆𝑥+.𝑐↝−) building the disubstitution

𝜑 = (𝑥+ ↦ 𝑣1+,◽−𝑣2+)
by “matching” the stack “pattern” ‘→𝑘 (𝑥

+,◾−) = ◾−𝑥+ with the stack ‘→𝑘 (𝑣2−, ‘→𝑘 (𝑣1−,◽−)) =
◽−𝑣1−𝑣2− by trying to superpose ◾− and ◽−. This leads to ‘→𝑘 (𝑥

+,◾−) = ◾−𝑥+ being matched
with the inner part ‘→𝑘 (𝑣1−,◽−) = ◽−𝑣1− of the stack, which yields 𝑥+ ↦ 𝑣1− and a remaining
outer part of the stack ‘→𝑘 (𝑣2−,◽−) = ◽−𝑣2+ in which the result is plugged.

149

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.3: The 𝜆
#”𝜏
p calculus

Figure V.3.3.a: Commands, values, and expressions

Negative values / expressions: Incomplete simple commands:
𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣ctot−(𝑐↝−) 𝑐↝𝜀 ⩴ 𝑡+

}
𝜀=+∣ instk−(𝑡−)

}
𝜀=−

∣𝜆< ‘𝜏1−1 (# ”𝑥1 ,◾−).𝑐1↝𝜀1,1 ∣…∣ ‘

𝜏1−
𝑙−1 (

”𝑥𝑙−1 ,◾
−).𝑐𝑙−1↝𝜀1,𝑙−1 > ∣ ‘𝜏

1
−
1 (

#”𝑣 , 𝑐↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀1,1

∣… ∣ ‘𝜏
1
−
𝑙−1
(#”𝑣 , 𝑐↝−)

⏟⎴⎴⏟⎴⎴⏟
𝜀=𝜀1,𝑙−1

∣⋮ ∣⋮ ∣⋱∣⋮
∣𝜆< ‘𝜏𝑚−1 (# ”𝑥1 ,◾−).𝑐1↝𝜀𝑚,1 ∣…∣ ‘

𝜏𝑚−
𝑙−𝑚 (

”𝑥𝑙−𝑚 ,◾
−).𝑐𝑙−𝑚↝𝜀𝑚,𝑙−𝑚> ∣ ‘𝜏

𝑚
−
1 (#”𝑣 , 𝑐↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀𝑚,1

∣… ∣ ‘𝜏
𝑚
−
𝑙−𝑚
(#”𝑣 , 𝑐↝−)

⏟⎴⎴⏟⎴⎴⏟
𝜀=𝜀𝑚,𝑙−𝑚

Simple commands:
𝑐↝𝜀 ⩴ com±(𝑐↝𝜀)

Positive values: Commands:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑐↝𝜀 ⩴ com±(𝑐↝𝜀)∣com±(let𝑥+ ∶= 𝑐↝+ in 𝑐↝𝜀)∣com−(let𝑥− ∶= 𝑡− in 𝑐↝𝜀)

∣v𝜏
1
+
1 (

#”𝑣)∣… ∣v𝜏
1
+
𝑙+1
(#”𝑣) ∣com±(match 𝑐↝+ with[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

1
+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀])

∣⋮ ∣⋱∣⋮ ∣⋮

∣v𝜏
𝑛
+
1 (

#”𝑣)∣… ∣v𝜏
𝑛
+
𝑙+𝑛
(#”𝑣) ∣com±(match 𝑐↝+ with[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

𝑛
+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀])

Positive expressions:
𝑡+, 𝑢+ ⩴ val+(𝑣+)∣ctot+(𝑐↝+)

150

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.3.b: Stacks and evaluation contexts

Negative simple stacks: Positive simple stacks:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 ⩴ ◽−} 𝜀=− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 ⩴ ◽+} 𝜀=+

∣ ‘𝜏
1
−
1 (

#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀1,1

∣… ∣ ‘𝜏
1
−
𝑙−1 (

#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀1,𝑙−1
∣⋮ ∣⋱∣⋮
∣ ‘𝜏

𝑚
−
1 (#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀𝑚,1

∣… ∣ ‘𝜏
𝑚
−
𝑙−𝑚 (

#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀𝑚,𝑙−𝑚

Negative stacks: Positive stacks / evaluation contexts:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀∣ let𝑥+ ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ in 𝑐↝𝜀 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+↝𝜀 ⩴ ◽+} 𝜀=+∣ let𝑥+ ∶= ◽+ in 𝑐↝𝜀

∣match 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ with[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏
1
+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀] ∣match ◽+ with[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

1
+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀]

∣⋮ ∣⋮
∣match 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ with[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

𝑛
+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀] ∣match ◽+ with[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

𝑛
+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀]

Negative evaluation contexts:
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−↝𝜀 ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 instk−(◽−) ∣ let𝑥− ∶= ◽− in 𝑐↝𝜀

151

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.3.c: Operational reduction

com𝜀1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 𝑐↝𝜀1) 𝜇 defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2)
com𝜀1(let𝑥𝜀1 ∶= 𝑣𝜀1 in 𝑐↝𝜀2) 𝜇 𝑐↝𝜀2[𝑣𝜀1∕𝑥𝜀1]

com−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝑗,𝑘↝𝜀 ‘

𝜏𝑗−
𝑘 (#”𝑣 , 𝜆< ‘𝜏𝑗−1 (# ”𝑥1 ,◾−).𝑐1↝𝜀𝑗,1 ∣…∣ ‘

𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,◾−).𝑐𝑙↝𝜀𝑗,𝑙>)) 𝜏𝑗−
defer(𝑐𝑘↝𝜀𝑗,𝑘[

#”𝑣 ∕ #”𝑥], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝑗,𝑘↝𝜀)
com+(match v

𝜏𝑗+
𝑘 (

#”𝑣)with[v𝜏𝑗+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏
𝑗
+
𝑙 (𝑥𝑙).𝑐𝑙↝𝜀]) 𝜏𝑗+

𝑐𝑘↝𝜀[#”𝑣 ∕ # ”𝑥𝑘]

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (
⋃

𝑗 𝜏𝑗+) let ≝ 𝜇

Figure V.3.3.d: 𝜂-expansion

𝑡𝜀 𝜇 ctot𝜀(𝑡𝜀)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2 𝜇 let𝑥𝜀1 ∶= ◽𝜀1 in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2 𝑥

𝜀1 if 𝑥𝜀1 fresh w.r.t. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2

𝑣− 𝜏𝑗−
𝜆< ‘𝜏𝑗−1 (# ”𝑥1 ,◾−). ‘𝜏

𝑗
−
1 (

”𝑥1 , 𝑣−)
⋮

‘

𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,◾−). ‘𝜏
𝑗
−
𝑙 (

#”𝑥𝑙 , 𝑣−)> if # ”𝑥1 ,… , #”𝑥𝑙 fresh w.r.t. 𝑣−

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 𝜏𝑗+
match ◽+ with[v𝜏𝑗+1 (# ”𝑥1). 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 v

𝜏𝑗+
1 (

”𝑥1)
⋮

v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 v
𝜏𝑗+
𝑙 (

#”𝑥𝑙)] if # ”𝑥1 ,… , #”𝑥𝑙 fresh w.r.t. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (
⋃

𝑗 𝜏𝑗+)

152

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.4: The 𝜆
#”𝜏
p calculus

Figure V.3.4.a: Commands, values, and expressions

Negative values / expressions: Incomplete simple commands:
𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣ctot−(𝑐↝−) 𝑐↝𝜀 ⩴ 𝑡+

}
𝜀=+∣ instk−(𝑡−)

}
𝜀=−

∣𝜆< ‘𝜏1−1 (# ”𝑥1 ,◾−).𝑐1↝𝜀1,1 ∣…∣ ‘

𝜏1−
𝑙−1 (

”𝑥𝑙−1 ,◾
−).𝑐𝑙−1↝𝜀1,𝑙−1 > ∣ ‘𝜏

1
−
1 (

#”𝑣 , 𝑐↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀1,1

∣… ∣ ‘𝜏
1
−
𝑙−1
(#”𝑣 , 𝑐↝−)

⏟⎴⎴⏟⎴⎴⏟
𝜀=𝜀1,𝑙−1

∣⋮ ∣⋮ ∣⋱∣⋮
∣𝜆< ‘𝜏𝑚−1 (# ”𝑥1 ,◾−).𝑐1↝𝜀𝑚,1 ∣…∣ ‘

𝜏𝑚−
𝑙−𝑚 (

”𝑥𝑙−𝑚 ,◾
−).𝑐𝑙−𝑚↝𝜀𝑚,𝑙−𝑚> ∣ ‘𝜏

𝑚
−
1 (#”𝑣 , 𝑐↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀𝑚,1

∣… ∣ ‘𝜏
𝑚
−
𝑙−𝑚
(#”𝑣 , 𝑐↝−)

⏟⎴⎴⏟⎴⎴⏟
𝜀=𝜀𝑚,𝑙−𝑚

Simple commands:
𝑐↝𝜀 ⩴ com±(𝑐↝𝜀)

Positive values: Commands:
𝑣+, 𝑤+ ⩴ 𝑥+ 𝑐↝𝜀 ⩴ com±(𝑐↝𝜀)∣com±(let𝑥+ ∶= 𝑐↝+ in 𝑐↝𝜀)∣com−(let𝑥− ∶= 𝑡− in 𝑐↝𝜀)

∣v𝜏
1
+
1 (

#”𝑣)∣… ∣v𝜏
1
+
𝑙+1
(#”𝑣) ∣com±(match 𝑐↝+ with[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

1
+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀])

∣⋮ ∣⋱∣⋮ ∣⋮

∣v𝜏
𝑛
+
1 (

#”𝑣)∣… ∣v𝜏
𝑛
+
𝑙+𝑛
(#”𝑣) ∣com±(match 𝑐↝+ with[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

𝑛
+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀])

Positive expressions:
𝑡+, 𝑢+ ⩴ val+(𝑣+)∣ctot+(𝑐↝+)

153

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.4.b: Stacks and evaluation contexts

Negative simple stacks: Positive simple stacks:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 ⩴ ◽−} 𝜀=− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 ⩴ ◽+} 𝜀=+

∣ ‘𝜏
1
−
1 (

#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀1,1

∣… ∣ ‘𝜏
1
−
𝑙−1 (

#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀1,𝑙−1
∣⋮ ∣⋱∣⋮
∣ ‘𝜏

𝑚
−
1 (#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀𝑚,1

∣… ∣ ‘𝜏
𝑚
−
𝑙−𝑚 (

#”𝑣 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⏟⎴⎴⏟⎴⎴⏟

𝜀=𝜀𝑚,𝑙−𝑚

Negative stacks: Positive stacks / evaluation contexts:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀∣ let𝑥+ ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ in 𝑐↝𝜀 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+↝𝜀 ⩴ ◽+} 𝜀=+∣ let𝑥+ ∶= ◽+ in 𝑐↝𝜀

∣match 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ with[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏
1
+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀] ∣match ◽+ with[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

1
+
𝑙+1 (

”𝑥𝑙+1).𝑐𝑙
+1
↝𝜀]

∣⋮ ∣⋮
∣match 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ with[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

𝑛
+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀] ∣match ◽+ with[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀 | … | v𝜏

𝑛
+
𝑙+𝑛 (

”𝑥𝑙+𝑛).𝑐𝑙
+𝑛
↝𝜀]

Negative evaluation contexts:
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−↝𝜀 ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 instk−(◽−) ∣ let𝑥− ∶= ◽− in 𝑐↝𝜀

154

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.4.c: Operational reduction

com𝜀1(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 𝑐↝𝜀1) 𝜇 defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2)
com𝜀1(let𝑥𝜀1 ∶= 𝑣𝜀1 in 𝑐↝𝜀2) 𝜇 𝑐↝𝜀2[𝑣𝜀1∕𝑥𝜀1]

com−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 (𝜆𝑥+.𝑐↝−)𝑣+) → defer(𝑐↝−[𝑣+∕𝑥+], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀)
com−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 unfreeze(freeze(𝑐↝+))) ⇑ defer(𝑐↝+, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀)

com−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 𝜋𝑖((𝑐1↝−&𝑐2↝−))) & defer(𝑐𝑖↝−, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀)
(⊤ is trivial)

com+(match box(𝑣−)with[box(𝑥−).𝑐↝𝜀]) ⇓ 𝑐↝𝜀[𝑣−∕𝑥−]
com+(match (𝑣+⊗𝑤+)with[(𝑥+⊗𝑦+).𝑐↝𝜀]) ⊗ 𝑐↝𝜀[𝑣+∕𝑥+, 𝑤+∕𝑦+]

com+(match 𝜄𝑖(𝑣+)with[𝜄1(𝑥+
1).𝑐1↝𝜀 | 𝜄2(𝑥+

2).𝑐2↝𝜀]) ⊕ 𝑐𝑖↝𝜀[𝑣+∕𝑥+
𝑖]

match()with[().𝑐↝𝜀] 1 𝑐↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ → ∪ & ∪ ⇑ ∪ ⊗ ∪ ⊕ ∪ ⇓ ∪ 1 let ≝ 𝜇

155

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.3.4.d: 𝜂-expansion

𝑡𝜀 𝜇 ctot𝜀(𝑡𝜀)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2 𝜇 let𝑥𝜀1 ∶= ◽𝜀1 in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2 𝑥

𝜀1 if 𝑥𝜀1 fresh w.r.t. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝜀1↝𝜀2

𝑣− → 𝜆𝑥+.𝑣−𝑥+ if 𝑥+ fresh w.r.t. 𝑣−
𝑣− ⇑ freeze(unfreeze(𝑣−))
𝑣− & (𝜋1(𝑣−)&𝜋2(𝑣−))
𝑣− ⊤ 𝜆<>

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 ⇓ match ◽+ with[box(𝑥−).𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 𝑥+] if 𝑥− fresh w.r.t. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 ⊗ match ◽+ with[(𝑥+⊗𝑦+).𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 (𝑥+⊗𝑦+)] if 𝑥+ and 𝑦+ fresh w.r.t. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 ⊕ match ◽+ with[𝜄1(𝑥+
1).𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 𝑥+

1 | 𝜄2(𝑥+
2).𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 𝑥+

2] if 𝑥+
1 and 𝑥

+
2 fresh w.r.t. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 1 match ◽+ with[().𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+↝𝜀 ()]
≝ 𝜇 ∪ 𝜇 ∪ → ∪ ⇑ ∪ & ∪ ⊤ ∪ ⇓ ∪ ⊗ ∪ ⊕ ∪ 1

156

V. Polarized calculi with arbitrary constructors

157

V. Polarized calculi with arbitrary constructors

V.4. Equivalence between 𝜆
#”𝜏
p and Lm

#”𝜏
p

In this section, we show that 𝜆
#”𝜏
p and Lm

#”𝜏
p are two equivalent descriptions of the same objets

by defining two inverse translations ⋅
⃖⃗
∶𝜆

#”𝜏
p → Lm

#”𝜏
p and ⋅

⃖⃖
∶Lm

#”𝜏
p → 𝜆

#”𝜏
p. Since 𝜆

#”𝜏
p is outside-

out and Lm
#”𝜏
p is inside-out, the definitions and properties of these translations will rely on

the properties of stack composition:

Fact V.4.1

In 𝜆
#”𝜏
p (resp. Lm

#”𝜏
p), stacks form a category 𝒞 with Obj(𝒞) = {+, − } and

Hom𝒞(𝜀1, 𝜀2) = {(𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2)∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ∈ 𝐬𝜀1↝𝜀2} (resp. {(𝜎,⋆𝜀1 ↦ 𝑠𝜀1↝𝜀2)∣𝑠𝜀1↝𝜀2 ∈ 𝐬𝜀1↝𝜀2})
whose composition and identities are given by

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 ≝ defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3) (resp. 𝑠1𝜀1↝𝜀2 ⚪⋆ 𝑠

2
𝜀2↝𝜀3 ≝ 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆N])

and
Id𝜀 = ◽𝜀 (resp. Id𝜀 =⋆𝜀)

respectively, and this category acts on commands (on the right) via
𝑐↝𝜀1 ⚫d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ≝ defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2) (resp. 𝑐↝𝜀1 ⚫⋆ 𝑠𝜀1↝𝜀2 ≝ 𝑐↝𝜀1[𝑠𝜀1↝𝜀2∕⋆

𝜀1])
In other words:

• cat-closure for any stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3 (resp. 𝑠1𝜀1↝𝜀2 and 𝑠

2
𝜀2↝𝜀3), defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3)

(resp. 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2]) is a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀3 (resp. 𝑠𝜀1↝𝜀3).

• cat-id for any stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp. 𝑠𝜀1↝𝜀2), we have
defer(◽𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 = defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ,◽

𝜀2)
(resp.⋆𝜀1[𝑠𝜀1↝𝜀2∕⋆

𝜀1] = 𝑠𝜀1↝𝜀2 = 𝑠𝜀1↝𝜀2[⋆
𝜀2∕⋆𝜀2])

• cat-accoc for any stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3 , and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3
𝜀3↝𝜀4 (resp. 𝑠1𝜀1↝𝜀2 , 𝑠

2
𝜀2↝𝜀3 , and 𝑠

3
𝜀3↝𝜀4), we

have
defer(defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4) = defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3
𝜀3↝𝜀4))

(resp. 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2][𝑠3𝜀3↝𝜀4∕⋆𝜀3] = 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3[𝑠3𝜀3↝𝜀4∕⋆𝜀3]∕⋆𝜀2])
• act-closure for any command 𝑐↝𝜀1 and stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp. 𝑠𝜀1↝𝜀2), defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1
𝜀1↝𝜀2)

(resp. 𝑐↝𝜀1[𝑠1𝜀1↝𝜀2∕⋆𝜀1]) is a command 𝑐2↝𝜀2 .

• act-id for any command 𝑐↝𝜀, we have
defer(𝑐↝𝜀,◽𝜀) = 𝑐↝𝜀 (resp. 𝑐↝𝜀[⋆𝜀∕⋆𝜀] = 𝑐↝𝜀)

• act-assoc for any command 𝑐↝𝜀1 and stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
𝜀1↝𝜀2 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3 (resp. 𝑠1𝜀1↝𝜀2 and

𝑠2𝜀2↝𝜀3), we have

defer(defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
𝜀1↝𝜀2), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3) = defer(𝑐↝𝜀1 , defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3))

(resp. 𝑐↝𝜀1[𝑠1𝜀1↝𝜀2∕⋆𝜀1][𝑠2𝜀2↝𝜀3∕⋆𝜀2] = 𝑐↝𝜀1[𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2]∕⋆𝜀1])

158

V. Polarized calculi with arbitrary constructors

Proof sketch (See page 191 for details)

By a few inductions. For (cat-assoc) and (act-assoc), the induction is on the size of the
middle stack, and in the inductive cases, this middle stack is the composition of two
strictly smaller stacks, which allows to conclude by applying the induction hypothesis
four times.

Definition and basic properties

The translations ⋅
⃖⃗
∶𝜆

#”𝜏
p → Lm

#”𝜏
p and ⋅

⃖⃖
∶Lm

#”𝜏
p → 𝜆

#”𝜏
p are defined in Figure V.4.1.

Fact V.4.2

The translations ⋅
⃖⃗
∶𝜆

#”𝜏
p → Lm

#”𝜏
p and ⋅

⃖⃖
∶Lm

#”𝜏
p → 𝜆

#”𝜏
p are well-defined and map com-

mands (resp. values, terms, stacks, evaluation contexts) to commands (resp. values,
terms, stacks, evaluation contexts) with the same polarities.

Proof

By induction on the translated term, using (cat-closure) and (act-closure) of Fact V.4.1.

Fact V.4.3

The translations ⋅
⃖⃗
∶𝜆

#”𝜏
p → Lm

#”𝜏
p and ⋅

⃖⃖
∶Lm

#”𝜏
p → 𝜆

#”𝜏
p induce functors between the cate-

gories defined in Fact V.4.1 and preserve the action on commands. In other words:

• functor-id for each polarity 𝜀,
◽𝜀

⃖⃗
=⋆𝜀 (resp.⋆𝜀

⃖⃖
= ◽𝜀)

• functor-compose for any stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3 (resp. 𝑠1𝜀1↝𝜀2 and 𝑠

2
𝜀2↝𝜀3), we have

defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2

⃖⃖⃖⃗
[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3
⃖⃖⃖⃗

∕⋆𝜀2] (resp. 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2]
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖

= defer(𝑠1𝜀1↝𝜀2
⃖⃖ ⃖⃖

, 𝑠2𝜀2↝𝜀3
⃖⃖ ⃖⃖

))
• functor-act for any command 𝑐↝𝜀1 and stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp. 𝑠𝜀1↝𝜀2), we have

defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

= 𝑐↝𝜀1
⃖⃖⃗

[𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2
⃖⃖⃖⃗

∕⋆𝜀2] (resp. 𝑐↝𝜀1[𝑠𝜀1↝𝜀2∕⋆
𝜀2]

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
= defer(𝑐↝𝜀1

⃖⃖ ⃖
, 𝑠𝜀1↝𝜀2
⃖⃖ ⃖⃖

))

Proof

• functor-id Immediate.

• functor-compose By induction on 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 (resp. 𝑠1𝜀1↝𝜀2), using Fact V.4.1.

159

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.4.1: Translations from the inside-out description of 𝜆
#”𝜏
p to Lm

#”𝜏
p (⋅⃖⃗

) and back (⋅
⃖⃖
)

Figure V.4.1.a: Expressions

Positive values: Positive values:
𝑥+

⃗⃖
≝ 𝑥+ 𝑥+

⃖⃖
= 𝑥+

v
𝜏𝑗+
𝑘 (𝑣1,… , 𝑣𝑞)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ v𝜏
𝑗
+
𝑘 (𝑣1⃖⃗ ,… , 𝑣

𝑞

⃖⃗
) v

𝜏𝑗+
𝑘 (𝑣1,… , 𝑣𝑞)
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖

= v𝜏
𝑗
+
𝑘 (𝑣1⃖⃖ ,… , 𝑣𝑞

⃖⃖
)

Positive expressions: Positive expressions:
val+(𝑣+)
⃖⃖⃖⃖⃖⃗

≝ val+(𝑣+
⃖⃗
) val+(𝑣+)

⃖⃖⃖⃖⃖⃖
= val+(𝑣+

⃖⃖
)

ctot+(𝑐↝+)
⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜇⋆+.𝑐↝+
⃖⃖⃗

𝜇⋆+.𝑐↝+
⃖⃖⃖⃖⃖⃖

= ctot+(𝑐↝+
⃖⃖ ⃖

)
Negative values / expressions: Negative values / expressions:

𝑥−

⃗⃖
≝ 𝑥− 𝑥−

⃖⃖
= 𝑥−

ctot−(𝑐↝−)
⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜇⋆−.𝑐↝−
⃖⃖⃗

𝜇⋆−.𝑐↝−
⃖⃖⃖⃖⃖⃖

= ctot−(𝑐↝−
⃖⃖ ⃖

)
𝜆< ‘𝜏𝑗−1 (# ”𝑥1 ,◾−). 𝑐1↝𝜀𝑗,1

⋮

‘

𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,◾−). 𝑐𝑙↝𝜀𝑗,𝑙>
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1). 𝑐1↝𝜀𝑗,1
⃖⃖⃗⋮

‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,⋆𝜀𝑗,𝑙−𝑗). 𝑐𝑙↝𝜀𝑗,𝑙
⃖⃖⃗> 𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1). 𝑐1↝𝜀𝑗,1

⋮
‘
𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,⋆𝜀𝑗,𝑙−𝑗). 𝑐𝑙↝𝜀𝑗,𝑙>
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖

= 𝜆< ‘𝜏𝑗−1 (# ”𝑥1 ,◾−). 𝑐1↝𝜀𝑗,1
⃖⃖⃖⋮

‘

𝜏𝑗−
𝑙 (

#”𝑥𝑙 ,◾−). 𝑐𝑙↝𝜀𝑗,𝑙
⃖⃖⃖ >

160

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.4.1.b: Negative stacks and evaluation contexts

Positive stacks / evaluation contexts: Positive stacks / evaluation contexts:
⋆+

⃖⃗
≝ ◽+ ◽+

⃖⃖
=⋆+

let𝑥+ ∶= ◽+ in 𝑐↝𝜀
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜇𝑥+.𝑐↝𝜀
⃖⃗

𝜇𝑥+.𝑐↝𝜀
⃖⃖⃖⃖⃖⃖

= let𝑥+ ∶= ◽+ in 𝑐↝𝜀
⃖⃖

match ◽+ with[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀

⋮
v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). 𝑐𝑙↝𝜀
]

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜇[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀
⃖⃗⋮

v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). 𝑐𝑙↝𝜀
⃖⃗
] 𝜇[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀

⋮
v
𝜏𝑗+
𝑙 (# ”𝑥𝑙𝑗). 𝑐𝑙↝𝜀

]
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖

= match ◽+ with[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀
⃖⃖⋮

v
𝜏𝑗+
𝑙𝑗 (

”𝑥𝑙𝑗). 𝑐𝑙↝𝜀
⃖⃖
]

Negative stacks: Negative stacks:
◽−

⃖⃗
≝⋆− ⋆−

⃖⃖
≝ ◽−

‘

𝜏𝑗−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝−
⃖⃖⃖⃗ [‘

𝜏𝑗−
𝑘 (𝑣1𝜀1
⃖⃗
,… , 𝑣𝑞𝜀𝑞

⃖⃗
,⋆𝜀𝑗,𝑘)∕⋆−] ‘

𝜏𝑗−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠𝜀𝑗,𝑘↝𝜀)
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖

≝ 𝑠𝜀𝑗,𝑘↝𝜀

⃖⃖⃖⃖

‘

𝜏𝑗−
𝑘 (𝑣1𝜀1
⃖⃖
,… , 𝑣𝑞𝜀𝑞

⃖⃖
,◽−)

let𝑥+ ∶= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ in 𝑐↝𝜀
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+
⃖⃖⃖⃗

[𝜇𝑥+.𝑐↝𝜀
⃖⃗
∕⋆+]

match 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+ with[v𝜏1+1 (# ”𝑥1). 𝑐1↝𝜀
⋮

v
𝜏1+
𝑙+1 (

”𝑥𝑙+1). 𝑐𝑙↝𝜀
]

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝+
⃖⃖⃖⃗ [𝜇[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀

⃖⃗⋮
v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). 𝑐𝑙↝𝜀
⃖⃗
]∕⋆+]

Negative evaluation contexts: Negative evaluation contexts:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀 instk−(◽−)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ stk−(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−↝𝜀
⃖⃖⃖⃗

) stk−(𝑠−↝𝜀)
⃖⃖ ⃖⃖⃖⃖⃖⃖

≝ 𝑠−↝𝜀
⃖⃖⃖

instk−(◽−)

let𝑥− ∶= ◽− in 𝑐↝𝜀
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜇𝑥−.𝑐↝𝜀
⃖⃗

𝜇𝑥−.𝑐↝𝜀
⃖⃖⃖⃖⃖⃖

≝ let𝑥− ∶= ◽− in 𝑐↝𝜀
⃖⃖

161

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.4.1.c: Commands

Incomplete simple commands: Incomplete simple commands:
𝑡+
⃖⃗
≝ 𝑡+
⃖⃗
∣⋆+ 𝑡𝜀1 ∣𝑒𝜀1↝𝜀2

⃖⃖⃖⃖⃖⃖
≝ 𝑒𝜀1↝𝜀2
⃖⃖ ⃖⃖

𝑡𝜀1
⃖⃖

instk−(𝑡−)
⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝑡−
⃖⃗
∣stk−(⋆−)

‘

𝜏𝑗−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑐↝−)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝑐↝−
⃖⃖⃗ [‘𝜏

𝑗
−
𝑘 (𝑣1𝜀1
⃖⃗
,… , 𝑣𝑞𝜀𝑞

⃖⃗
,⋆𝜀𝑗,𝑘)∕⋆−]

Commands: Commands:
com𝜀1(𝑐↝𝜀2)
⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ ⟨𝑐↝𝜀2
⃖⃖⃗

⟩𝜀1 ⟨𝑡𝜀1 ∣𝑒𝜀1↝𝜀2⟩
𝜀1

⃖⃖ ⃖⃖⃖⃖⃖⃖⃖
≝ com𝜀1(𝑒𝜀1↝𝜀2

⃖⃖ ⃖⃖
𝑡𝜀1
⃖⃖)

com𝜀1(let𝑥+ ∶= 𝑐↝+ in 𝑐↝𝜀2)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ ⟨𝑐↝𝜀2
⃖⃖⃗

[𝜇𝑥+.𝑐↝𝜀2
⃖⃖⃗

∕⋆+]⟩𝜀1
com−(let𝑥− ∶= 𝑡− in 𝑐↝𝜀)
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ ⟨𝑡−⃖⃗ ∣𝜇𝑥
−.𝑐↝𝜀
⃖⃗⟩

−

com𝜀1(match 𝑐↝+ with[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀2
⋮

v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). 𝑐𝑙↝𝜀2
])

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

≝ ⟨𝑐↝+
⃖⃖⃗ [𝜇[v𝜏𝑗+1 (# ”𝑥1). 𝑐1↝𝜀2

⃖⃖⃗⋮
v
𝜏𝑗+
𝑙 (

#”𝑥𝑙). 𝑐𝑙↝𝜀2
⃖⃖⃗

]∕⋆+]⟩𝜀1
Figure V.4.1.d: Disubstitutions

Substitutions: Substitutions:
𝑥𝜀1
1 ↦ 𝑣1𝜀1 ,… , 𝑥

𝜀𝑞
𝑞 ↦ 𝑣𝑞𝜀𝑞

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗
≝ 𝑥𝜀1

1 ↦ 𝑣1𝜀1
⃖⃗
,… , 𝑥𝜀𝑞

𝑞 ↦ 𝑣𝑞𝜀𝑞
⃖⃗

𝑥𝜀1
1 ↦ 𝑣1𝜀1 ,… , 𝑥

𝜀𝑞
𝑞 ↦ 𝑣𝑞𝜀𝑞

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
≝ 𝑥𝜀1

1 ↦ 𝑣1𝜀1
⃖⃖
,… , 𝑥𝜀𝑞

𝑞 ↦ 𝑣𝑞𝜀𝑞
⃖⃖

Disubstitutions: Disubstitutions:
(𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2)
⃖⃖⃖⃖⃖⃖⃖⃗

≝ 𝜎
⃗
,⋆𝜀1 ↦ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2

⃖⃖⃖⃗
𝜎,⋆𝜀1 ↦ 𝑠𝜀1↝𝜀2
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖

≝ (𝜎⃖ , 𝑠𝜀1↝𝜀2
⃖⃖ ⃖⃖

)

162

V. Polarized calculi with arbitrary constructors

• functor-act By induction on 𝑐↝𝜀1 , using Fact V.4.1.

Fact V.4.4

The translations ⋅
⃖⃗
∶𝜆

#”𝜏
p → Lm

#”𝜏
p and ⋅

⃖⃖
∶Lm

#”𝜏
p → 𝜆

#”𝜏
p are inverses.

Proof

By case analysis on the translated term, using Fact V.4.3.

Equality through translations

We define⇌ as equality through those translations:

Definition V.4.5

Given a term 𝓉� in 𝜆
#”𝜏
p and another term 𝓉� in Lm

#”𝜏
p, we write 𝓉� ⇌ 𝓉� when 𝓉�

⃖⃗
= 𝓉�,

or equivalently when 𝓉� = 𝓉�
⃖⃖
. Similarly, given a disubstitution 𝜑� in 𝜆

#”𝜏
p and another

disubstitution 𝜑� in Lm
#”𝜏
p, we write 𝜑� ⇌ 𝜑� when 𝜑�

⃖⃗
= 𝜑�, or equivalently when

𝜑� = 𝜑�
⃖⃖
.

Remark V.4.6

Note that ⇌ is not symmetric. Whenever we write 𝓉� ⇌ 𝓉�, we implicitly assume
that 𝓉� lives in 𝜆

#”𝜏
p and 𝓉� in Lm

#”𝜏
p.

This equality preserves everything we are interested in:

Fact V.4.7

If 𝓉� ⇌ 𝓉� and 𝜑� ⇌ 𝜑� then 𝓉�[𝜑�]⇌ 𝓉�[𝜑�].

Proof

163

V. Polarized calculi with arbitrary constructors

V.5. A polarized 𝜆-calculus: 𝛌 #”𝜏
P

164

VI. Dynamically typed polarized calculi

165

VI. Dynamically typed polarized calculi

VI.1. Clashes and dynamically typed calculi

166

VI. Dynamically typed polarized calculi

VI.2. A dynamically typed polarized 𝜆-calculus: 𝛌𝒫𝒩
P

167

VI. Dynamically typed polarized calculi

VI.3. A dynamically typed polarized 𝜆-calculus with focus:
𝜆𝒫𝒩
p

168

VI. Dynamically typed polarized calculi

VI.4. A dynamically typed polarized intuitionistic L calculus:
Li𝒫𝒩p

169

VI. Dynamically typed polarized calculi

VI.5. A dynamically typed polarized classical L calculus: L𝒫𝒩
p

170

Part C.

Solvability in polarized calculi

171

Part C is about two well-known and very useful properties of 𝜆-terms: operational rele-
vance and solvability.
Most commondefinitions of solvability are optimized tomake proofs easier, which has the

unfortunate consequence of making it look like a fairly arbitrary notion that just happens
to have some use cases. This is of course not the case, and in this introduction we aim at
explaining why solvability is a very natural and useful notion when looking at semantics
of programming languages. In the 𝜆-calculus, it is well known that solvable expressions
are exactly the operationally relevant one and, as will be explained in the next section, this
can be understood as saying (somewhat indirectly) that the output of programs can be used
internally, i.e. as an intermediate result in a larger program.

Content

Contribution

172

Introduction to solvability and operational completeness

173

VII. Call-by-name solvability

174

VIII. Call-by-value solvability

175

IX. Polarized solvability

176

Bibliography

[Abr90] S. Abramsky, “The lazy lambda calculus,” 1990 (cit. on pp. 5, 9).
[AbrOng93] S. Abramsky and C.-H. L. Ong, “Full abstraction in the lazy lambda cal-

culus,” Inf. Comput., vol. 105, no. 2, pp. 159–267, Aug. 1993, issn: 0890-
5401. doi: 10.1006/inco.1993.1044. [Online]. Available: https:
//doi.org/10.1006/inco.1993.1044 (cit. on p. 8).

[AccGue16] B. Accattoli and G. Guerrieri, “Open call-by-value,” in Programming
Languages and Systems, A. Igarashi, Ed., Cham: Springer International
Publishing, 2016, pp. 206–226, isbn: 978-3-319-47958-3 (cit. on pp. 5,
23).

[AccPao12] B.Accattoli andL. Paolini, “Call-by-value solvability, revisited,” inFunc-
tional and Logic Programming, T. Schrijvers and P. Thiemann, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 4–16, isbn:
978-3-642-29822-6 (cit. on pp. 5, 7, 23).

[Bar84] H. Barendregt,The lambda calculus: its syntax and semantics (Studies in
logic and the foundations of mathematics). North-Holland, 1984, isbn:
9780444867483. [Online]. Available: https://books.google.fr/
books?id=eMtTAAAAYAAJ (cit. on pp. 3, 5, 9, 18, 20, 112).

[BucKesRíoVis20] A. Bucciarelli, D. Kesner, A. Ríos, and A. Viso, “The bang calculus re-
visited,” in Functional and Logic Programming, K. Nakano and K. Sag-
onas, Eds., Cham: Springer International Publishing, 2020, pp. 13–32,
isbn: 978-3-030-59025-3 (cit. on p. 5).

[Chu85] A. Church,TheCalculi of LambdaConversion. (AM-6) (Annals ofMath-
ematics Studies). USA: PrincetonUniversity Press, 1985, isbn: 0691083940
(cit. on p. 8).

[CurFioMun16] P.-L. Curien, M. Fiore, and G. Munch-Maccagnoni, “A Theory of Ef-
fects andResources: AdjunctionModels and PolarisedCalculi,” inProc.
POPL, 2016. doi: 10.1145/2837614.2837652 (cit. on pp. 6, 85, 118).

[CurHer00] P.-L. Curien andH.Herbelin, “The duality of computation,” in Proceed-
ings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00),Montreal, Canada, September 18-21, 2000, ser. SIG-
PLANNotices 35(9), ACM, 2000, pp. 233–243, isbn: 1-58113-202-6.doi:
http://doi.acm.org/10.1145/351240.351262 (cit. on pp. 4–6, 16,
18, 62).

177

https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1006/inco.1993.1044
https://books.google.fr/books?id=eMtTAAAAYAAJ
https://books.google.fr/books?id=eMtTAAAAYAAJ
https://doi.org/10.1145/2837614.2837652
https://doi.org/http://doi.acm.org/10.1145/351240.351262

Bibliography

[CurMun10] P.-L. Curien and G. Munch-Maccagnoni, “The duality of computation
under focus,” in IFIP TCS, C. S. Calude and V. Sassone, Eds., ser. IFIP
Advances in Information and Communication Technology, vol. 323,
Springer, 2010, pp. 165–181 (cit. on p. 6).

[DanNie04] O.Danvy andL.R.Nielsen, “Refocusing in reduction semantics,”BRICS
Report Series, vol. 11, no. 26, Nov. 2004. doi: 10.7146/brics.v11i26.
21851. [Online]. Available: https://tidsskrift.dk/brics/article/
view/21851 (cit. on pp. 18, 29, 49).

[dVri16] F.-J. de Vries, “On Undefined and Meaningless in Lambda Definabil-
ity,” in 1st International Conference on Formal Structures for Computa-
tionandDeduction (FSCD2016), D.Kesner andB. Pientka, Eds., ser. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 52,Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
18:1–18:15, isbn: 978-3-95977-010-1. doi: 10.4230/LIPIcs.FSCD.
2016.18. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2016/5978 (cit. on p. 7).

[DezGio01] M. Dezani-Ciancaglini and E. Giovannetti, “From Böhm’s Theorem to
Observational Equivalences: an InformalAccount,” inBOTH’01, ser. Elec-
tronicNotes inTheoretical Computer Science (http://www.elsevier.nl/locate/entcs/volume50.html),
vol. 50, Elsevier, 2001, pp. 83–116. [Online]. Available: http://www.
di.unito.it/~dezani/papers/both01.ps (cit. on p. 9).

[Dij68] E. W. Dijkstra, “Letters to the editor: Go to statement considered harm-
ful,” Commun. ACM, vol. 11, no. 3, pp. 147–148, Mar. 1968, issn: 0001-
0782. doi: 10.1145/362929.362947. [Online]. Available: https://
doi.org/10.1145/362929.362947 (cit. on p. 3).

[DowAri18] P. Downen and Z. M. Ariola, “A tutorial on computational classical
logic and the sequent calculus,” Journal of Functional Programming,
vol. 28, e3, 2018. doi: 10.1017/S0956796818000023 (cit. on p. 6).

[EhrGue16] T. Ehrhard and G. Guerrieri, “The bang calculus: An untyped lambda-
calculus generalizing call-by-name and call-by-value,” in Proceedings of
the 18th International Symposium on Principles and Practice of Declara-
tive Programming, ser. PPDP ’16, Edinburgh,UnitedKingdom:Associa-
tion forComputingMachinery, 2016, pp. 174–187, isbn: 9781450341486.
doi: 10.1145/2967973.2968608. [Online]. Available: https://doi.
org/10.1145/2967973.2968608 (cit. on p. 5).

[GarNog16] Á. García-Pérez and P. Nogueira, “No solvable lambda-value term left
behind,” Logical Methods in Computer Science, vol. Volume 12, Issue 2,
Jun. 2016. doi: 10.2168/LMCS-12(2:12)2016. [Online]. Available:
https://lmcs.episciences.org/1644 (cit. on p. 5).

[Gir11] J.-Y. Girard, “The blind spot: Lectures on logic,” 2011 (cit. on p. 129).

178

https://doi.org/10.7146/brics.v11i26.21851
https://doi.org/10.7146/brics.v11i26.21851
https://tidsskrift.dk/brics/article/view/21851
https://tidsskrift.dk/brics/article/view/21851
https://doi.org/10.4230/LIPIcs.FSCD.2016.18
https://doi.org/10.4230/LIPIcs.FSCD.2016.18
http://drops.dagstuhl.de/opus/volltexte/2016/5978
http://drops.dagstuhl.de/opus/volltexte/2016/5978
http://www.di.unito.it/~dezani/papers/both01.ps
http://www.di.unito.it/~dezani/papers/both01.ps
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1017/S0956796818000023
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.2168/LMCS-12(2:12)2016
https://lmcs.episciences.org/1644

Bibliography

[Hue97] G. P. Huet, “The zipper,” J. Funct. Program., vol. 7, no. 5, pp. 549–554,
1997. doi: 10.1017/s0956796897002864. [Online]. Available: https:
//doi.org/10.1017/s0956796897002864 (cit. on p. 30).

[IntManPol17] B. Intrigila, G.Manzonetto, andA. Polonsky, “Refutation of sallé’s long-
standing conjecture,” in 2nd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2017, September 3-9, 2017,
Oxford,UK, D.Miller, Ed., ser. LIPIcs, vol. 84, SchlossDagstuhl - Leibniz-
Zentrum für Informatik, 2017, 20:1–20:18. doi: 10 . 4230 / LIPIcs .
FSCD.2017.20. [Online]. Available: https://doi.org/10.4230/
LIPIcs.FSCD.2017.20 (cit. on p. 9).

[Kri07] J.-L. Krivine, “A call-by-name lambda-calculusmachine,”HigherOrder
Symbolic Computation, vol. 20, pp. 199–207, 2007. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00154508 (cit. on pp. 6,
16, 18, 30).

[Lev01] P. B. Levy, “Call-by-push-value,” Ph.D. dissertation, Queen Mary Uni-
versity of London, UK, 2001. [Online]. Available: http://ethos.bl.
uk/OrderDetails.do?uin=uk.bl.ethos.369233 (cit. on p. 85).

[Lev04] P. B. Levy, Call-By-Push-Value: A Functional/Imperative Synthesis (Se-
mantics Structures in Computation). Springer, 2004, vol. 2, isbn: 1-
4020-1730-8 (cit. on pp. 4, 5, 85).

[Lev06] P. B. Levy, “Call-by-push-value:Decomposing call-by-value and call-by-
name,” High. Order Symb. Comput., vol. 19, no. 4, pp. 377–414, 2006.
doi: 10 . 1007 / s10990 - 006 - 0480 - 6. [Online]. Available: https :
//doi.org/10.1007/s10990-006-0480-6 (cit. on pp. 4, 5, 85).

[Mog89] E. Moggi, “Computational lambda-calculus and monads,” in Proceed-
ings of theFourthAnnual SymposiumonLogic inComputer Science (LICS
’89), Pacific Grove, California, USA, June 5-8, 1989, IEEE Computer So-
ciety, 1989, pp. 14–23. doi: 10.1109/LICS.1989.39155. [Online].
Available: https://doi.org/10.1109/LICS.1989.39155 (cit. on
pp. 5, 85).

[Mog91] E. Moggi, “Notions of computation and monads,” Inf. Comput., vol. 93,
no. 1, pp. 55–92, 1991. doi: 10.1016/0890-5401(91)90052-4. [On-
line]. Available: https://doi.org/10.1016/0890-5401(91)90052-
4 (cit. on p. 5).

[Mor69] J. H. Morris, “Lambda calculus models of programming languages,”
Ph.D. dissertation, Massachusets Institute of Technology, 1969 (cit. on
p. 9).

[MunSch15] G. Munch-Maccagnoni and G. Scherer, “Polarised Intermediate Repre-
sentation of Lambda Calculus with Sums,” in Proceedings of the Thirti-
eth Annual ACM/IEEE Symposium on Logic In Computer Science (LICS
2015), 2015. doi: 10.1109/LICS.2015.22 (cit. on p. 6).

179

https://doi.org/10.1017/s0956796897002864
https://doi.org/10.1017/s0956796897002864
https://doi.org/10.1017/s0956796897002864
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://hal.archives-ouvertes.fr/hal-00154508
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1109/LICS.2015.22

Bibliography

[Ong88] C. L. Ong, “Fully abstract models of the lazy lambda calculus,” in 29th
Annual Symposium on Foundations of Computer Science, White Plains,
NewYork,USA, 24-26October 1988, IEEEComputer Society, 1988, pp. 368–
376. doi: 10.1109/SFCS.1988.21953. [Online]. Available: https:
//doi.org/10.1109/SFCS.1988.21953 (cit. on p. 5).

[PaoRon99] L. Paolini and S. RonchiDella Rocca, “Call-by-value solvability,”RAIRO
Theor. Informatics Appl., vol. 33, no. 6, pp. 507–534, 1999. doi: 10 .
1051 / ita : 1999130. [Online]. Available: https : / / doi . org / 10 .
1051/ita:1999130 (cit. on pp. 5, 23).

[Par92] M. Parigot, “𝜆𝜇-calculus: An algorithmic interpretation of classical nat-
ural deduction,” in Logic Programming and Automated Reasoning, A.
Voronkov, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
pp. 190–201, isbn: 978-3-540-47279-7 (cit. on p. 5).

[Reg94] L. Regnier, “Une équivalence sur les lambda-termes,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 281–292, 1994. doi: 10.1016/0304-3975(94)
90012-4. [Online]. Available: https://doi.org/10.1016/0304-
3975(94)90012-4 (cit. on pp. 16, 18, 23).

[Tak95] M.Takahashi, “Parallel reductions in𝜆-calculus,” Inf. Comput., vol. 118,
no. 1, pp. 120–127, Apr. 1995, issn: 0890-5401. doi: 10.1006/inco.
1995.1057. [Online]. Available: https://doi.org/10.1006/inco.
1995.1057 (cit. on p. 112).

[Wad76] C. P. Wadsworth, “The relation between computational and denota-
tional properties for scott’s dinfty-models of the lambda-calculus,”SIAM
J.Comput., vol. 5, no. 3, pp. 488–521, 1976.doi: 10.1137/0205036. [On-
line]. Available: https://doi.org/10.1137/0205036 (cit. on pp. 7,
9).

180

https://doi.org/10.1109/SFCS.1988.21953
https://doi.org/10.1109/SFCS.1988.21953
https://doi.org/10.1109/SFCS.1988.21953
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036

Appendix

181

.1. Properties of disubstitutions

Recall the definitions of disubstitutions in the different calculi:

Summary .1.1

• In 𝜆-calculi, a disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) that consists of a substitution
𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , with

𝑇[𝜑] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇[𝜎]

• In 𝜆-calculi with focus, a disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) that consists of a
substitution 𝜎 and a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with

𝑡[𝜑] ≝ 𝑡[𝜎]
𝑐[𝜑] ≝ defer(𝑐[𝜎], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝜑] ≝ defer(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝜎], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

• In L-calculi, a disubstitution 𝜑 is a substitution whose domain may contain
stack variables 𝛼 in addition to the usual value variable 𝑥 .

We now define:

Definition .1.2

In each calculus, we define
𝜑2 ⚪ 𝜑1 ≝ 𝜑1[𝜑2] and 𝜑 ⚫ 𝓉 ≝ 𝓉[𝜑]

We also define
1⚪ ≝ (Id𝒱 ,◽) (resp. 1⚪ ≝ Id𝒱∪𝒮)

Fact .1.3

In each calculus, the set of disubstitutions 𝜑 has a monoid structure (𝜑,⚪, 1⚪) and
this monoid acts on commands, expressions, AND VALUES AND STACKSand eval-
uation contexts via ⚫.

Proof

While substitutions that act on both value variables 𝑥n and the stack variable⋆n really are
substitutions, we call them disubstitutions to avoid any confusion:

182

Definition .1.4

We call disubstitutions, and denote by 𝜑, that act on both value variables and stack
variables.
Since we only have one stack variable in Li→n , those are of the shape 𝜎,⋆n ↦ 𝑠n. The

action of disubstitutions on terms, and their compositions are defined in the expected
way. A full description of their action can be found in the right column of Figure ??.

Since terms are either variable 𝑥n, or bind⋆n, only having one stack variable⋆n enforces
the following property:

Fact .1.5

Term 𝑡n have no free stack variables, i.e.
FV𝒮(𝑡n) = ∅

Command 𝑐n and evaluation contexts 𝑒n have exactly one free stack variable⋆n, i.e.
FV𝒮(𝑐n) = FV𝒮(𝑒n) = {⋆n}

Proof

By induction.

Terms having no free stack variables implies disubstitutions can be decomposed as a sub-
stitution and a disubstitution of the shape⋆n ↦ 𝑠n:

Fact .1.6

Given a disubstitution 𝜑 = 𝜎,⋆n ↦ 𝑠n:

• for any expression, evaluation context or command 𝓉,
𝓉[𝜎, 𝑠n∕⋆n] = 𝓉[𝜎][𝑠n∕⋆n]

– for any expression 𝑡n,
𝑡n[𝜎, 𝑠n∕⋆n] = 𝑡n[𝜎]

Proof

• 𝑡n[𝜎, 𝑠n∕⋆n] = 𝑡n[𝜎] By induction on 𝑡n.

• 𝓉[𝜎, 𝑠n∕⋆n] = 𝓉[𝜎][𝑠n∕⋆n] By induction on 𝓉, using the fact that 𝜎[𝑠n∕⋆n] = 𝜎
by the previous bullet.

This also allows simplifying the composition of two disubstitutions:

183

Fact .1.7

For any disubstitutions 𝜑1 = 𝜎1,⋆n ↦ 𝑠1n and 𝜑2 = 𝜎2,⋆n ↦ 𝑠2n , we have
𝜑1[𝜑2] = 𝜎1[𝜎2],⋆n ↦ 𝑠1n [𝑠2n [𝜎1]∕⋆n]

Proof

By the previous fact,
𝜑1[𝜑2] = (𝜎1[𝜑2],⋆n ↦ 𝑠1n [𝜑2])𝜎1[𝜎2],⋆n ↦ 𝑠1n [𝑠2n [𝜎1]∕⋆n]

184

.2. Properties of reductions

185

.3. Detailed proofs

Fact A.1.8: Equivalence between ⊛ and ⊛

• The -normal expressions are exactly the -normal expressions:
𝑇N ⇔ 𝑇N

• The steps can be postponed at the cost of strengthening let to let:
𝑇N

∗ 𝑇′N ⇔ 𝑇N
∗ ∗ 𝑇′N

• Evaluating with or yields the same result:
𝑇N

⊛ 𝑇′N ⇔ 𝑇N
⊛ 𝑇′N

Proof of Fact I.1.8 from page 25

Recall that
= → ∪ let and = → ∪ let ∪

• 𝑇N ⇔ 𝑇N Take 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N maximal such that 𝑇N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑈N . The result is immediate
by case analysis on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and 𝑈N.

• 𝑇N
∗ 𝑇′N ⇐ 𝑇N

∗ ∗ 𝑇′N Since we have ∪ → ⊆ by definition, it suffices to
show that let ⊆ ∗. This is immediate: any reduction

(let𝑥N ∶= 𝑇N in𝑈N)𝑉1
N…𝑉

𝑞
N let (𝑈N[𝑇N∕𝑥N])𝑉1

N…𝑉
𝑞
N

can be simulated by

(let𝑥N ∶= 𝑇N in𝑈N)𝑉1
N…𝑉

𝑞
N (let𝑥N ∶= 𝑇N in𝑈N𝑉1

N)𝑉2
N…𝑉

𝑞
N

∗ let𝑥N ∶= 𝑇N in𝑈N𝑉1
N…𝑉

𝑞
N

let (𝑈N[𝑇N∕𝑥N])𝑉1
N…𝑉

𝑞
N

• 𝑇N
∗ 𝑇′N ⇒ 𝑇N 𝑇′N By induction on the number of steps and case analysis

on 𝑇N.

• 𝑇N
∗ 𝑇′N ⇒ 𝑇N

∗ ∗ 𝑇′N Suppose that 𝑇N
∗ 𝑇′N. By definition of (and mono-

tonicity of the reflexive transitive closure), we have 𝑇N (∪)∗ 𝑇′N. By the pre-
vious bullet, this simplifies to 𝑇N

∗ ∗ 𝑇′N.

• 𝑇N
⊛ 𝑇′N ⇔ 𝑇N

⊛ 𝑇′N The ⇐ implication follows from the previous bullets.
Now suppose that 𝑇N

⊛ 𝑇′N. By the previous bullets, we have 𝑇N
∗ 𝑙 𝑇′N for

some 𝑙. Since any -reduct is -reducible, we necessarily have 𝑙 = 0, and we are
done.

186

Fact A.4.3

In 𝜆→N (resp. M
→
N), the set of stacks 𝐒N has a monoid structure

(𝐒N,⚪◽,◽) (resp. (𝐒N,⚪⋆,⋆N))
where

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N ⚪◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N ⚪⋆ 𝑆2N ≝ 𝑆1N[𝑆2N∕⋆N])
and this monoid acts on configurations on the left (resp. on the right) via

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⚫◽ 𝐶N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N (resp. 𝐶N ⚫⋆ 𝑆N ≝ 𝐶N[𝑆N∕⋆N])
In other words:

• (mon-unit) for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N), we have
◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽ (resp.⋆N[𝑆N∕⋆N] = 𝑆N = 𝑆N[⋆N∕⋆N])

• (mon-accoc) for any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆1N, 𝑆2N, and 𝑆3N), we have

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝑆1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])
• (act-unit) for any configuration 𝐶N, we have

◽ 𝐶N = 𝐶N (resp. 𝐶N = 𝐶N[⋆N∕⋆N])

• (act-assoc) for any configuration 𝐶1N and stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆2N and 𝑆3N), we
have

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝐶1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝐶1N (resp. 𝐶1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝐶1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])

Proof of Fact I.4.3 from page 38

• (mon-unit) One equality is by definition and the other is by induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
(resp. 𝑆N).

• (mon-accoc) By induction on the size of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. 𝑆2N). The base case 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N =
◽ (resp. 𝑆2N = ⋆N), follows from (i). The inductive case follows from several
applications of the induction hypothesis.

• (act-unit) By definition (resp. by induction on 𝐶N).

• (act-assoc) By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. 𝑆2N). The base case 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N = ◽ (resp. 𝑆2N =⋆N)
follows from (i) and (iii). The inductive case follows from several applications
of the induction hypothesis.

187

Fact E.2.8

The following are equivalent:

• (i) there exists a derivation of well-polarization which is valid in Li
#”𝜏
p but not in

Lm
#”𝜏
p;

• (ii) there exists a derivation of well-polarization which is valid in Li
#”𝜏
p but not in

Lm
#”𝜏
p, and whose conclusion is of the shape

𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢
i.e. has no succedent;

• (iii) there exists a stack 𝑠𝜀 in Li
#”𝜏
p such that 𝛤 ∣ 𝑠𝜀∶𝜀 ⊢ is derivable for some 𝛤;

• (iv) at least one of the following holds:

– (a) there exists a stack constructor ‘𝜏
𝑗
−
𝑘 with zero stack arguments (e.g.

¬−(𝑣+) or (̃)); or

– (b) there exists a postitive type former 𝜏𝑗+ whose value constructors v
𝜏𝑗+
𝑘 all

have exactly one stack arguments (e.g. ¬+ or 0).

• (v) there exists a stack 𝑠𝜀 in Li
#”𝜏
p of the shape

𝑠𝜀 = ‘𝜏
𝑗
−
𝑘 (

#”𝑥) (e.g. ¬−(𝑥+) or (̃))
or

𝑠𝜀 = 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼
𝜀1
1 ,

#”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀1
1 ⟩

𝜀1

⋮
v
𝜏𝑗+
𝑙 (#”𝑥𝑙 , 𝛼

𝜀𝑙
𝑙 ,

#”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙
𝑙 ⟩

𝜀𝑙] (e.g. 𝜇¬+(𝛼−).𝛼⟨𝑥−∣𝛼−⟩− or 𝜇[])

Furthermore, if all positive type formers in #”𝜏 have at least one constructor (i.e. there
are no copies of 0), then these are also equivalent to:

• (vi) Lm
#”𝜏
p ⊊ Li

#”𝜏
p.

In particular, for #”𝜏 ⊆ {→⇓⇑¬−¬+⊗`⊕&1⊥⊤}a, we have
Lm

#”𝜏
p ⊊ Li

#”𝜏
p ⇔ #”𝜏 ∩ {¬−¬+⊥} ≠ ∅

aNote the absence of 0.

188

Proof of Fact V.2.8 from page 128

• (i) ⇒ (ii) This derivation necessarily uses a sequent of the shape
𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢

and there is therefore a subderivation whose conclusion is that sequent.

• (ii) ⇒ (iii) By induction on the derivation: if the derivation ends with
𝛤1 ⊢ 𝑡𝜀∶𝐴𝜀 ∣ 𝛤2 ∣ 𝑒𝜀∶𝐴𝜀 ⊢

⟨𝑡𝜀∣𝑒𝜀⟩
𝜀∶(𝛤1, 𝛤2 ⊢)

(cut) (resp. 𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢)
𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝐴𝜀 ⊢

(𝜇⊢))
then we apply the induction hypothesis to the derivation of 𝛤2 ∣ 𝑒𝜀∶𝐴𝜀 ⊢ (resp.
𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢)).

• (iii) ⇒ (iv) By induction on the derivation. If the last rule of the derivation is

𝛤1 ⊢ 𝑣1𝜀1∶𝐴
1
𝜀1 ∣ … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝐴

𝑞
𝜀𝑞 ∣

𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝐴
𝑞+1
𝜀𝑞+1 ⊢ … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝐴

𝑞+𝑟
𝜀𝑞+𝑟 ⊢

𝛤1,… , 𝛤𝑞+𝑟 ∣ ‘𝜏
𝑗
−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 ,… , 𝑠𝑟𝜀𝑞+𝑟)∶𝜏𝑗−(#”𝐵) ⊢

(‘𝜏𝑗−𝑘 ⊢)
then either 𝑟 > 0 and we apply the induction hypothesis to one of the deriva-
tions of 𝛤𝑞+𝑘 ∣ 𝑠𝑘𝜀𝑞+𝑘 ∶𝐴

𝑞+𝑘
𝜀𝑞+𝑘 ⊢, or 𝑟 = 0, and we can immediately conclude that

(iv). If the last rule is

𝑐1∶(𝛤, # ”𝑥1∶
”

𝐴1 ⊢ 𝛼𝜀𝑟
1 ∶𝐵

1
𝜀𝑟) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶

”

𝐴𝑙 ⊢ 𝛼𝜀𝑟
𝑙 ∶𝐵

𝑙
𝜀𝑟)

𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼1).𝑐1∣…∣v
𝜏𝑗+
𝑙 (#”𝑥𝑙 , 𝛼𝑙).𝑐𝑙]∶𝜏𝑗+(#”𝐶) ⊢

(𝜏𝑗+⊢)

we can immediately conclude that (iv).

• (iv) ⇒ (v) Immediate.

• (v) ⇒ (i) If 𝑠𝜀 ≠ 𝜇[], then we have 𝑠𝜀 ∉ Lm
#”𝜏
p, and in particular, the derivation

that shows that 𝑠𝜀 ∈ Li
#”𝜏
p works. For 𝑠𝜀 = 𝜇[], there are two possible shapes for

the derivation of 𝑠𝜀 ∈ Li
#”𝜏
p

𝛤 ∣ 𝜇[]∶0 ⊢ 𝛼𝜀∶𝐴𝜀

(0⊢) and
𝛤 ∣ 𝜇[]∶0 ⊢

(0⊢)

and while the former is also valid in Lm
#”𝜏
p, the latter is not.

• (v) ⇒ (iv) We have 𝑠𝜀 ∈ Li
#”𝜏
p ⧵ Lm

#”𝜏
p. This is immediate for the case 𝑠𝜀 = ‘𝜏

𝑗
−
𝑘 (

#”𝑥),

189

and since all positive type formers have at least one constructor, the case

𝑠𝜀 = 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼
𝜀1
1 ,

#”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀1
1 ⟩

𝜀1

⋮
v
𝜏𝑗+
𝑙 (#”𝑥𝑙 , 𝛼

𝜀𝑙
𝑙 ,

#”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙
𝑙 ⟩

𝜀𝑙]
is restricted to 𝑙 > 0, i.e. 𝑠𝜀 = 𝜇[] is ruled out, which ensures that 𝑠𝜀 ∉ Lm

#”𝜏
p.

• (iv) ⇒ (i) Take any 𝓉 ∈ Li
#”𝜏
p ⧵ Lm

#”𝜏
p. The derivation that 𝓉 ∈ Li

#”𝜏
p works.

Fact E.4.1

In 𝜆
#”𝜏
p (resp. Lm

#”𝜏
p), stacks form a category 𝒞 with Obj(𝒞) = {+, − } and

Hom𝒞(𝜀1, 𝜀2) = {(𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2)∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ∈ 𝐬𝜀1↝𝜀2} (resp. {(𝜎,⋆𝜀1 ↦ 𝑠𝜀1↝𝜀2)∣𝑠𝜀1↝𝜀2 ∈ 𝐬𝜀1↝𝜀2})
whose composition and identities are given by

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 ≝ defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3) (resp. 𝑠1𝜀1↝𝜀2 ⚪⋆ 𝑠

2
𝜀2↝𝜀3 ≝ 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆N])

and
Id𝜀 = ◽𝜀 (resp. Id𝜀 =⋆𝜀)

respectively, and this category acts on commands (on the right) via
𝑐↝𝜀1 ⚫d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ≝ defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2) (resp. 𝑐↝𝜀1 ⚫⋆ 𝑠𝜀1↝𝜀2 ≝ 𝑐↝𝜀1[𝑠𝜀1↝𝜀2∕⋆

𝜀1])
In other words:

• cat-closure for any stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3 (resp. 𝑠1𝜀1↝𝜀2 and 𝑠

2
𝜀2↝𝜀3), defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3)

(resp. 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2]) is a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀3 (resp. 𝑠𝜀1↝𝜀3).

• cat-id for any stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp. 𝑠𝜀1↝𝜀2), we have
defer(◽𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 = defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ,◽

𝜀2)
(resp.⋆𝜀1[𝑠𝜀1↝𝜀2∕⋆

𝜀1] = 𝑠𝜀1↝𝜀2 = 𝑠𝜀1↝𝜀2[⋆
𝜀2∕⋆𝜀2])

• cat-accoc for any stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3 , and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3
𝜀3↝𝜀4 (resp. 𝑠1𝜀1↝𝜀2 , 𝑠

2
𝜀2↝𝜀3 , and 𝑠

3
𝜀3↝𝜀4), we

have
defer(defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4) = defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3
𝜀3↝𝜀4))

(resp. 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2][𝑠3𝜀3↝𝜀4∕⋆𝜀3] = 𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3[𝑠3𝜀3↝𝜀4∕⋆𝜀3]∕⋆𝜀2])
• act-closure for any command 𝑐↝𝜀1 and stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp. 𝑠𝜀1↝𝜀2), defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1
𝜀1↝𝜀2)

(resp. 𝑐↝𝜀1[𝑠1𝜀1↝𝜀2∕⋆𝜀1]) is a command 𝑐2↝𝜀2 .

• act-id for any command 𝑐↝𝜀, we have
defer(𝑐↝𝜀,◽𝜀) = 𝑐↝𝜀 (resp. 𝑐↝𝜀[⋆𝜀∕⋆𝜀] = 𝑐↝𝜀)

190

• act-assoc for any command 𝑐↝𝜀1 and stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
𝜀1↝𝜀2 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3 (resp. 𝑠1𝜀1↝𝜀2 and

𝑠2𝜀2↝𝜀3), we have

defer(defer(𝑐↝𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
𝜀1↝𝜀2), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3) = defer(𝑐↝𝜀1 , defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2
𝜀2↝𝜀3))

(resp. 𝑐↝𝜀1[𝑠1𝜀1↝𝜀2∕⋆𝜀1][𝑠2𝜀2↝𝜀3∕⋆𝜀2] = 𝑐↝𝜀1[𝑠1𝜀1↝𝜀2[𝑠2𝜀2↝𝜀3∕⋆𝜀2]∕⋆𝜀1])

Proof of Fact V.4.1 from page 158

• cat-closure By induction on 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 (resp. 𝑠1𝜀1↝𝜀2).

• act-closure By induction on 𝑐↝𝜀1 .

• cat-id We have
defer(◽𝜀1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp.⋆𝜀1[𝑠𝜀1↝𝜀2∕⋆

𝜀1] = 𝑠𝜀1↝𝜀2)
by definition, and

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 = defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 ,◽
𝜀2) (resp. 𝑠𝜀1↝𝜀2 = 𝑠𝜀1↝𝜀2[⋆

𝜀2∕⋆𝜀2])
by induction on 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀1↝𝜀2 (resp. 𝑠𝜀1↝𝜀2).

• act-id By induction on 𝑐↝𝜀.

• cat-accoc By induction on the size of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3(resp. 𝑠2𝜀2↝𝜀3). The base case 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3 =

◽𝜀2 (resp. 𝑠2𝜀2↝𝜀3 = ⋆𝜀2) follows from (cat-id). All the inductive case decompose
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3(resp. 𝑠2𝜀2↝𝜀3) as

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 = defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3) (resp. 𝑠2𝜀2↝𝜀3 = 𝑠2𝑎𝜀2↝𝜀[𝑠2𝑏𝜀↝𝜀3∕⋆𝜀])
where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3 (resp. 𝑠2𝑎𝜀2↝𝜀and 𝑠2𝑏𝜀↝𝜀3) are strictly smaller, and we can imme-
diately conclude by applying the induction hypothesis four times:

defer(defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2
𝜀2↝𝜀3), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4) = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3)⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4

= (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3))⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4

= ((𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀)⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3)⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4

= (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀)⚪d (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4)
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀 ⚪d (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4))
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d ((𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑎𝜀2↝𝜀 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑏𝜀↝𝜀3)⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4)
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 ⚪d (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 ⚪d 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3𝜀3↝𝜀4)
= defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 , defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝜀2↝𝜀3 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

3
𝜀3↝𝜀4))

(resp. the same proof with ⚪⋆).

• act-assoc By induction on the size of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝜀1↝𝜀2 (resp. 𝑠1𝜀1↝𝜀2). The base case 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
𝜀1↝𝜀2 =

191

◽𝜀1 (resp. 𝑠1𝜀1↝𝜀2 = ⋆𝜀1) follows from (act-id). The inductive cases are handled
just like those of (cat-assoc).

192

.4. Extra figures

193

Figure .4.1: Well polarized L
#”𝜏
p

Figure .4.1.a: Core rules

𝑥𝜀∶𝜀 ⊢ 𝑥𝜀∶𝜀 ∣
(⊢ax)

∣ 𝛼𝜀∶𝜀 ⊢ 𝛼𝜀∶𝜀
(ax⊢)

𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀, 𝛥)
𝛤 ⊢ 𝜇𝛼𝜀.𝑐∶𝜀 ∣ 𝛥

(⊢𝜇)
𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛥)
𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝜀 ⊢ 𝛥

(𝜇⊢)

𝛤1 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛥1 𝛤2 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛥2
⟨𝑡𝜀∣𝑒𝜀⟩

𝜀∶(𝛤1, 𝛤2 ⊢ 𝛥1, 𝛥2)
(cut)

Figure .4.1.b: Structural rules (commands)

𝑐∶(𝛤 ⊢ 𝛥)
𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀, 𝛥)

(⊢w𝑐)
𝑐∶(𝛤 ⊢ 𝛼𝜀

1∶𝜀, 𝛼
𝜀
2∶𝜀, 𝛥)

𝑐[𝛽𝜀∕𝛼𝜀
1, 𝛽

𝜀∕𝛼𝜀
2]∶(𝛤 ⊢ 𝛽𝜀∶𝜀, 𝛥)

(⊢c𝑐)

𝑐∶(𝛤 ⊢ 𝛥)
𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛥)

(w𝑐⊢)
𝑐∶(𝛤, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀 ⊢ 𝛥)

𝑐[𝑦𝜀∕𝑥𝜀
1, 𝑦

𝜀∕𝑥𝜀
2]∶(𝛤, 𝑦𝜀∶𝜀 ⊢ 𝛥)

(c𝑐⊢)

𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀
1∶𝜀, 𝛼

𝜀
2∶𝜀, 𝛥2)

𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀
2∶𝜀, 𝛼

𝜀
1∶𝜀, 𝛥2)

(⊢p𝑐)
𝑐∶(𝛤1, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀, 𝛤2 ⊢ 𝛥)

𝑐∶(𝛤1, 𝑥𝜀
2∶𝜀, 𝑥

𝜀
1∶𝜀, 𝛤2 ⊢ 𝛥)

(p𝑐⊢)

Figure .4.1.c: Structural rules (expressions)

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛼
𝜀∶𝜀, 𝛥

(⊢w𝑡)
𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛼

𝜀
1∶𝜀, 𝛼

𝜀
2∶𝜀, 𝛥

𝛤 ⊢ 𝑡𝜀0[𝛽𝜀∕𝛼𝜀
1, 𝛽

𝜀∕𝛼𝜀
2]∶𝜀0 ∣ 𝛽𝜀∶𝜀, 𝛥

(⊢c𝑡)

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥

𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥
(w𝑡⊢)

𝛤, 𝑥𝜀
1∶𝜀, 𝑥

𝜀
2∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥

𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0[𝑥𝜀∕𝑥𝜀
1, 𝑥

𝜀∕𝑥𝜀
2]∶𝜀0 ∣ 𝛥

(c𝑡⊢)

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥1, 𝛼
𝜀
1∶𝜀, 𝛼

𝜀
2∶𝜀, 𝛥2

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥1, 𝛼
𝜀
2∶𝜀, 𝛼

𝜀
1∶𝜀, 𝛥2

(⊢p𝑡)
𝛤1, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥

𝛤1, 𝑥𝜀
2∶𝜀, 𝑥

𝜀
1∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥

(p𝑡⊢)

194

Figure .4.1.d: Structural rules (evaluation contexts)

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀∶𝜀, 𝛥
(⊢w𝑒)

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀
1∶𝜀, 𝛼

𝜀
2∶𝜀, 𝛥

𝛤 ∣ 𝑒𝜀0[𝛽𝜀∕𝛼𝜀
1, 𝛽

𝜀∕𝛼𝜀
2]∶𝜀0 ⊢ 𝛽𝜀∶𝜀, 𝛥

(⊢c𝑒)

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥
(w𝑒⊢)

𝛤, 𝑥𝜀
1∶𝜀, 𝑥

𝜀
2∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0[𝑥𝜀∕𝑥𝜀
1, 𝑥

𝜀∕𝑥𝜀
2]∶𝜀0 ⊢ 𝛥

(c𝑒⊢)

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥1, 𝛼𝜀
1∶𝜀, 𝛼

𝜀
2∶𝜀, 𝛥2

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥1, 𝛼𝜀
2∶𝜀, 𝛼

𝜀
1∶𝜀, 𝛥2

(⊢p𝑒)
𝛤1, 𝑥𝜀

1∶𝜀, 𝑥
𝜀
2∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

𝛤1, 𝑥𝜀
2∶𝜀, 𝑥

𝜀
1∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥

(p𝑒⊢)

Figure .4.1.e: General shape of logic rules

𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣ 𝛥𝑞
𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟

𝛤1,… , 𝛤𝑞+𝑟 ∣ ‘𝜏
𝑗
−
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 ,… , 𝑠𝑟𝜀𝑞+𝑟)∶ − ⊢ 𝛥1,… , 𝛥𝑞+𝑟

(‘𝜏𝑗−𝑘 ⊢)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ # ”𝛼1∶
#”

𝜀′1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ #”𝛼𝑙 ∶
#”

𝜀′𝑙 , 𝛥)
𝛤 ⊢ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣‘𝜏

𝑗
−
𝑙 (

#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙>∶ − ∣ 𝛥
(⊢𝜏𝑗−)

𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣ 𝛥𝑞
𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟

𝛤1,… , 𝛤𝑞 ⊢ v
𝜏𝑗+
𝑘 (𝑣1𝜀1 ,… , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 ,… , 𝑠𝑟𝜀𝑞+𝑟)∶+ ∣ 𝛥1,… , 𝛥𝑞

(⊢v𝜏𝑗+𝑘)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ # ”𝛼1∶
#”

𝜀′1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ #”𝛼𝑙 ∶
#”

𝜀′𝑙 , 𝛥)
𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣v

𝜏𝑗+
𝑙 (

#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙]∶+ ⊢ 𝛥
(𝜏𝑗+⊢)

195

Figure .4.1.f: Logic rules for multiplicative types

𝑐∶(𝛤, 𝑥+∶+ ⊢ 𝛼−∶ − , 𝛥)
𝛤 ⊢ 𝜇(𝑥+ ∙ 𝛼−).𝑐∶ − ∣ 𝛥

(⊢→)
𝛤1 ⊢ 𝑣+∶+ ∣ 𝛥1 𝛤2 ∣ 𝑠−∶ − ⊢ 𝛥2

𝛤1, 𝛤2 ∣ 𝑣+ ∙ 𝑠−∶ − ⊢ 𝛥1, 𝛥2
(→⊢)

𝑐∶(𝛤 ⊢ 𝛼−∶ − , 𝛽−∶ − , 𝛥)
𝛤 ⊢ 𝜇(𝛼−`𝛽−).𝑐∶ − ∣ 𝛥

(⊢`) 𝛤1 ∣ 𝑠1−∶ − ⊢ 𝛥1 𝛤2 ∣ 𝑠2−∶ − ⊢ 𝛥2
𝛤1, 𝛤2 ∣ (𝑠1−`𝑠2−)∶ − ⊢ 𝛥1, 𝛥2

(`⊢)

𝛤1 ⊢ 𝑣1+∶+ ∣ 𝛥1 𝛤2 ⊢ 𝑣2+∶+ ∣ 𝛥2
𝛤1, 𝛤2 ⊢ (𝑣1+⊗𝑣2+)∶+ ∣ 𝛥1, 𝛥2

(⊢⊗)
𝑐∶(𝛤, 𝑥+∶+, 𝑦+∶+ ⊢ 𝛥)
𝛤 ∣ 𝜇(𝑥+⊗𝑦−).𝑐∶+ ⊢ 𝛥

(⊗⊢)

𝑐∶(𝛤 ⊢ 𝛥)
𝛤 ⊢ 𝜇(̃).𝑐∶ − ∣ 𝛥

(⊢⊥)
∣ (̃)∶ − ⊢

(⊥⊢)

⊢ ()∶+ ∣
(1⊢)

𝑐∶(𝛤 ⊢ 𝛥)
𝛤 ∣ 𝜇().𝑐∶+ ⊢ 𝛥

(⊢1)

Figure .4.1.g: Logic rules for additive types

𝑐1∶(𝛤 ⊢ 𝛼−
1 ∶ − , 𝛥) 𝑐2∶(𝛤 ⊢ 𝛼−

2 ∶ − , 𝛥)
𝛤 ⊢ 𝜇<(𝜋1 ∙ 𝛼−

1).𝑐1∣(𝜋2 ∙ 𝛼−
2).𝑐2>∶ − ∣ 𝛥

(⊢&)
𝛤 ∣ 𝑠−∶ − ⊢ 𝛥

𝛤 ∣ 𝜋𝑖 ∙ 𝑠−∶ − ⊢ 𝛥
(&⊢)

𝛤 ⊢ 𝑣+∶+ ∣ 𝛥

𝛤 ⊢ 𝜄𝑖(𝑣+)∶+ ∣ 𝛥
(⊢⊕)

𝑐1∶(𝛤, 𝑥+
1 ∶+ ⊢ 𝛥) 𝑐2∶(𝛤, 𝑥+

2 ∶+ ⊢ 𝛥)
𝛤 ∣ 𝜇[𝜄1(𝑥+

1).𝑐1∣𝜄2(𝑥+
2).𝑐2]∶+ ⊢ 𝛥

(⊕⊢)

𝛤 ⊢ 𝜇<>∶ − ∣ 𝛥
(⊢⊤) (No (⊤⊢) rule)

(No (⊢0) rule)
𝛤 ∣ 𝜇[]∶+ ⊢ 𝛥

(0⊢)

196

Figure .4.1.h: Logic rules for shifts

𝑐∶(𝛤 ⊢ 𝛼+∶+, 𝛥)
𝛤 ⊢ 𝜇{𝛼+}.𝑐∶ − ∣ 𝛥

(⊢⇑)
𝛤 ∣ 𝑠+∶+ ⊢ 𝛥

𝛤 ∣ {𝑠+}∶ − ⊢ 𝛥
(⇑⊢)

𝛤 ⊢ 𝑣−∶ − ∣ 𝛥

𝛤 ⊢ {𝑣−}∶+ ∣ 𝛥
(⊢⇓)

𝑐∶(𝛤, 𝑥−∶ − ⊢ 𝛥)
𝛤 ∣ 𝜇{𝑥−}.𝑐∶+ ⊢ 𝛥

(⇓⊢)

Figure .4.1.i: Logic rules for negations

𝑐∶(𝛤, 𝑥+∶+ ⊢ 𝛥)
𝛤 ⊢ 𝜇¬−(𝑥+).𝑥𝑐∶ − ∣ 𝛥

(⊢¬−)
𝛤 ⊢ 𝑣+∶+ ∣ 𝛥

𝛤 ∣ ¬−(𝑣+)∶ − ⊢ 𝛥
(¬−⊢)

𝛤 ∣ 𝑠−∶ − ⊢ 𝛥

𝛤 ⊢ ¬+(𝑠−)∶+ ∣ 𝛥
(⊢¬+)

𝑐∶(𝛤 ⊢ 𝛼−∶ − , 𝛥)
𝛤 ∣ 𝜇¬+(𝛼−).𝛼𝑐∶+ ⊢ 𝛥

(¬+⊢)

197

Contents

0. Introduction 2
0.1. Motivation . 3
0.2. Background . 5

0.2.1. Calculi . 5
𝜆-calculi and Call-by-push-value 5
The 𝜆𝜇𝜇-calculus . 5
Polarized sequent calculi . 6

0.2.2. Solvability in arbitrary programming languages 6
Observational equivalence and preorder 6
Operational relevance and solvability 6
The central role of unsolvability 7
Unary operational completeness 7
Operational characterization of solvability 8

0.2.3. Solvability in 𝜆-calculi . 8
Call-by-name solvability . 9
Call-by-value solvability . 10

0.3. Content . 11
0.4. Notations . 12

Reduction sequences . 12
Main reductions . 12
Closure of reductions under contexts 12

0.5. Table of contents . 14

A. Introduction to L calculi 15
Content . 16
Contribution . 16

I. Pure call-by-name calculi 18
Summary . 18
Table of contents . 19

I.1. A pure call-by-name 𝜆-calculus: 𝛌→
N . 20

Syntax . 20
Contexts . 20
Substitutions and disubstitutions . 21
𝛽-reduction . 22
𝜎-reductions . 23

198

Contents

𝜂-expansion . 25
I.2. A pure call-by-name 𝜆-calculus with toplevel focus: 𝜆→N 27

Searching for the next redex . 27
Simulation . 28
Refocusing . 28
Properties of reductions . 29

I.3. A pure call-by-name abstract machine: M→
N 30

The inside-out syntax . 30
Disubstitutions . 30
Ambiguity of the ambiant calculus . 33

I.4. Equivalence between 𝜆→N and M
→
N . 35

Inside-out and outside-out descriptions 35
Translations . 36
Substitutions . 40
Disubstitutions . 42
Reductions . 43

I.5. Translations between 𝛌→
N and 𝜆

→
N . 46

Focus insertion and erasure . 46
Reductions through focus erasure . 47
Reductions through focus insertion 48

I.6. A pure call-by-name 𝜆-calculus with focus: 𝜆→n 51
I.6.1. The simple fragment of the naive 𝜆→n calculus 51

Decomposing the strong reduction . 51
Focus erasure in place of focus movement 53

I.6.2. The naive 𝜆→n calculus . 53
Stack deferrals . 53
𝜇 as a generalization of m and . 54

Underlines as potential places of interaction 55
Reducing let-expressions . 56
Undesirable strong reductions . 56

I.6.3. The 𝜆→n calculus . 57
Explicit command boundaries . 57
Coercions . 59
Evaluation contexts . 59
Disubstitution . 59
Reductions . 60

I.7. Translations between 𝛌→
N and 𝜆

→
n . 61

I.8. A pure call-by-name intuitionistic L calculus: Li→n 62
I.8.1. From the M→

N abstract machine to the Li
→
n calculus 62

Decomposing the strong reduction . 62
Pattern matching stacks . 62
Stack variable names . 62
Binding the stack variable . 63

199

Contents

I.8.2. The Li→n calculus . 65
Let-expressions and 𝜇 . 65
Coercions . 65
Disubstitutions . 65
Reductions . 65

I.9. Equivalence between 𝜆→n and Li
→
n . 67

I.10. A pure call-by-name classical L calculus: L→
n 68

I.11. Simply-typed L calculi . 69

II. Pure call-by-value calculi 70
II.1. A pure call-by-value 𝜆-calculus: 𝛌→

V . 71
II.2. A pure call-by-value 𝜆-calculus with focus: 𝜆→v 72
II.3. A pure call-by-value intuitionistic L calculus: Li→v 73
II.4. A pure call-by-value classical L calculus: L→

v 74

B. Untyped polarized calculi 75

III. Pure polarized calculi 77
III.1. Relative expresiveness of call-by-name and call-by-value 78
III.2. A pure polarized 𝜆-calculus: 𝛌→⇑⇓

P . 79
III.3. A pure polarized 𝜆-calculus with focus: 𝜆→⇑⇓

p 80
III.4. A pure polarized intuitionistic L-calculus: Li→⇑⇓

p 81
III.5. A pure polarized classical L-calculus: L→⇑⇓

p 82

IV.Polarized calculi with pairs and sums 83
IV.1. A polarized 𝜆-calculus with pairs and sums: 𝛌→&⇑⊗⊕⇓

P 84
IV.2. CBPV as a subcalculus of 𝛌→&⇑⊗⊕⇓

P . 85
IV.2.1. CBPV . 85

Syntax . 85
Operational semantics . 85
Complex values . 85

IV.2.2. Embedding CBPV into 𝛌→&⇑⊗⊕⇓
P . 88

Embedding values and computations 88
Differences between CBPV and 𝛌→&⇑⊗⊕⇓

P 90
Complex values and positive expressions 92
Preservation of operational semantics 92

IV.3. A polarized 𝜆-calculus with focus: 𝜆→&⇑⊗⊕⇓
p 94

IV.4. A polarized intuitionistic L calculus: Li→&⇑⊗⊕⇓
p 95

IV.5. A polarized classical L calculus: L→&⇑⊗⊕⇓
p . 96

IV.6. The CBPV abstract machine as a subcalculus of 𝜆→&⇑⊗⊕⇓
p 97

200

Contents

V. Polarized calculi with arbitrary constructors 98
V.1. A (classical) polarized L-calculus: L

#”𝜏
p . 99

V.1.1. Syntax . 99
Type formers . 99
Value and stack constructors . 99
Syntax . 102

V.1.2. Reductions . 102
Definitions . 102
Normal forms, clashes and waiting commands 108
Properties . 111

V.1.3. Well-typed and well-polarized terms 113
Well-typed terms . 113
Alternative presentations . 118
Well-polarized terms . 119

V.2. Intuitionistic and minimalistic polarized L-calculi: Li
#”𝜏
p and Lm

#”𝜏
p 121

V.2.1. Intuitionistic and minimalistic fragments 121
Fragment definitions . 121
Inoperable rules . 126
Inclusions . 127
Straightforwardly minimalistic type formers 129

V.2.2. A syntax for the minimalistic fragment 131
Characterization of Lm

#”𝜏
p via free stack variables 131

Output polarities . 131
A BNF grammar for Lm

#”𝜏
p . 132

V.2.3. Properties . 139
Disubstitutions . 139
Reductions . 140

V.3. A polarized 𝜆-calculus with focus equivalent to Lm
#”𝜏
p: 𝜆

#”𝜏
p 142

V.3.1. The outside-out description of the Lm
#”𝜏
p calculus 142

V.3.2. The 𝜆
#”𝜏
p calculus . 147

V.4. Equivalence between 𝜆
#”𝜏
p and Lm

#”𝜏
p . 158

Definition and basic properties . 159
Equality through translations . 163

V.5. A polarized 𝜆-calculus: 𝛌
#”𝜏
P . 164

VI.Dynamically typed polarized calculi 165
VI.1. Clashes and dynamically typed calculi . 166
VI.2. A dynamically typed polarized 𝜆-calculus: 𝛌𝒫𝒩

P 167
VI.3. A dynamically typed polarized 𝜆-calculus with focus: 𝜆𝒫𝒩p 168
VI.4. A dynamically typed polarized intuitionistic L calculus: Li𝒫𝒩p 169
VI.5. A dynamically typed polarized classical L calculus: L𝒫𝒩

p 170

201

Contents

C. Solvability in polarized calculi 171
Content . 172
Contribution . 172

Introduction to solvability and operational completeness 173

VII.Call-by-name solvability 174

VIII.Call-by-value solvability 175

IX.Polarized solvability 176

Bibliography 177
.1. Properties of disubstitutions . 182
.2. Properties of reductions . 185
.3. Detailed proofs . 186
.4. Extra figures . 193

202

	Introduction
	Motivation
	Background
	Calculi
	λ-calculi and Call-by-push-value
	The ƛµμ̃-calculus
	Polarized sequent calculi

	Solvability in arbitrary programming languages
	Observational equivalence and preorder
	Operational relevance and solvability
	The central role of unsolvability
	Unary operational completeness
	Operational characterization of solvability

	Solvability in λ-calculi
	Call-by-name solvability
	Call-by-value solvability

	Content
	Notations
	Reduction sequences
	Main reductions
	Closure of reductions under contexts

	Table of contents

	Introduction to L calculi
	Content
	Contribution
	Pure call-by-name calculi
	Summary
	Table of contents
	A pure call-by-name λ-calculus
	Syntax
	Contexts
	Substitutions and disubstitutions
	β-reduction
	σ-reductions
	η-expansion

	A pure call-by-name λ-calculus with toplevel focus
	Searching for the next redex
	Simulation
	Refocusing
	Properties of reductions

	A pure call-by-name abstract machine
	The inside-out syntax
	Disubstitutions
	Ambiguity of the ambiant calculus

	Equivalence between λNtypecolor_ and MNtypecolor_
	Inside-out and outside-out descriptions
	Translations
	Substitutions
	Disubstitutions
	Reductions

	Translations between λNtypecolor_ and λNtypecolor_
	Focus insertion and erasure
	Reductions through focus erasure
	Reductions through focus insertion

	A pure call-by-name λ-calculus with focus
	The simple fragment of the naive ntypecolor_ calculus
	Decomposing the strong reduction
	Focus erasure in place of focus movement

	The naive ntypecolor_ calculus
	Stack deferrals
	_syntaxcolorµ as a generalization of _m and
	Underlines as potential places of interaction
	Reducing let-expressions
	Undesirable strong reductions

	The ntypecolor_ calculus
	Explicit command boundaries
	Coercions
	Evaluation contexts
	Disubstitution
	Reductions

	Translations between λNtypecolor_ and ntypecolor_
	A pure call-by-name intuitionistic L calculus
	From the MNtypecolor_ abstract machine to the ntypecolor_ calculus
	Decomposing the strong reduction
	Pattern matching stacks
	Stack variable names
	Binding the stack variable

	The ntypecolor_ calculus
	Let-expressions and μ̃
	Coercions
	Disubstitutions
	Reductions

	Equivalence between ntypecolor_ and ntypecolor_
	A pure call-by-name classical L calculus
	Simply-typed L calculi

	Pure call-by-value calculi
	A pure call-by-value λ-calculus
	A pure call-by-value λ-calculus with focus
	A pure call-by-value intuitionistic L calculus
	A pure call-by-value classical L calculus

	Untyped polarized calculi
	Pure polarized calculi
	Relative expresiveness of call-by-name and call-by-value
	A pure polarized λ-calculus
	A pure polarized λ-calculus with focus
	A pure polarized intuitionistic L-calculus
	A pure polarized classical L-calculus

	Polarized calculi with pairs and sums
	A polarized λ-calculus with pairs and sums
	CBPV^ as a subcalculus of λPtypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓
	CBPV^
	Syntax
	Operational semantics
	Complex values

	Embedding CBPV^ into λPtypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓
	Embedding values and computations
	Differences between CBPV^ and λPtypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓
	Complex values and positive expressions
	Preservation of operational semantics

	A polarized λ-calculus with focus
	A polarized intuitionistic L calculus
	A polarized classical L calculus
	The CBPV abstract machine as a subcalculus of ptypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓

	Polarized calculi with arbitrary constructors
	A (classical) polarized L-calculus
	Syntax
	Type formers
	Value and stack constructors
	Syntax

	Reductions
	Definitions
	Normal forms, clashes and waiting commands
	Properties

	Well-typed and well-polarized terms
	Well-typed terms
	Alternative presentations
	Well-polarized terms

	Intuitionistic and minimalistic polarized L-calculi
	Intuitionistic and minimalistic fragments
	Fragment definitions
	Inoperable rules
	Inclusions
	Straightforwardly minimalistic type formers

	A syntax for the minimalistic fragment
	Characterization of p4metavarcolorτ via free stack variables
	Output polarities
	A BNF grammar for p4metavarcolorτ

	Properties
	Disubstitutions
	Reductions

	A polarized λ-calculus with focus equivalent to p4metavarcolorτ
	The outside-out description of the p4metavarcolorτ calculus
	The p4metavarcolorτ calculus

	Equivalence between p4metavarcolorτ and p4metavarcolorτ
	Definition and basic properties
	Equality through translations

	A polarized λ-calculus

	Dynamically typed polarized calculi
	Clashes and dynamically typed calculi
	A dynamically typed polarized λ-calculus
	A dynamically typed polarized λ-calculus with focus
	A dynamically typed polarized intuitionistic L calculus
	A dynamically typed polarized classical L calculus

	Solvability in polarized calculi
	Content
	Contribution
	Introduction to solvability and operational completeness
	Call-by-name solvability
	Call-by-value solvability
	Polarized solvability
	Bibliography
	Properties of disubstitutions
	Properties of reductions
	Detailed proofs
	Extra figures

