
Untyped polarized calculi

Xavier Montillet

July 15, 2024

0. Introduction

The goal of this thesis is to provide an introduction to polarized L calculi and to demonstrate
their usefulness in studying untyped 𝜆-calculi.

2

0. Introduction

0.1. Motivation

The study of programming languages aims at making reasoning about the behavior of pro-
grams easier, and at identifying desirable properties for future programming languages.
When studied formally, programming languages are equipped with a semantics, i.e. a map
that assigns to each program amathematical object that represents its behavior. The seman-
tics then induces an equivalence relation: two programs are considered equivalent when
they have the same semantics. Some aspects of the behavior of programs can be either use-
ful or superfluous depending on the context. For example, the time a program takes to com-
pute its result is irrelevant when reasoning about its adherence to a specification, but crucial
when trying to optimize the program. This leads to some programming languages having
several semantics, ranging from loose ones that account for very few aspects of the behav-
ior and are easy to reason about, to more precise ones that account for more aspects of the
behavior but are more complex.
One very desirable property of a semantics is compositionality: program fragments should

also have a semantics, and the semantics of the whole program should be expressible in
terms of the semantics of its fragments. For example, to get the smallest element of a list, we
can write a program that sorts the list and returns the first element of the sorted list, and this
works independently of the how exactly the list is sorted. The existence of a compositional
semantics is a fundamental property for programming languages because it allows for large
collaborative programs without requiring each individual contributor to understand every
part of the program in details. The execution of a program by a computer is an inherently
non-compositional process because any operation can a priori observe any part of the state of
the computer. This leads to some low-level programming languages suffering from a lack of
compositionality, e.g. assembly languages or those that use the goto statement [Dij68]. This
lead to the introduction of high-level programming languages that encourage writing pro-
grams in a compositional way by disallowing the natural non-compositional ways of writing
programs and providing compositional abstractions as an alternative.
One of themost popular andwidely spread of those abstractions is the concept of function

that allows writing program fragments that takes some inputs, and uses them to compute
some output. Functions can be through of as a sort of restricted goto statements that even-
tually returns to where it started1. This restriction makes reasoning on what happens after
calling a function much easier than on what happens after a goto statement: we know that
whatever instruction is placed after a function call will eventually be executed2.
The 𝜆-calculus [Bar84] is a bare-bones programming language used to study the expres-

siveness of functions. Its bare-bones nature makes studying it mathematically easier, but
unsuitable to write complex programs, which is why real-world programming languages
based on the 𝜆-calculus extend it with some datatypes (e.g. numbers) and operations (e.g.
addition). While those additional operations can be encoded into the 𝜆-calculus (just like
functions can be encoded with goto statements), the encodings can be used in more ways
1Modulo termination.
2Again modulo termination.
[Dij68] “Letters to the Editor: Go to Statement Considered Harmful”, Dijkstra, 1968
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

3

0. Introduction

than intended, which makes them harder to reason about. In the words of Robert Harper3:

The expressive power of a programming language is derived from its strictures,
not its affordances.

When trying to study programming languages with additional datatypes, a new difficulty
appears: scalability. Indeed, some proofs scale quadratically in the number of datatypes, and
hence become unmanageable as soon as a handful of datatypes are added. In a typed setting,
it is well-known that many proofs are easier in sequent calculi than in natural deduction.
In this thesis, we look at the untyped counterpart of this statement, i.e. we compare two
untyped calculi: the sequent-calculus-inspired 𝜆𝜇𝜇-calculus [CurHer00], and the natural-
deduction-like 𝜆-calculus. It turns out that, while the 𝜆𝜇𝜇-calculus has a higher initial cost
of entry, it scales much better when adding datatypes4, elucidates the connections between
several well-known variants of the 𝜆-calculus5, and suggests new better-behaved variants6.

3This is a quote I remember hearing at OPLSS 2019. A similar sentence can be found in an email by Robert
Harper on the TYPES mailing list:

The power of a type system arises from its strictures, which can be selectively relaxed, not its
affordances, which sacrifice the ability to draw sharp distinctions.

4Many definitions and proofs scale quadratically in the number of datatype constructors in the 𝜆-calculus, and
only linearly in the 𝜆𝜇𝜇-calculus.

5For example, in 𝜆𝜇𝜇, the distinction between evaluatingwith the head reduction orwith theweak head reduc-
tions in call-by-name can be understood as being dual to the distinction between evaluating open expressions
or closed expressions in call-by-value.

6This includes our calculus 𝛌→&⇑⊗⊕⇓P which can be seen as a version of Call-by-push-value [Lev04; Lev06] with
what Levy calls “complex values”, and our dynamically typed calculus 𝛌𝒫𝒩N that avoids clashes while remain-
ing untyped.
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000

4

https://www.cs.uoregon.edu/research/summerschool/summer19/topics.php#Harper
https://lists.seas.upenn.edu/pipermail/types-list/2014/001748.html

0. Introduction

0.2. Background

0.2.1. Calculi𝜆-calculi and Call-by-push-value The 𝜆-calculus [Bar84] is a well-known abstraction
used to study programming languages. It has two main evaluation strategies: call-by-name
(CBN) evaluates arguments only when they are used, while call-by-value (CBV) evaluates
arguments immediately. Each strategy has its own advantage: call-by-name ensures that no
unnecessary computations are done, while call-by-value ensures that no computations are
done more than once. We write 𝛌→N and 𝛌→V for the call-by-name and call-by-value 𝜆-calculi
respectively. Each strategy induces two reductions: the strong reduction that can reduce
anywhere in the expression, an the operational reduction (often called the weak head
reduction) that never reduces under 𝜆-abstractions and is deterministic. While the strong
reduction is the most common in the literature, the operational reduction is more closely
related to real-world programming languages [Ong88; Abr90].
The call-by-name 𝜆-calculus has be thoroughly studied [Bar84] and is well-understood.

By contrast, the current understanding of the call-by-value lags behind. This is due to its
study being more involved than that of call-by-name, for example requiring computation
monads [Mog89; Mog91] to build models, and 𝜎-reductions / commuting conversions to
get a well-behaved reduction on open expressions [AccGue16; AccPao12; PaoRon99; Gar-
Nog16]. Call-by-push-value (CBPV) [Lev04; Lev06] decomposesMoggi’s computationmonad
as an adjunction, subsumes both call-by-name and call-by-value, and sheds some light on the
interactions and differences of both strategies. CBPV also adds some datatypes (sums and
pairs), and its pure fragment has been studied under the name Bang calculus [EhrGue16;
BucKesRíoVis20].

The 𝜆𝜇𝜇-calculus Another direction the 𝜆-calculus has evolved in is the computational
interpretation of classical logic, with continuation-passing style translations and the 𝜆𝜇-
calculus [Par92]. This eventually led to the 𝜆𝜇𝜇-calculus [CurHer00], which can be un-
derstood as denoting proofs in the sequent calculus, just like 𝜆-terms denote proofs in nat-
ural deduction. An interesting property of the 𝜆𝜇𝜇-calculus is that it resembles both the
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984
[Ong88] “Fully Abstract Models of the Lazy Lambda Calculus”, Ong, 1988
[Abr90] “The lazy lambda calculus”, Abramsky, 1990
[Mog89] “Computational Lambda-Calculus and Monads”, Moggi, 1989
[Mog91] “Notions of Computation and Monads”, Moggi, 1991
[AccGue16] “Open Call-by-Value”, Accattoli and Guerrieri, 2016
[AccPao12] “Call-by-Value Solvability, Revisited”, Accattoli and Paolini, 2012
[PaoRon99] “Call-by-value Solvability”, Paolini and Ronchi Della Rocca, 1999
[GarNog16] “No solvable lambda-value term left behind”, García-Pérez and Nogueira, 2016
[Lev04] Call-By-Push-Value: A Functional/Imperative Synthesis, Levy, 2004
[Lev06] “Call-by-push-value: Decomposing call-by-value and call-by-name”, Levy, 2006
[EhrGue16] “The Bang Calculus: An Untyped Lambda-Calculus Generalizing Call-by-Name and Call-by-
Value”, Ehrhard and Guerrieri, 2016
[BucKesRíoVis20] “The Bang Calculus Revisited”, Bucciarelli et al., 2020
[Par92] “𝜆𝜇-Calculus: An algorithmic interpretation of classical natural deduction”, Parigot, 1992
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000

5

0. Introduction

𝜆-calculus and the Krivine abstract machine [Kri07; CurMun10; MunSch15], which makes
it suitable to study both the equational theory and the operational semantics. The full 𝜆𝜇𝜇-
calculus is not confluent, but two natural fragments, the call-by-name and call-by-value frag-
ments, are. Further restricting those to their intuitionistic fragments yields calculi that cor-
respond to the call-by-name and call-by-value 𝜆-calculi. Since call-by-value is syntactically
dual to call-by-name in the full 𝜆𝜇𝜇-calculus [CurHer00; DowAri18], the additional diffi-
culty in the study of call-by-value can be understood as stemming from the restriction to the
intuitionistic fragment which breaks this symmetry.

Polarized sequent calculi Those two lines of work (CBPV and 𝜆𝜇𝜇) can be combined
into a polarized sequent calculus LJ𝜂𝑝 [CurFioMun16] or Lint [MunSch15]. It inherits all
the advantages of CBPV (subsumes CBV and CBN without loss of confluence, allows both
strategies to interact, has nicemodels, has nice 𝜂-rules for functions, pairs and sums, ...) and
of 𝜆𝜇𝜇 (CBV and CBN are dual, has a simple top-level reduction that generalizes bothmove-
ments of the focus inside expressions of abstract machines and commuting conversions, has
classical logic built-in but can easily be restricted to intuitionistic logic, ...).

0.2.2. Solvability in arbitrary programming languages

Observational equivalence and preorder The compilation of programs often involves
many optimizations where some parts of the programs are replaced by faster ones. The
soundness of those transformations is studied in a compositional way by using an observa-
tional equivalence: two expressions, i.e. program fragments, are said to be observationally
equivalent when replacing one by the other never changes the observable behavior of the
encompassing program. The observational equivalence is often refined to an observational
preorder that takes into account that some replacements are sound in one direction but not
in the other, i.e. that some expressions are strictly better than others.

Operational relevance and solvability The study of the observational equivalence often
relies on two notions that it preserves:
Operationally relevant expressions are those that can be used to form a program that re-

turns a result on at least one input, i.e. those that are not completely useless. Expressions
that are not operationally relevant are called operationally irrelevant and are often exactly
the least elements of the observational preorder.
Solvable expressions are those that can be used to form programs of any chosen behavior,

and expressions that are not solvable are called unsolvable. The intuition behind solvability
is that it is an indirect way of stating that the expression computes some intermediate result
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007
[CurMun10] “The duality of computation under focus”, Curien and Munch-Maccagnoni, 2010
[MunSch15] “Polarised Intermediate Representation of Lambda Calculus with Sums”, Munch-Maccagnoni
and Scherer, 2015
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000
[DowAri18] “A tutorial on computational classical logic and the sequent calculus”, Downen and Ariola, 2018
[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

6

0. Introduction

that can be observed internally. Indeed, to use a solvable expression in a way that yields a
chosen behavior, it suffices to observe that intermediate result, and then execute another
program with the chosen behavior if the expected intermediate result was observed.

The central role of unsolvability In the call-by-name 𝜆-calculus, the unsolvable expres-
sions are exactly the operationally irrelevant ones. They are completely useless for writing
actual programs, but are very useful for many theoretical purposes because they are a much
more resilient notion of “undefined” than “being non-terminating”. Quoting from [Acc-
Pao12] (itself quoting from [Wad76]):

[...] only those expressions without normal forms which are in fact unsolvable
can be regarded as being ”undefined” (or better now: ”totally undefined”); by
contrast, all other expressions without normal forms are at least partially de-
fined. Essentially the reason is that unsolvability is preserved by application
and composition [...] which [...] is not true in general for the property of failing
to have a normal form.

This leads to unsolvability being a central notion when studying 𝜆-definability, 𝜆-theories,
the observational equivalence, or Böhm trees. When studying 𝜆-theories (i.e. congruences
on the 𝜆-calculus that contain 𝛽-reduction), this manifests as the fact that any 𝜆-theory that
equates all expressions without a normal form is inconsistent (i.e. it is a trivial theory that
identifies all expressions), while there are consistent 𝜆-theories that equate all unsolvable
expression. When studying 𝜆-definability [dVri16] (i.e. encodings of partial recursive func-
tions in the 𝜆-calculus) the partiality of the function is represented by mapping inputs for
which it is undefined to some “undefined” expressions of the 𝜆-calculus. While it is possible
to define “undefined” as meaning “having no normal form”, the corresponding encoding is
not compositional: the encoding of the composition of two partial functions can not be not
encoded as the composition of the encodings. Defining “undefined” as meaning unsolvable
instead allows for the definition of a compositional encoding.

Unary operational completeness In someprogramming languages, operational relevance
and solvability are equivalent. With the intuition given above for solvability, this corre-
sponds to saying that any (external) result of a program can be observed internally, i.e. can
be used as an intermediate result. This can be though of as being a sort of internal complete-
ness, which we call unary7 operational completeness.
A programming language that does not have unary operational completeness (e.g. one

where the result of a program can be an uncatchable exception) can be thought of as having
either too many operationally relevant expressions or too few solvable expressions. There
7We call this unary operational completeness because it does not imply binary operational completeness, i.e.
the equivalence between the corresponding binary notions: external and internal separability. See Part C.
[AccPao12] “Call-by-Value Solvability, Revisited”, Accattoli and Paolini, 2012
[Wad76] “The Relation Between Computational and Denotational Properties for Scott’s Dinfty-Models of the
Lambda-Calculus”, Wadsworth, 1976
[dVri16] “On Undefined and Meaningless in Lambda Definability”, de Vries, 2016

7

0. Introduction

are therefore two approaches to recovering unary operational completeness: the restrictive8
[AbrOng93] approach restrict the notion of operational relevance; and the expansive8 ap-
proach expands the notion of solvability. For example, a lack of unary operational complete-
ness that are due to uncatchable exceptions being results can be treated either bymaking the
uncatchable exceptions operationally irrelevant by no longer considering them as results, or
by making them solvable by adding try-catch statements to the language.

Operational characterization of solvability For translations between two programming
languages for which it holds, preservation of operational relevance or solvability can of-
ten be proven directly by looking at the image of reductions and normal forms through the
translation, while preservation of operational irrelevance or unsolvability is often harder to
prove. For example, if the translation simply embeds a programming language in its exten-
sion, operationally relevance is clearly preserved and solvability most likely is too, but this
is not necessarily the case for operational irrelevance and unsolvability: the extension can
add new ways of using or observing some previously operationally irrelevant or unsolvable
expressions.
One way to prove that operational irrelevance or unsolvability are preserved is to use an

operational characterization of operational relevance (resp. solvability), i.e. a reduction ⇝
such that weak⇝-normalization, strong⇝-normalization, and operational relevance (resp.
solvability) are equivalent. Given operational characterizations ⇝1 and ⇝2 of operational
relevance (resp. solvability) in the source and target programming languages, to show that
a translation preserves operational irrelevance (resp. unsolvability), it suffices to show that
it sends infinite⇝1 reduction sequences to infinite⇝2 reduction sequences, which is often
fairly easy.

0.2.3. Solvability in 𝜆-calculi

In the untyped 𝜆-calculus, the observational equivalence is defined as only observing ex-
pressionination, i.e. two expressions are observationally equivalent when replacing either
by the other in an expressioninating (resp. diverging) program can not make the program
diverge (resp. expressioninate). While this definition of observational equivalence could
a priori identify too many expressions, it ends-up distinguishing any expressions we could
want to use as inputs or outputs (e.g. Church encodings [Chu85] of natural numbers). A
solvable expression is one that can be used to reach any expression (or equivalently any nor-
mal form), and an operationally relevant expression9 is one that can be used to reach at least
one normal form.

8These two words are used in [AbrOng93] to describe ways of rectifying a “poorness of fit” between a language
and its model. Here, we have no model, but we can think of the language equipped with its observational
preorder as being a sort of initial model. Since the observational preorder respects extenal observations,
the intuition of operational relevance (resp. solvability) being about external (resp. internal) results casts
operational relevance (resp. solvability) as slightly more on the semantic (resp. syntactic).

9In the litterature, the notion of operational relevance is mostly used informally, and formal notions of what
we would call operational relevance are often called solvability.
[Chu85] The Calculi of Lambda Conversion. (AM-6) (Annals of Mathematics Studies), Church, 1985

8

0. Introduction

Those notions of course depend on the reduction⇝ used to evaluate the expressions, so
we make this dependency explicit: given a reduction ⇝, we write ≂⇝ for the induced ob-
servational equivalence, and call⇝-solvability (resp. ⇝-operational relevance) the induced
notions of solvability and operational relevance. There are five main reductions that appear
in the litterature: 𝑁 , h 𝑁 , 𝑁 , 𝑉 , and 𝑉 . The reduction 𝑁 (resp. 𝑉) is the strong
call-by-name (resp. call-by-value) reduction, i.e. the call-by-name (resp. call-by-value) re-
duction that can reduce anywhere in the expression; the reduction 𝑁 (resp. 𝑉) is the
call-by-name (resp. call-by-value) operational reduction10 that more closely models how
expressions are evaluated in a real-world call-by-name (resp. call-by-value) programming
language; and the reduction h 𝑁 is a call-by-name reduction such that𝑁 ⊊ h 𝑁 ⊊ 𝑁
called the (call-by-name) head reduction.

Call-by-name solvability In call-by-name, the observational equivalence ≂ 𝑁 induced by
the call-by-name operational reduction 𝑁 is Abramsky’s one [Abr90] (in the so-called lazy𝜆-calculus); the observational equivalence≂ h 𝑁 induced by thehead reduction h 𝑁 isWadsworth’
one [Wad76], and the observational equivalence ≂ 𝑁 induced by the call-by-name strong
reduction 𝑁 is Morris’ one [Mor69]11. It is well-known that there are strict inclusions12
[DezGio01; Bar84; IntManPol17] ≂ 𝑁 ⊊ ≂ 𝑁 ⊊ ≂ h 𝑁
The 6 call-by-name notions of⇝-solvability and⇝-operational relevance induced by the 3
call-by-name reductions we consider are related as depicted in Figure 0.2.1, where equiva-
lent notions are placed in the same node, and implications between non-equivalent notions
are depicted by arrows⇒. Note that both notions have an operational characterization: the
stronger notion is operationally characterized by the head reduction h 𝑁 , while the weaker
one is operationally characterized by the operational reduction 𝑁 . Also note that using
either the head reduction h 𝑁 or the strong reduction 𝑁 yields a calculus that has unary
operational completeness, but that using the operational reduction 𝑁 does not.
The lack of unary completeness when using the operational reduction 𝑁 is due to all 𝜆-

10In call-by-value, to get a deterministic reduction, we need to further restrict to either left-to-right or right-to-
left evaluation (depending on whether we want to evaluate functions or their arguments first). Both restric-
tions work for our purposes.

11And can alternatively be defined by observing normal forms modulo 𝜂 (or equivalently 𝛽𝜂-normal forms)
[Mor69].

12The strictness of the inclusions can be understood as stemming from a differences of strength between their
respective versions of 𝜂-conversion on Böhm trees [IntManPol17].
[Abr90] “The lazy lambda calculus”, Abramsky, 1990
[Wad76] “The Relation Between Computational and Denotational Properties for Scott’s Dinfty-Models of the
Lambda-Calculus”, Wadsworth, 1976
[Mor69] “Lambda Calculus Models of Programming Languages”, Morris, 1969
[DezGio01] “From Böhm’s Theorem to Observational Equivalences: an Informal Account”, Dezani-
Ciancaglini and Giovannetti, 2001
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

9

0. Introduction

𝑁-solvabilityh 𝑁-solvability𝑁-solvabilityh 𝑁-operational relevance𝑁-operational relevanceh 𝑁-convergence
𝑁-operational relevance𝑁-convergence

Figure 0.2.1: Notions of⇝-solvability and⇝-operational relevance in call-by-name

abstractions being 𝑁-operationally relevant while some of them are 𝑁-unsolvable13. The
notion of order of an expression (which is more or less its arity) allows to relate both notions
more precisely: 𝑁-operationally irrelevant expressions are exactly 𝑁-unsolvable expres-
sions of order 0.
Trying to restore unary operational completeness using the restrictive approach would

mean preventing (at least) some 𝜆-abstractions frombeing 𝑁-operationally relevant, e.g. by
replacing the reduction by the strong reduction 𝑁 or the head reduction h 𝑁 . Using the
expansive approach would mean adding a new construction that allows testing whether an
expression is a 𝜆-abstraction, e.g. an if-lambda conditional or a call-by-value let-expression.
We could not find such an extension in the literature, and do not study it directly either14.

Call-by-value solvability

13For example, given a (closed) 𝑁-diverging expression𝑇 (e.g. Ω ≝ 𝛿𝛿where 𝛿 ≝ 𝜆𝑦.𝑥𝑥), the expression 𝜆𝑥.𝑇
is 𝑁-operationally relevant (because it is 𝑁-normal) but 𝑁-unsolvable (because whenever it is given an
argument, it 𝑁-diverges).

14However, the embeddings of the call-by-value 𝜆-calculus into our polarized 𝜆-calculus described in can be
understood as a way of adding such an operation.

10

0. Introduction

0.3. Content

Parts A, B, and the first two chapters of part C are mostly done, but some sections
still need to be cleaned up and are hidden in this draft. The last chapter of part C
still has a few holes and will most likely not be part of the official thesis, but should
eventually appear.

11

0. Introduction

0.4. Notations

Reduction sequences A reduction⇝ on a set𝐗 is defined as being a subsets of the Carte-
sian square of 𝐗, i.e. ⇝ ⊆ 𝐗 × 𝐗. We say that 𝑂 ⇝-reduces to 𝑂′, and write 𝑂 ⇝ 𝑂′,
when (𝑂, 𝑂′) ∈ ⇝. We say that 𝑂 is⇝-reducible (resp. ⇝-normal), and write 𝑂 ⇝ (resp.𝑂 ⇝) when there exists (resp. does not exist) 𝑂′ such that 𝑂 ⇝ 𝑂′, i.e. when 𝑂 is (resp.
is not) in the domain of⇝. More generally, we write 𝑂0 ⇝1 𝑂1 ⇝2 𝑂2 ⇝3 … ⇝𝑛 𝑂𝑛 for∀𝑘 ∈ {1, … , 𝑛}, 𝑂𝑘−1 ⇝ 𝑂𝑘, and anymissing object should be understood as being quantified
existentially, e.g. 𝑂 ⇝1⇝2 𝑂′′ stands for ∃𝑂′, 𝑂 ⇝1 𝑂′ ⇝2 𝑂′′. We write ⇝= (resp. ⇝+,⇝∗) for the reflexive (resp. transitive, reflexive transitive) closure of⇝. We write 𝑂 ⇝⊛ 𝑂′
for 𝑂 ⇝∗ 𝑂′ ⇝, 𝑂 ⇝⊛ for the existence of a finite maximal⇝-reduction sequence starting
at 𝑂, and 𝑂 ⇝𝜔 for the existence of an infinite⇝-reduction sequence 𝑂 ⇝ 𝑂′ ⇝ 𝑂′′ ⇝ …
starting at 𝑂. The inverse (as a binary relation) of a reduction⇝ is denoted by reflecting the
symbol along a vertical line: 𝑂 ⇝ 𝑂′ is equivalent to 𝑂′ ⇜ 𝑂.
Main reductions We use four tip symbols for reductions: for 𝛽-reduction, for 𝜎-
reduction, for 𝜂-expansion, and for an arbitrary reduction. Each symbol is combined
with a vertical line to denote the operational variant of the reduction (i.e. the one relevant
to study evaluation), and with a tail to denote its equational variant (i.e. the one that can
reduce anywhere in the expression and is relevant to the study of the equational theory):𝛽-reduction 𝜎-reduction 𝜂-expansion Arbitrary

Top-level
Operational
Strong

Unions of some of these reductions are denoted by superimposing the symbols, e.g. the
strong 𝛽𝜎-reduction is = ∪ , the strong 𝛽𝜂-reduction is = ∪ , and the strong𝛽-reduction combined with the strong 𝜂-expansion is = ∪ .
Some other closures of will be used often, and they will be denoted by with sym-

bols on the tail: t for top-level, o for operational, h for head, a for ahead, lo for leftmost
outermost, s for strong, and ¬ for “and not”. For example, h is the head reduction, and
s¬h (or ¬h) is the non-head reduction.

Closure of reductions under contexts More generally, given an arbitrary set of contexts𝐗 (i.e. expressions with a hole ◽) and an arbitrary reduction⇝, we call closure15 of⇝ under𝐗 the reduction 𝐗 ⇝ ≝ {(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑂,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑂′)∣𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ∈ 𝐗 and (𝑂, 𝑂′) ∈ ⇝}
(where 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑂 denotes the result of plugging 𝑂 in the hole ◽ of the context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) that allows⇝
reductions under contexts 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ∈ 𝐗. When the reduction⇝ is denoted by one of the four tip
symbols (, , , or), we also denote this closure by using the symbol for the corresponding
strong reduction (i.e. , , , or) and placing 𝐗 over its tail, e.g.𝐗 ntn= 𝐗 and 𝐗 ntn= 𝐗
15For some sets 𝐗, the induced operation is not really a closure because it is not idempotent. For it to be idem-

potent, it suffices for 𝐗 to be closed under composition.

12

0. Introduction

The previously given notations are instances of this, e.g. is 𝐗 with𝐗 left implicit because
it is the set of all contexts𝐊, and the symbols above the tail of denote sets of contexts, e.g.
a is the closure 𝐀 of under the set 𝐀 of ahead contexts. Note that the negation symbol
over tails denotes a set difference on contexts, e.g.

s¬o = 𝐊 ⧵ 𝐎
(and not a set difference on the reductions16).
Subscripts should be though of as commutingwith closureswhen itmakes sense, e.g. let

denotes the contextual closure of let:

let = (𝐊N)let = 𝐊N let

16For example, we have
s¬o ≠ s ⧵ o = ⧵

in the 𝜆-calculus because there can be several ways to reduce an expression to another expression:(𝜆𝑦.𝑦)𝑉 (𝜆𝑥.(𝜆𝑦.𝑦)𝑥)𝑉 s¬o (𝜆𝑥.𝑥)𝑉
where the reduction reduces the outer redex and the s¬o one reduces the inner redex. The equation
s¬o = s ⧵ o would hold if we though of the reductions as being multisets that count the numbers of ways
in which the reduction can happen (or used labeled transitions to allow distinguishing them), but we do not.

13

0. Introduction

0.5. Table of contents

0. Introduction 2

A. Introduction to L calculi 15

I. Pure call-by-name calculi 18

II. Pure call-by-value calculi 70

B. Untyped polarized calculi 75

III. Pure polarized calculi 78

IV.Polarized calculi with pairs and sums 89

V. Polarized calculi with arbitrary constructors 103

VI.Dynamically typed polarized calculi 150

C. Solvability in polarized calculi 156

VII.Call-by-name solvability 183

VIII.Call-by-value solvability 216

IX.Polarized solvability 217

Bibliography 218

14

Part A.

Introduction to L calculi

15

Part A is an introduction to the untyped 𝜆𝜇𝜇-calculus [CurHer00], and more generally
to calculi that look like it, which we call L-calculi. Through the Curry-Howard correspon-
dence, the simply-typed 𝜆𝜇𝜇-calculus corresponds to Gentzen’s sequent calculus for classi-
cal logic in the same way that the 𝜆-calculus corresponds to natural deduction. Most intro-
ductions to 𝜆𝜇𝜇 focus on this correspondence, and sometimes mention the similarity with
abstract machines. Here, we focus on the parts that are relevant to using 𝜆𝜇𝜇 to study the
untyped 𝜆-calculus, and in particular on the correspondence between the reductions of the
call-by-name (resp. call-by-value) 𝜆-calculus and the reductions of the call-by-name (resp.
call-by-value) intuitionistic fragment of 𝜆𝜇𝜇.
It is well-known that the operational (i.e. weak head) reduction of the call-by-name 𝜆-

calculus 𝛌→N is refined by the reduction of the Krivine abstract machine [Kri07], that makes
the search for the redex explicit. The intuitionistic call-by-name fragment Li→n of 𝜆𝜇𝜇 extends
this refinement to its contextual closure, the strong reduction, that can reduce anywhere in
the expression. To make understanding the call-by-name (resp. call-by-value) fragment Li→n
(resp. Li→v) of 𝜆𝜇𝜇 easier, we introduce a new 𝜆-like syntax 𝜆→n (resp. 𝜆→v) for it. In this
new syntax 𝜆→n (resp. 𝜆→v), the reductions of the 𝜇 binder of Li→n (resp. Li→v) appear as a
natural generalizations of the redex searching reductions of abstract machines, and of some
of Regnier’s 𝜎-reductions [Reg94].
While some advantages of using L-calculi are immediately apparent (e.g. the symmetry,

and the built-in classical logic), many of their advantages only become relevant in larger
calculi (e.g. those in Part B) orwhen studyingmore complex properties (e.g. those in Part C).
The reader that has yet to be convinced of the usefulness of L-calculi should therefore not
expect to be convinced after reading just Part A.

Content Chapter I describes the following calculi (in left-to-right order), translations17between
them, and their properties:

𝛌→N 𝜆→n Li→n L→n⌊ ⋅ ⌋
⌈ ⋅ ⌉

⋅⃖⃗
⋅⃖⃖ ⊊

Chapter II describes their call-by-value counterparts:

𝛌→V 𝜆→v Li→v L→v⌊ ⋅ ⌋
⌈ ⋅ ⌉

⋅⃖⃗
⋅⃖⃖ ⊊

Contribution The contribution of this part is mainly pedagogical: it provides a detailed
introduction to 𝜆𝜇𝜇 from a new angle. Technical contributions include:

17Translations are represented by arrows with a hook↪ when they are injective, with two heads↠ when they
are surjective, and with both when they are bijective.
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007
[Reg94] “Une équivalence sur les lambda-termes”, Regnier, 1994

16

• defining the call-by-name (resp. call-by-value) 𝜆-calculi with focus 𝜆→n (resp. 𝜆→v) as
an alternative syntax for the call-by-name (resp. call-by-value) intuitionistic fragment
Li→n (resp. Li→v) of 𝜆𝜇𝜇; and

• giving a detailed description of the action of focus-inserting and focus-erasing trans-
lations ⌊ ⋅ ⌋ and ⌈ ⋅ ⌉ on reduction sequences.

17

I. Pure call-by-name calculi

Summary

The goal of this chapter is to recall the pure untyped call-by-name 𝜆-calculus 𝛌→N [Bar84], the
pure untyped call-by-nameL calculus L→n (i.e. the call-by-name fragment of𝜆𝜇𝜇 [CurHer00]),
and its intuitionistic fragment Li→n ; to introduce the pure untyped call-by-name 𝜆-calculus
with focus 𝜆→n as an alternative syntax to Li→n ; and to relate them via translations1:

𝛌→N 𝜆→n Li→n L→n⌊ ⋅ ⌋
⌈ ⋅ ⌉

⋅⃖⃗
⋅⃖⃖ ⊊

In order to make the introduction of concepts more progressive, after recalling 𝛌→N, we intro-
duce the pure untyped call-by-name 𝜆-calculuswith top-level focus 𝜆→N and recall theKrivine
abstract machineM→N [Kri07], which are simpler versions of 𝜆→n and Li→n respectively, and are
related to 𝛌→N in a similar way:

𝛌→N 𝜆→N M→N
⋅
⌈ ⋅ ⌉

⋅⃖⃗
⋅⃖⃖

In both cases, the translations ⋅⃖⃗ and ⋅⃖⃖ are inverses, so that up to syntax 𝜆→N and M→N (resp.𝜆→n and Li→n) are identical. Both the ⋅ translation from 𝛌→N to 𝜆→N and the ⌊ ⋅ ⌋ translation from𝛌→N to 𝜆→n add markers ⋅ to make explicit where the focus is, i.e. which subexpression we
are currently trying to reduce, while the ⌈ ⋅ ⌉ translation erases these markers. This allows
to refine an operational reduction step into three simpler steps: moving the focus down-
wards until a redex is found, reducing the redex, and moving the focused back to the top of
the expression. When looking at several successive operational reduction steps, time can be
gained by not going back to the top of the expression between two steps, but instead refocus-
ing [DanNie04], i.e. continuing the search for the next redex from where the previous redex
was reduced. In Li→n / 𝜆→n , the strong reduction step can also be refined in a similar way, with
focus movement replaced by a more general reduction called 𝜇, which also generalizes
(some of) Regnier’s 𝜎-reductions [Reg94].
1Translations are represented by arrows with a hook↪ when they are injective, with two heads↠ when they
are surjective, and with both when they are bijective.
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007
[DanNie04] “Refocusing in Reduction Semantics”, Danvy and Nielsen, 2004
[Reg94] “Une équivalence sur les lambda-termes”, Regnier, 1994

18

I. Pure call-by-name calculi

Table of contents

I.1. A pure call-by-name 𝜆-calculus: 𝛌→N . 20
I.2. A pure call-by-name 𝜆-calculus with toplevel focus: 𝜆→N 27
I.3. A pure call-by-name abstract machine: M→N 30
I.4. Equivalence between 𝜆→N and M→N . 35
I.5. Translations between 𝛌→N and 𝜆→N . 46
I.6. A pure call-by-name 𝜆-calculus with focus: 𝜆→n 51
I.7. Translations between 𝛌→N and 𝜆→n . 61
I.8. A pure call-by-name intuitionistic L calculus: Li→n 62
I.9. Equivalence between 𝜆→n and Li→n . 67
I.10. A pure call-by-name classical L calculus: L→n 68
I.11. Simply-typed L calculi . 69

19

I. Pure call-by-name calculi

I.1. A pure call-by-name 𝜆-calculus: 𝛌→N
Syntax

We recall the pure untyped call-by-name 𝜆-calculus [Bar84], which we will call 𝛌→N, in Fig-
ure I.1.1. This is the standard 𝜆-calculus with a few minor changes to the syntax. First, we
addedN at all the places where polarity annotations will be needed later, e.g. to differentiate
for example positive expressions 𝑇+ from negative ones 𝑇− or positive variables 𝑥+ from neg-
ative ones 𝑥−. For now, those annotations aremostly useless2 (and there is no real difference
between N as a subscript and N as a superscript) but we nevertheless keep them to prepare
the reader for the polarized calculi. Secondly, we have let-expressions let𝑥N ∶= 𝑇N in𝑈N,
even though they behave exactly like 𝛽-redexes (𝜆𝑥N.𝑈N)𝑇N, because when translating from𝛌→N to another calculus, the translation of let𝑥N ∶= 𝑇N in𝑈N is sometimes simpler than that
of (𝜆𝑥N.𝑈N)𝑇N. Finally, while it is common to only refer to the objects of study as terms, we
also call them values and expressions. In general, given a calculus described by a BNF gram-
mar, we call expressions 𝑇 (resp. values 𝑉, terms 𝓉) the elements of the syntax generated by
the start non-terminal symbol (resp. same non-terminal symbols as variables 𝑥 , any non-
terminal symbol). In 𝛌→N, the BNF grammar only has only one non-terminal symbol, and all
three names therefore denote the same objects. As is usual, application is considered to be
left-associative, i.e. 𝑇N𝑈1N𝑈2N stands for (𝑇N𝑈1N)𝑈2N. We write 𝐓N for the set of all expressions𝑇N.
Figure I.1.1: Syntax of 𝛌→N

Expressions / values:𝑇N, 𝑈N, 𝑉N,𝑊N ⩴ 𝑥N∣ let𝑥N ∶= 𝑇N in𝑈N∣𝜆𝑥N.𝑇N∣𝑇N𝑈N

Contexts

Contexts of 𝛌→N are denoted by 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, and are generated by the BNF grammar given in Fig-
ure I.1.2.

Figure I.1.2: Contexts in 𝛌→N
Contexts:𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N ⩴ ◽∣ let𝑥N ∶= 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N in𝑇N∣ let𝑥N ∶= 𝑇N in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N∣𝜆𝑥N.𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N∣𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N𝑇N∣𝑇N𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N

2Except when looking at translations between several calculi, or skim-reading, where they serve as a reminder
of which calculus we are in.
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

20

I. Pure call-by-name calculi

The result of plugging a term 𝑇N (resp. a context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0N) in a context 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, i.e. the non-capture-
avoiding3 substitution of ◽ by 𝑇N (resp. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0N) in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, is denoted by plug(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝑇N) or𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N (resp.
plug(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0N) or 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾0N).
The weak head contexts, which we prefer calling operational contexts (because they allow

defining the operational semantics) or stacks (because they correspond to stacks in abstract
machines and L calculi), are defined in Figure I.1.3.

Figure I.1.3: Operational contexts in 𝛌→N
Operational contexts / stacks / weak head contexts:𝐎N = 𝐒N = 𝐒̊N ∋ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, 𝑆̊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁 ⩴ ◽∣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N𝑇N

Substitutions and disubstitutions

Wewrite FV(𝑇N) for the set of all free variables of 𝑇N, and we say that a variable is freshwith
respect to an expression when it is neither free nor bound in it. We write 𝑇N[𝑉N∕𝑥N] for
the usual capture avoiding substitution of 𝑥N by 𝑉N, denote arbitrary substitutions by 𝜎 and
write 𝑇N[𝜎] for the result of applying a substitution 𝜎 to a given expression 𝑇N.
When studying the behavior of terms (see e.g.), we often want to close them via a

substitution 𝜎, and then give them arguments via a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. We therefore give a name to
the combination of a substitutions and a stack:

Definition I.1.1

A disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) that consists of a substitution 𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N.
We write 𝑇N[𝜑] for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝜎] .
We call these disubstitutions because they correspond to substitutions that act on both the

usual variables 𝑥 and on a stack variable⋆ in L-calculi (see). We call disubstitutivity the
property of being closed under disubstitutions:

Definition I.1.2

A reduction⇝ of 𝛌→N is said to be:
• substitutive when for any substitution 𝜎 and terms 𝑇N and 𝑇′N, we have𝑇N ⇝ 𝑇′N ⇒ 𝑇N[𝜎] ⇝ 𝑇′N[𝜎]

3Contrary to substitutions where variable capture was avoided by renaming bound variables on the fly, e.g.(𝜆𝑥N.𝑥N𝑦N)[𝑥N∕𝑦N] = (𝜆𝑧N.𝑧N𝑦N)[𝑥N∕𝑦N] = 𝜆𝑧N.𝑧N𝑥N, plugging does not rename anything and allows vari-
able capture: (𝜆𝑥N.𝑥N◽) 𝑥N = 𝜆𝑥N.𝑥N𝑥N.

21

I. Pure call-by-name calculi

• closed under stacks when for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and terms 𝑇N and 𝑇′N, we have𝑇N ⇝ 𝑇′N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⇝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N
• disubstitutive when for any disubstitution 𝜑 and terms 𝑇N and 𝑇′N, we have𝑇N ⇝ 𝑇′N ⇒ 𝑇N[𝜑] ⇝ 𝑇′N[𝜑]

Fact I.1.3

A reduction⇝ is disubstitutive if and only if it is substitutive and closed under stacks.

Proof⇒ Take 𝜑 = (𝜎, ◽) and 𝜑 = (Id, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N). ⇐ Immediate.

𝛽-reduction

The top-level reduction is defined in Figure I.1.4. It is the usual one (if one thinks of
let𝑥N ∶= 𝑇N in𝑈N as being a notation for (𝜆𝑥N.𝑈N)𝑇N).
Figure I.1.4: Top-level reduction

let𝑥N ∶= 𝑇N in𝑈N let 𝑈N[𝑇N∕𝑥N](𝜆𝑥N.𝑇N)𝑈N → 𝑇N[𝑈N∕𝑥N]≝ let ∪ →
The two closures of the top-level 𝛽-reduction we are interested in for now are its opera-

tional and strong closures:

Definition I.1.4: Operational and strong reductions

The operational reduction is defined as the operational closure of the top-level 𝛽-
reduction , and the strong reduction as the contextual closure of :≝ 𝐎N and ≝ 𝐊N
We write ¬o for the closure of the top-level 𝛽-reduction under the set of non-
operational contexts𝐊N ⧵ 𝐎N: ¬o ≝ (𝐊N ⧵ 𝐎N)
The operational reduction is often called the weak head reduction, but we prefer calling

it the operational reduction because its main characteristic is that it induces a small-step op-
erational semantics for the calculus, i.e. it represents evaluation. The strong reduction

22

I. Pure call-by-name calculi

should be understood as defining an equational theory ∗ = (∪)∗ for the calculus,
and it being directed helps when relating it to the operational reduction (e.g. via the fac-
torization ∗ = ∗ ¬o ∗). The reductions have the properties announced in Figure ?? (see
Section .2 for details).𝜎-reductions

Regnier’s 𝜎-reductions [Reg94] allow commuting redexes in a way that preservesmost prop-
erties of the expression:(𝜆𝑥N.𝑈N)𝑇N𝑉N ↝𝜎 (𝜆𝑥N.𝑈N𝑉N)𝑇N if 𝑥N fresh w.r.t. 𝑉N(𝜆𝑥N.𝜆𝑦N.𝑇N)𝑈N ↝𝜎 𝜆𝑦N.(𝜆𝑥N.𝑇N)𝑈N if 𝑦N fresh w.r.t. 𝑈N
Replacing (𝜆𝑥N.𝑈N)𝑇N by let𝑥N ∶= 𝑇N in𝑈N in these yields(let𝑥N ∶= 𝑇N in𝑈N)𝑉N ↝𝜎 let𝑥N ∶= 𝑇N in𝑈N𝑉N if 𝑥N fresh w.r.t. 𝑉N

let𝑥N ∶= 𝑈N in 𝜆𝑦N.𝑇N ↝𝜎 𝜆𝑦N. let𝑥N ∶= 𝑈N in𝑇N if 𝑦N fresh w.r.t. 𝑈N
We only use the first of these two 𝜎-reductions and denote it by a backwards Σ as shown in
Figure I.1.5.

Figure I.1.5: Top-level 𝜎-reduction(let𝑥N ∶= 𝑇N in𝑈N)𝑉N let𝑥N ∶= 𝑇N in𝑈N𝑉N if 𝑥N fresh w.r.t. 𝑉N

Definition I.1.5

We write for the closure of under the set of simple stacks 𝐒̊Na, and for the
contextual closure of : ≝ 𝐒̊N and ≝ 𝐊N
aWhile we have 𝐒̊N = 𝐒N = 𝐎N in 𝛌→N , in general, we only have 𝐒̊N ⊆ 𝐒N ⊆ 𝐎N.

In accordance with our convention of denoting unions of reductions by superimposing
their symbols, we use the notations

ntn= ∪ and ntn= ∪
In the call-by-name 𝜆-calculus, 𝜎-reductions are somewhat superfluous because they only

relate expressions that have a common reduct:(let𝑥N ∶= 𝑇N in𝑈N)𝑉N (𝑈N[𝑇N∕𝑥N])𝑉N let𝑥N ∶= 𝑇N in𝑈N𝑉N
They are however very useful to make the call-by-value 𝜆-calculus behave well on open ex-
pressions [AccGue16; AccPao12; PaoRon99], and to understand the 𝜇 reduction of L calculi
[Reg94] “Une équivalence sur les lambda-termes”, Regnier, 1994
[AccGue16] “Open Call-by-Value”, Accattoli and Guerrieri, 2016
[AccPao12] “Call-by-Value Solvability, Revisited”, Accattoli and Paolini, 2012
[PaoRon99] “Call-by-value Solvability”, Paolini and Ronchi Della Rocca, 1999

23

I. Pure call-by-name calculi

(which can be though of as being a generalization of), which is why is nevertheless exam-
ine them in the call-by-name 𝜆-calculus.
The first thing to note is that extending by yields a reduction = ∪ that is not

deterministic:
let𝑥N ∶= 𝑇N in𝑈N𝑉N (let𝑥N ∶= 𝑇N in𝑈N)𝑉N let (𝑈N[𝑇N∕𝑥N])𝑉N

This also happens in call-by-value, where we would really like to use to evaluate open
expressions. A very common choice to avoid this problem is to simply not add to the oper-
ational reduction, and to only add 𝜎-reductions in the strong reduction when looking
at the equational theory. This of course leads to complications, e.g. requiring distinguishing𝜎-reduction from operational reduction in many lemmas and theorems. The reduction 𝜇
of Li→n and 𝜆→n takes the opposite approach to recover determinism: it prevents the let re-
duction above by disallowing the reduction of let-expressions under non-trivial operational
contexts and keeps as part of the operational reduction!
More precisely, since can not be added directly to without breaking determinism, we

first restrict and only then extend it with :

Definition I.1.6

The reductions and are defined by≝ → ∪ let and ≝ ∪
The difference between and is that allows all reductions of the shape(let𝑥N ∶= 𝑇N in𝑈N)𝑉1N…𝑉𝑞N (𝑈N[𝑇N∕𝑥N])𝑉1N…𝑉𝑞N

while only allows those of the shape
let𝑥N ∶= 𝑇N in𝑈N let 𝑈N[𝑇N∕𝑥N]

i.e. those where the operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N = ◽𝑉1N…𝑉𝑞N under which the reduction hap-
pens is trivial. In particular, the let reduction of the aformentioned critical pair is not al-
lowed by , which allows it to be deterministic:

Fact I.1.7: Determinism of

The reduction reduction is deterministic.

Proof

Both and are deterministic, and they have disjoint domains.

Furthermore, the forbidden reductions(let𝑥N ∶= 𝑇N in𝑈N)𝑉1N…𝑉𝑞N let (𝑈N[𝑇N∕𝑥N])𝑉1N…𝑉𝑞N

24

I. Pure call-by-name calculi

can be simulated by(let𝑥N ∶= 𝑇N in𝑈N)𝑉1N…𝑉𝑞N (let𝑥N ∶= 𝑇N in𝑈N𝑉1N)𝑉2N…𝑉𝑞N∗ let𝑥N ∶= 𝑇N in𝑈N𝑉1N…𝑉𝑞N
let (𝑈N[𝑇N∕𝑥N])𝑉1N…𝑉𝑞N

In fact, the reductions and have the same notion of normal form, and induce the same
notion of (big-step) evaluation:

Fact I.1.8: Equivalence between ⊛ and ⊛
• The -normal expressions are exactly the -normal expressions:𝑇N ⇔ 𝑇N
• The steps can be postponed at the cost of strengthening let to let:𝑇N ∗ 𝑇′N ⇔ 𝑇N ∗ ∗ 𝑇′N
• Evaluating with or yields the same result:𝑇N ⊛ 𝑇′N ⇔ 𝑇N ⊛ 𝑇′N

Proof sketch (See page 229 for details)

Immediate.

𝜂-expansion

Another well-known and useful relation on 𝜆-terms is 𝜂-expansion (and its symmetric, 𝜂-
reduction) that relates any expressions 𝑇N to a 𝜆-abstraction 𝜆𝑥N.𝑇N𝑥N that has the same
functional behavior, i.e. that behaves the same once given an argument. The 𝜂-expansions
for 𝛌→N are defined in Figure I.1.6, where → is the standard 𝜂-expansion for functions.
Figure I.1.6: Top-level 𝜂-expansion𝑇N → 𝜆𝑥N.𝑇N𝑥N if 𝑥N fresh w.r.t. 𝑇N𝑇N let let𝑥N ∶= 𝑇N in𝑥N
We write for the contextual closure of , for ∪ , for ∪ , for ∪ ∪ ,

and ≈𝛽𝜂𝜎 or ∗ for the 𝛽𝜂𝜎-equivalence:≈𝛽𝜂𝜎 ≝ ∗ = (∪ ∪ ∪ ∪ ∪)∗
The 𝜂-expansion for let-expressions let is less common, most likely because it is contained

in let (in call-by-name): 𝑇N let let𝑥N ∶= 𝑇N in𝑥N

25

I. Pure call-by-name calculi

There are other reasonable definitions of 𝜂-expansion, but all of them are contained in the𝛽𝜂𝜎-equivalence induced by this definition of 𝜂-expansion. For example, we have𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑉N ≈𝛽𝜂𝜎 let𝑥N ∶= 𝑉N in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑥N if 𝑥N fresh w.r.t. 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N
because 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑉N let let𝑥N ∶= 𝑉N in𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑥N
and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N ≈𝛽𝜂𝜎 let𝑥N ∶= 𝑇N in𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑥N if 𝑥N fresh w.r.t. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N
because 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N let 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N let𝑥N ∶= 𝑇N in𝑥N ∗ let𝑥N ∶= 𝑇N in𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N
In call-by-name, all terms are values, so the first≈𝛽𝜂𝜎-equivalence implies the second, but

in call-by-value and polarized settings, neither implies the other.

26

I. Pure call-by-name calculi

I.2. A pure call-by-name 𝜆-calculus with toplevel focus: 𝜆→N
Abstract machines use a subset of operational contexts called stacks. In general, stacks𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N form a possibly strict subset of operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N, but in 𝛌→N they are exactly the
same. To avoid forming intuitions that do not generalize to subsequent calculi, we call op-
erational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N in this section. We also completely ignore let-expressions in
this section because our goal is to make the comprehension of L calculi easier, and adding
let-expressions at this point would not help in that regard.

Searching for the next redex

In 𝛌→N, to implement the →-reduction of a term 𝑇N, a machine needs to decompose it as𝑇N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑈N)𝑉N
Figure I.2.1: The 𝜆→N calculus
Figure I.2.1.a: Syntax

Stacks: Configurations:𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽ 𝐶N ⩴ 𝑇N∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N ∣𝐶N𝑇N
Figure I.2.1.b: Expanded descriptions

Stacks (expanded): Configurations (expanded):𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽𝑇1N…𝑇𝑘N 𝐶N ⩴ 𝑇N𝑈1N…𝑈𝑘N
Figure I.2.1.c: Operational reduction𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N M

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]
M ≝ M → ∪ M

m

Figure I.2.1.d: Disubstitutions

Stacks: Configurations:𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N 𝐶N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N

27

I. Pure call-by-name calculi

The 𝜆→N calculus defined in Figure I.2.1 makes the computation of that decomposition ex-
plicit: a configuration 𝐶N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N represents the expression 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N in which the machine
is currently looking at the subexpression 𝑇N. Initially, the machine is looking at the whole
term, i.e. it starts from 𝑇N. It then moves to the left of applications with𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N M

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N
until it reaches a 𝜆-abstraction, at which point it reduces the 𝛽-redex with𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]
For example, the reduction 𝐼N𝑇N𝑈N → 𝐼N𝑇N𝑈N
of 𝛌→N becomes 𝐼N𝑇N𝑈N M

m 𝐼N𝑇N𝑈N M

m 𝐼N𝑇N𝑈N → 𝑇N𝑈N
in 𝜆→N. Note that the “move” reduction steps M

m are invisible in the original calculus, while
the “reduce” reduction step M → corresponds exactly to the reduction reduction step → in𝛌→N.
Simulation

A top-level reduction (𝜆𝑥N.𝑇N)𝑈N → 𝑇N[𝑈N∕𝑥N]
in 𝛌→N becomes (𝜆𝑥N.𝑇N)𝑈N M

m (𝜆𝑥N.𝑇N)𝑈N M → 𝑇N[𝑈N∕𝑥N]
in 𝜆→N, and an operational reduction 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N
induced by 𝑇N → 𝑇′N in 𝛌→N becomes𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N M ∗

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N M

m
M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N M ∗

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N
in 𝜆→N, where the reduction sequences𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N M ∗

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N

just correspond to moving downwards through 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and do not depend on what is plugged in𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, and the M

m
M → reduction steps correspond to the actual reduction 𝑇N → 𝑇′N.

Refocusing

A reduction sequence 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′N
in 𝛌→N induced by 𝑇N𝑉N 𝑇′N and 𝑈N𝑊N 𝑈′N

28

I. Pure call-by-name calculi

can be simulated step by step in 𝜆→N as𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′N

M∗m

M∗m

M∗m

M∗m𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′N
Moving the focus back to the top of the term between the two reduction steps is inefficient:
instead of computing the decomposition 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N , we could compute it
from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N , which is called refocusing [DanNie04]. This amounts to simplifying the reduc-
tion sequence M ∗

m induced by one step with the reduction sequence
M ∗
m induced by the next

step (using determinism of M), which yields the shorter reduction sequence𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′N

M∗m

M∗m𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇N𝑉N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N 𝑇′N M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈N𝑊N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑈′N

For example, for any terms 𝑇1N and 𝑇2N,(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N 𝐼N𝐼N𝑇1N𝑇2N = 𝐼N𝐼N𝑇1N𝑇2N 𝐼N𝑇1N𝑇2N = 𝐼N𝑇1N𝑇2N 𝑇1N𝑇2N

M∗m

M∗m

M∗m

M∗m

M∗m

M∗m(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N M → 𝐼N𝐼N𝑇1N𝑇2N 𝐼N𝐼N𝑇1N𝑇2N M → 𝐼N𝑇1N𝑇2N 𝐼N𝑇1N𝑇2N M → 𝑇1N𝑇2N
simplifies to(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N 𝑇1N𝑇2N

M∗m

M∗m(𝜆𝑥N.𝐼N𝐼N𝑥N)𝑇1N𝑇2N M → 𝐼N𝐼N𝑇1N𝑇2N M

m 𝐼N𝐼N𝑇1N𝑇2N M → 𝐼N𝑇1N𝑇2N = 𝐼N𝑇1N𝑇2N M → 𝑇1N𝑇2N
Properties of reductions

Disubstitutions of 𝜆→N are defined just like in 𝛌→N:
Definition I.2.1

A disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) composed of a substitution 𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N.
Given a configuration 𝐶N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N), we write 𝐶N[𝜑] (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜑]) or 𝐶N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N]
(resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N]) for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N[𝜎] (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎]).
As announced in Figure ??, M is deterministic, substitutive, and disubstitutive (see Sec-

tion .2 for details).

[DanNie04] “Refocusing in Reduction Semantics”, Danvy and Nielsen, 2004

29

I. Pure call-by-name calculi

I.3. A pure call-by-name abstract machine: M→N
The inside-out syntax

When implementing an abstract machine, representing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N as a tree with a marked po-
sition is suboptimal because most operations will require traversing 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, and hence takes a
time linear in the depth of the hole ◽ in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. It is more efficient to use a zipper [Hue97], i.e.
to represent 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and 𝑇N independently, and to represent 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N in an “inside-out” fashion. More
precisely, a stack ◽ is representend by⋆, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑉N by 𝑉N ∙ 𝑆N (where 𝑆N is the inside-out
representation of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N), so that a stack𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ((◽𝑉1N) …)𝑉𝑘N = ((◽ ◽𝑉𝑘N) …) ◽𝑉1N
is represented by 𝑆N = 𝑉1N ∙(… ∙(𝑉𝑘N ∙⋆))
or 𝑆N = 𝑉1N ∙ … ∙ 𝑉𝑘N ∙⋆
with the convention that ∙ is right associative. Note that the arguments appear in the or-
der in which they will (possibly) be needed by the computation, and that⋆ represents the
outside of the context. An expression with an underlined subexpressions 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N is then rep-
resented by a pair (𝑇N, 𝑆N), which we call a configuration4 and denote by ⟨𝑇N∣𝑆N⟩, where 𝑇N
is the focused subexpression, and 𝑆N is the inside-out representation of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. This yields the
M→N calculus described in Figure I.3.1, a variant of the Krivine abstract machine [Kri07] that
uses substitutions instead of environments and closures. Just like in the Krivine abstract
machine, M

m-reducing a term is a constant time operation thanks to the inside-out represen-
tation, but the use of substitutions inM→N makes M →-reducing a term linear in the number of
free occurrences of the variable, and hence less efficient than in the Krivine abstratmachine.
An example reduction sequence is given in the right column of Figure I.3.2, with the cor-

responding reduction sequence in the left column.
As announced in Figure ??, M is deterministic, substitutive, and disubstitutive (see Sec-

tion .2 for details).

Disubstitutions

In M→N, we also consider substitutions that act on⋆N (in addition to the usual variables 𝑥N),
which we call disubstitutions to avoid any confusion with the usual definition of substitu-
tions:

4These are also sometimes called a command. In this document, we only use “configuration” for abstract
machines, and keep “command” for L calculi.
[Hue97] “The Zipper”, Huet, 1997
[Kri07] “A call-by-name lambda-calculus machine”, Krivine, 2007

30

I. Pure call-by-name calculi

Figure I.3.1: The M→N calculus
Figure I.3.1.a: Syntax

Stacks: Configurations:𝑆N ⩴⋆N 𝐶N ⩴ ⟨𝑇N∣𝑆N⟩∣𝑇N ∙ 𝑆N
Figure I.3.1.b: Expanded descriptions

Stacks (expanded): Configurations (expanded):𝑆N ⩴ 𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N 𝐶N ⩴ ⟨𝑇N∣𝑈1N ∙ … ∙ 𝑈𝑞N ∙⋆N⟩
Figure I.3.1.c: Operational reduction⟨𝑇N𝑈N∣𝑆N⟩ M

m ⟨𝑇N∣𝑈N ∙ 𝑆N⟩⟨𝜆𝑥N.𝑇N∣𝑈N ∙ 𝑆N⟩ M → ⟨𝑇N[𝑈N∕𝑥N]∣𝑆N⟩
M ≝ M → ∪ M

m

Figure I.3.1.d: Disubstitutions

Expressions:𝑥N[𝜑] ≝ 𝜑(𝑥N)(𝜆𝑥N.𝑇N)[𝜑] ≝ 𝜆𝑥N.𝑇N[𝜑] if 𝑥N fresh w.r.t. 𝜑(𝑇N𝑈N) ≝ (𝑇N[𝜑])(𝑈N[𝜑])
Stacks:⋆N[𝜑] ≝ 𝜑(⋆N)(𝑇N ∙ 𝑆N)[𝜑] ≝ (𝑇N[𝜑]) ∙(𝑆N[𝜑])
Configurations:⟨𝑇N∣𝑆N⟩[𝜑] ≝ ⟨𝑇N[𝜑]∣𝑆N[𝜑]⟩

31

I. Pure call-by-name calculi

Figure I.3.1.e: Disubstitutions⋆N ↦ 𝑆N
Expressions:𝑇N[𝑆N∕⋆N] = 𝑇N
Stacks:⋆N[𝑆N∕⋆N] = 𝑆N(𝑇N ∙ 𝑆�N)[𝑆N∕⋆N] = 𝑇N ∙(𝑆�N [𝑆N∕⋆N])
Configurations:⟨𝑇N∣𝑆�N ⟩[𝑆N∕⋆N] = ⟨𝑇N∣𝑆�N [𝑆N∕⋆N]⟩

Figure I.3.1.f: Disubstitutions (simplified)

Expressions:𝑇N[𝜎, 𝑆N∕⋆N] = 𝑇N[𝜎]
Stacks:𝑆�N [𝜎, 𝑆N∕⋆N] = 𝑆�N [𝜎][𝑆N∕⋆N]
Configurations:⟨𝑇N∣𝑆�N ⟩[𝜎, 𝑆N∕⋆N] = ⟨𝑇N[𝜎]∣𝑆�N [𝜎][𝑆N∕⋆N]⟩

Definition I.3.1: Disubstitutions

A disubstitution 𝜑 is a function of the shape 𝜑 = 𝜎,⋆N ↦ 𝑆N, i.e. it is a substitution 𝜎
extended by⋆N ↦ 𝑆N for some stack 𝑆N.
One way to understand this operation is to think of ⋆N as meaning “outside”, so that𝐶N[𝑆N∕⋆N]means replacing the “outside” of 𝐶N by 𝑆N. The action of disubstitutions on terms

is described in Figure I.3.1d, and the special case 𝜑 = ⋆N ↦ 𝑆N (i.e. 𝜑 = Id,⋆N ↦ 𝑆N) is
described in Figure I.3.1e.
Since expressions 𝑇N can never contain⋆N, the action of a disubstitution 𝜑 = 𝜎,⋆N ↦ 𝑆N

can be expressed in terms of the action of the subsitution𝜎 and of the disubstitution⋆N ↦ 𝑆N:
Fact I.3.2

The equations given in Figure I.3.1f always hold.

Proof

The equation on expressions is proven by induction on 𝑇N. The equation on stacks is
prove by induction on 𝑆�N , using the equation on terms. The equation on configura-

32

I. Pure call-by-name calculi

Figure I.3.2: Example of reductions in 𝜆→N and M→N((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N ⟨((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N∣⋆N⟩

M

m

M

m((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N ⟨(𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N∣𝐼N ∙⋆N⟩

M

m

M

m((𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N)𝐼N)𝐼N ⟨𝜆𝑥N.𝜆𝑦N.𝑥N𝑦N∣𝐼N ∙ 𝐼N ∙⋆N⟩

M→ M→(𝜆𝑦N.𝐼N𝑦N)𝐼N ⟨𝜆𝑦N.𝐼N𝑦N∣𝐼N ∙⋆N⟩

M→ M→𝐼N𝐼N ⟨𝐼N𝐼N∣⋆N⟩
M

m

M

m𝐼N𝐼N ⟨𝐼N∣𝐼N ∙⋆N⟩
M→ M→𝐼N ⟨𝐼N∣⋆N⟩

tions immediately follows from the equations on expressions and stacks.

Ambiguity of the ambiant calculus

There is sometimes a slight ambiguity on which calculus an expression 𝑇N lives: it could live
in 𝛌→N, 𝜆→N, or M→N. Most of the time, this ambiguity is unimportant, but it sometimes needs
to be resolved:

Remark I.3.3

Translating the of disubstitutions on expressions 𝑇N described in Figure I.3.1d to 𝜆→N
would yield 𝑇N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] = 𝑇N[𝜎] in 𝜆→N
which would clash with 𝑇N[𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝜎] in 𝛌→N
This mismatch would not be that problematic because it can be trivially resolved by
making the ambiant calculus explicit. Furthermore, since the action of disubstitu-
tions on expressions is uninteresting in 𝜆→N and M→N (because they act like substitu-
tions), we could simply take the convention that when writing 𝑇N[𝜑], both 𝑇N and 𝜑
live in 𝛌→N. We nevertheless avoided redefining the action of disubstitutions on ex-
pressions in Figure I.2.1d to avoid unnecessary confusion.

33

I. Pure call-by-name calculi

Remark I.3.4

The M in M is redundant (i.e. we could denote M by) because only reduces expres-
sions, while M only reduces configurations, so that any reduction𝑇N 𝑇′N (resp. 𝐶N M 𝐶′N)
necessarily happens in 𝛌→N (resp. 𝜆→N or M→N). The remaining ambiguity between 𝜆→N
and M→N is not problematic because those two calculi are basically the same (as will
be shown in Section I.4).
We nevertheless keepwriting M for the reduction of 𝜆→N orM→N because the dinstinc-

tion between expressions 𝑇N and configurations 𝐶N may not be immediate for large
terms, e.g. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N … 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞N 𝑇N𝑈1N…𝑈𝑟N vs 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N … 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑞N 𝐶N𝑈1N…𝑈𝑟N
In 𝜆→n and Li→n , the operational reduction will be denoted by , and this will not lead
to any semblance of ambiguity because we use lower cases letters to denote terms of𝜆→n and Li→n .

34

I. Pure call-by-name calculi

I.4. Equivalence between 𝜆→N and M→N
Inside-out and outside-out descriptions

Figure I.4.1: Syntax of 𝜆→N and M→N
Figure I.4.1.a: Syntax of 𝜆→N (left) and outside-out description of M→N (right)

Stacks:𝐒N ∋ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N
Configurations:𝐂N ∋ 𝐶N ⩴ 𝑇N∣𝐶N𝑇N

Stacks (outside-out):𝐒N ∋ 𝑆N ⩴⋆N∣𝑆N[𝑇N ∙⋆N∕⋆N]
Configurations (outside-out):𝐂N ∋ 𝐶N ⩴ ⟨𝑇N∣⋆N⟩∣𝐶N[𝑇N ∙⋆N∕⋆N]

Figure I.4.1.b: Inside-out description of 𝜆→N (left) and syntax of M→N (right)
Stacks (inside-out):𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑇N
Configurations (inside-out):𝐂N ∋ 𝐶N ⩴ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N

Stacks:𝑆N ⩴⋆N∣𝑇N ∙ 𝑆N
Configurations:𝐶N ⩴ ⟨𝑇N∣𝑆N⟩

Figure I.4.1.c: Expanded descriptions of 𝜆→N (left) and M→N (right)
Stacks (expanded):𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⩴ ◽𝑇1N…𝑇𝑘N
Configurations (expanded):𝐶N ⩴ 𝑇N𝑈1N…𝑈𝑘N

Stacks (expanded):𝑆N ⩴ 𝑇1N
Configurations (expanded):𝐶N ⩴ ⟨𝑇N∣𝑈1N ∙ … ∙ 𝑈𝑞N ∙⋆N⟩

The right column of Figure I.4.1b and the left column of Figure I.4.1a recall the syntaxes
of M→N and 𝜆→N respectively. Though 𝜆→N and M→N represent the same objects, they represent
them in structurally different ways. Indeed, in 𝜆→N (resp. M→N) a stack𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ◽𝑇1N…𝑇𝑞N (resp. 𝑆N = 𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N)
is implicitly parenthesized as𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ((◽𝑇1N) …)𝑇𝑞N (resp. 𝑆N = 𝑇1N ∙(… ∙(𝑇𝑞N ∙⋆N)))

35

I. Pure call-by-name calculi

i.e. its parse tree is a left (resp. right) comb:

◽ 𝑇1N
𝑇𝑞−1N

𝑇𝑞N (resp. 𝑇1N𝑇2N 𝑇𝑞N ⋆N)
Taking the structure of stacks in 𝛌→N as reference, stacks of M→N are therefore inside-out, and
we call stacks of 𝜆→N (which are exactly stacks of 𝛌→N) outside-out by opposition. To make
the difference in structure more apparent, we give an outside-out description of M→N in the
right column of Figure I.4.1a and an inside-out description of 𝜆→N in the left column of Fig-
ure I.4.1b, using an operation that substitutes⋆N by a stack 𝑆N and plugging.
The difference between inside-out and outside-out descriptions is fairly inconsequential

here because both are clearly equivalent to the expanded descriptions given in Figure I.4.1c.
However, in more complex calculi, expanded descriptions become unusable. Since we only
study 𝜆→N andM→N as a stepping stone towardsmore complex calculi, we therefore avoid using
expanded descriptions.

Translations

Figure I.4.2 defines translations⋅⃖⃗ ∶ 𝜆→N → M→N and ⋅⃖⃖ ∶ M→N → 𝜆→N
It is immediate that the translation ⋅⃖⃗ maps outside-out expressions (resp. stacks, config-

urations) of 𝜆→N to outside-out expressions (resp. stacks, configurations) of M→N, and that ⋅⃖⃖
maps inside-out expressions (resp. stacks, configurations) of M→N to inside-out expressions
(resp. stacks, configurations) of 𝜆→N. To consider them as translations between 𝜆→N and M→N
(i.e. between outside-out 𝜆→N and inside-out M→N), we therefore need to show that:

• all inside-out expressions (resp. stacks, configurations) of 𝜆→N are outside-out expres-
sions (resp. stacks, configurations) of 𝜆→N; and that

• all outside-out expressions (resp. stacks, configurations) of M→N are inside-out expres-
sions (resp. stacks, configurations) of M→N.

This holds thanks to the following fact:

Fact I.4.1

• In 𝜆→N, for any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and configuration 𝐶N), 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N is
a stack (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N is a configuration).

• InM→N, for any stacks 𝑆1N and 𝑆2N (resp. stack 𝑆N and configuration𝐶N), 𝑆1N[𝑆2N∕⋆N]
36

I. Pure call-by-name calculi

Figure I.4.2: Translations ⋅⃖⃗ ∶ M→N → 𝜆→N and ⋅⃖⃖ ∶ 𝜆→N → M→N
Figure I.4.2.a: Definition of ⋅⃖⃗ and outside-out description of ⋅⃖⃖
Terms: 𝑇N⃖⃗ ≝ 𝑇N
Stacks: ◽⃗ ≝⋆N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N⃖⃖⃖⃗ = (◽𝑇N) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃖⃖⃖⃖⃖⃖⃗ ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃗[𝑇N⃖⃗ ∙⋆N∕⋆N]
Configurations (outside-out):𝑇N⃖⃗ ≝ ⟨𝑇N⃖⃗∣⋆N⟩𝐶N𝑇N⃖⃖⃖⃗ ≝ 𝐶N⃖⃗[𝑇N⃖⃗ ∙⋆N∕⋆N]

Terms: 𝑇N⃖⃖ = 𝑇N
Stacks: ⋆N⃖⃖ = ◽𝑆N[𝑇N ∙⋆N∕⋆N]⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖ = (◽𝑇N⃖⃖) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃖ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N
Configurations:⟨𝑇N∣⋆N⟩⃖⃖ ⃖⃖⃖⃖ = 𝑇N⃖⃖𝐶N[𝑇N ∙⋆N∕⋆N]⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖ = (◽𝑇N⃖⃖) 𝐶N⃖⃖ = 𝐶N𝑇N

Figure I.4.2.b: Inside-out description of ⋅⃖⃗ and definition of ⋅⃖⃖
Terms:𝑇N⃖⃗ = 𝑇N
Stacks:◽⃗ =⋆N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑇N⃖⃖⃖⃖⃖⃗ = 𝑇N⃖⃗ ∙ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃗
Configurations:𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N⃖⃖⃖⃖⃗ = ⟨𝑇N⃖⃗∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃗⟩

Terms:𝑇N⃖⃖ ≝ 𝑇N
Stacks:⋆N⃖⃖ ≝ ◽𝑇N ∙ 𝑆N⃖⃖⃖⃖⃖ ≝ 𝑆N⃖⃖ ◽𝑇N⃖⃖
Configurations:⟨𝑇N∣𝑆N⟩⃖⃖ ⃖⃖⃖⃖ ≝ 𝑆N⃖⃖ 𝑇N⃖⃖

Figure I.4.2.c: Expanded description of ⋅⃖⃗ and ⋅⃖⃖
Terms: 𝑇N⃖⃗ = 𝑇N
Stacks:◽𝑇1N…𝑇𝑞N⃖⃖⃖⃖⃖⃖⃖⃗ = 𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N
Configurations:𝑇N𝑈1N…𝑈𝑞N⃖⃖⃖⃖⃖⃖⃖⃖⃗ = ⟨𝑇N∣𝑈1N ∙ … ∙ 𝑈𝑞N ∙⋆N⟩

Terms: 𝑇N⃖⃖ = 𝑇N
Stacks:𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N⃖⃖ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖ = ◽𝑇1N…𝑇𝑞N
Configurations:⟨𝑇N∣𝑈1N ∙ … ∙ 𝑈𝑞N ∙⋆N⟩⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖ ≝ 𝑇N𝑈1N…𝑈𝑞N

37

I. Pure call-by-name calculi

is a stack (resp. 𝐶N[𝑆N∕⋆N] is a configuration).
Proof

• By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N).
• By induction on 𝑆1N (resp. 𝐶N).

Fact I.4.2

The translation ⋅⃖⃗ maps expressions (resp. stacks, configurations) of 𝜆→N to expres-
sions (resp. stacks, configurations) of M→N, and the translation ⋅⃖⃖ maps (resp. stacks,
configurations) of M→N to expressions (resp. stacks, configurations) of 𝜆→N.
Proof

By the previous fact.

Proving that ⋅⃖⃗ and ⋅⃖⃖ are inverses amounts to proving that the translations distribute
over plugging and stubstitutions of⋆N by a stack, which in turn relies on these operations
inducing a monoid structure on stacks, and an action of that monoid on configurations:

Fact I.4.3

In 𝜆→N (resp. M→N), the set of stacks 𝐒N has a monoid structure(𝐒N, ⚪◽, ◽) (resp. (𝐒N, ⚪⋆,⋆N))
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N ⚪◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N ⚪⋆ 𝑆2N ≝ 𝑆1N[𝑆2N∕⋆N])
and this monoid acts on configurations on the left (resp. on the right) via𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⚫◽ 𝐶N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N (resp. 𝐶N ⚫⋆ 𝑆N ≝ 𝐶N[𝑆N∕⋆N])
In other words:

• (mon-unit) for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N), we have◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽ (resp.⋆N[𝑆N∕⋆N] = 𝑆N = 𝑆N[⋆N∕⋆N])
• (mon-accoc) for any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆1N, 𝑆2N, and 𝑆3N), we have𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝑆1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])
• (act-unit) for any configuration 𝐶N, we have◽ 𝐶N = 𝐶N (resp. 𝐶N = 𝐶N[⋆N∕⋆N])
• (act-assoc) for any configuration 𝐶1N and stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆2N and 𝑆3N), we

38

I. Pure call-by-name calculi

have𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝐶1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝐶1N (resp. 𝐶1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝐶1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])
Proof sketch (See page 230 for details)

By a few inductions.

Fact I.4.4

• For any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and configuration 𝐶N) of 𝜆→N, we have𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N⃖⃖⃖⃖⃗ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N⃖⃗[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N⃖⃗∕⋆N] (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N⃖⃖⃖⃖⃗ = 𝐶N⃖⃗[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃗∕⋆N])
• For any stacks 𝑆N and 𝑆0N (resp. stack 𝑆N and configuration 𝐶N) of M→N, we have𝑆1N[𝑆2N∕⋆N]⃖⃖⃖⃖⃖⃖⃖⃖ = 𝑆2N⃖⃖ 𝑆1N⃖⃖ (resp. 𝐶N[𝑆N∕⋆N]⃖⃖⃖⃖⃖⃖⃖⃖ = 𝑆N⃖⃖ 𝐶N⃖⃖)

Proof

By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N / 𝑆N (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N / 𝑆2N), using the previous fact.
Fact I.4.5

The translation ⋅⃖⃗ and ⋅⃖⃖ are are each other’s inverse:
• For any expression 𝑇N (resp. stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, configuration 𝐶N) of 𝜆→N, we have𝑇N⃖⃗⃖⃖ = 𝑇N (resp. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃗⃖⃖ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, 𝐶N⃖⃗⃖⃖ = 𝐶N)
• For any expression 𝑇N (resp. stack 𝑆N, configuration 𝐶N) of M→N, we have𝑇N = 𝑇N⃖⃖⃖⃗ (resp. 𝑆N = 𝑆N⃖⃖⃖ ⃗, 𝐶N = 𝐶N⃖⃖⃖⃗)

Proof

By induction on the term, using the previous fact.

We write⇌ for equality through these translations:

39

I. Pure call-by-name calculi

Definition I.4.6

We write 𝓉1 ⇌ 𝓉2 to state that 𝓉1⃗⃖ = 𝓉2, or equivalently that 𝓉1 = 𝓉2⃖⃖ . Whenever we
write, 𝓉1 ⇌ 𝓉2, we implicitly assume that 𝓉1 lives in 𝜆→N and that 𝓉2 lives in M→N.
With this notation, Fact I.4.4 can be reformulated as the compatibility of the operations

with⇌:

Fact I.4.7

We have 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�1N ⇌ 𝑆�1N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�2N ⇌ 𝑆�2N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�1N ⇌ 𝑆�1N [𝑆�2N ∕⋆N]
and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N ⇌ 𝑆�N and 𝐶�N ⇌ 𝐶�N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N 𝐶�N ⇌ 𝐶�N[𝑆�N∕⋆N]
Proof

By Fact I.4.4.

Remark I.4.8

Every notion will be defined in both 𝜆→N and M→N, and shown to be compatible with⇌ (i.e. to be the same in 𝜆→N and M→N). We will often also give an equivalent outside-
out (resp. inside-out) description in M→N (resp. 𝜆→N), but will leave the proof of the
equivalence implicita. From a technical perspective, the alternative descriptions are
completely superfluous, and the reader should feel free to ignore them, but we nev-
ertheless keep them because we believe that they may have some pedagogical value.
aThe outside-out (resp. inside-out) description in M→N (resp. 𝜆→N) will be defined as being exactly the
definition in 𝜆→N (resp. M→N) transported through⇌, so that the equivalence between the outside-out
(resp. inside-out) description inM→N (resp. 𝜆→N) and the definition inM→N (resp. 𝜆→N) will immediately
follow from compatibility of the definition with⇌.
For example, if we define a unary operation 𝑓�(𝐶N) in 𝜆→N and the corresponding operation 𝑓�(𝐶N)

in M→N , we will show that 𝐶1N ⇌ 𝐶2N ⇒ 𝑓�(𝐶1N) ⇌ 𝑓�(𝐶2N) (1)
The outside-out (resp. inside-out) description 𝑓⇌

�
(resp. 𝑓⇌

�
) in M→N (resp. 𝜆→N) will be defined by

starting from the equalities𝑓⇌
� (𝐶2N) = 𝑓�(𝐶2N⃖⃖)⃖⃖⃖⃖⃖⃗ (resp. 𝑓⇌� (𝐶1N) = 𝑓�(𝐶1N⃖⃗)⃖⃖ ⃖⃖⃖⃖)and possibly simplifying the right hand side. By (1), we therefore immediately get𝑓⇌

�
= 𝑓� (resp. 𝑓⇌� = 𝑓�)

Substitutions

Figure I.4.3 recalls the action of substitutions on stacks and configurations of 𝜆→N and M→N,
and gives alternative descriptions. The translations are extended to substitutions pointwise:

40

I. Pure call-by-name calculi

Figure I.4.3: The action of substitutions on terms of 𝜆→N and M→N
Figure I.4.3.a: Definition in 𝜆→N (left) and outside-out description in M→N
Stacks:◽[𝜎] ≝ ◽(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N𝑇N)[𝜎] ≝ (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N[𝜎])(𝑇N[𝜎])
Configurations:𝑇N[𝜎] ≝ 𝑇N[𝜎](𝐶N𝑇N)[𝜎] ≝ (𝐶N[𝜎])(𝑇N[𝜎])

Stacks: ⋆N[𝜎] =⋆N(𝑆N[𝑇N ∙⋆N∕⋆N])[𝜎] = 𝑆N[𝜎][(𝑇N[𝜎]) ∙⋆N∕⋆N]
Configurations:⟨𝑇N∣⋆N⟩[𝜎] = ⟨𝑇N[𝜎]∣⋆N⟩[𝜎](𝐶N[𝑇N ∙⋆N∕⋆N])[𝜎] = 𝐶N[𝜎][(𝑇N[𝜎]) ∙⋆N∕⋆N]

Figure I.4.3.b: Inside-out description in 𝜆→N (left) and definition in M→N (right)
Stacks: ◽[𝜎] = ◽(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑇N)[𝜎] = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N[𝜎]) ◽(𝑇N[𝜎])
Configurations:(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N)[𝜎] = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N[𝜎]) 𝑇N[𝜎]

Stacks:⋆N[𝜎] ≝⋆N(𝑇N ∙ 𝑆N)[𝜎] ≝ (𝑇N[𝜎]) ∙(𝑆N[𝜎])
Configurations:⟨𝑇N∣𝑆N⟩[𝜎] ≝ ⟨𝑇N[𝜎]∣𝑆N[𝜎]⟩

Figure I.4.3.c: Expanded descriptions in 𝜆→N (top) and M→N (bottom)
Stacks:(◽𝑇1N…𝑇𝑞N)[𝜎] = ◽(𝑇1N[𝜎]) … (𝑇𝑞N[𝜎])
Configurations:(𝑇0N𝑇1N…𝑇𝑞N)[𝜎] = 𝑇0N[𝜎](𝑇1N[𝜎]) … (𝑇𝑞N[𝜎])

Stacks:(𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N)[𝜎] = (𝑇1N[𝜎]) ∙ … ∙(𝑇𝑞N[𝜎]) ∙⋆N
Configurations:(⟨𝑇0N∣𝑇1N ∙ … ∙ 𝑇𝑞N ∙⋆N⟩)[𝜎] = ⟨𝑇0N∣(𝑇1N[𝜎]) ∙ … ∙(𝑇𝑞N[𝜎]) ∙⋆N⟩

41

I. Pure call-by-name calculi

Definition I.4.9: Extension of⇌ to substitutions

Given a substitution 𝜎 in 𝜆→N (resp. M→N), we write 𝜎 (resp. 𝜎⃖) for the substitution of
M→N (resp. 𝜆→N) defined by𝜎(𝑥N) = 𝜎(𝑥N)⃖⃖⃖⃖⃗ (resp. 𝜎⃖(𝑥N) = 𝜎(𝑥N)⃖⃖ ⃖⃖⃖)
Given two substitutions, 𝜎� in 𝜆→N and 𝜎� in M→N, we write 𝜎� ⇌ 𝜎� for 𝜎�⃖⃗ = 𝜎�, or
equivalently for 𝜎� = 𝜎�⃖⃖ .

Remark I.4.10

Since expressions are the same in 𝜆→N and M→N, we have𝜎� ⇌ 𝜎� ⇔ 𝜎� = 𝜎�
We nevertheless use the notation 𝜎� ⇌ 𝜎� because this will no longer be the case in𝜆→n and Li→n .
Translations distribute over the action of substitutions, i.e. substitutions are compatible

with⇌:

Fact I.4.11: Compatibility of substitutions with⇌
We have 𝜎� ⇌ 𝜎� and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N ⇌ 𝑆�N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜎�] ⇌ 𝑆�N[𝜎�]
and 𝜎� ⇌ 𝜎� and 𝐶�N ⇌ 𝐶�N ⇒ 𝐶�N[𝜎�] ⇌ 𝐶�N[𝜎�]
Proof

By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N / 𝐶�N.
Disubstitutions

42

I. Pure call-by-name calculi

The translations are extended to disubstitutions in the expected way:

Definition I.4.12: Extension of⇌ to disubstitutions

Given a disubstitution 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) in 𝜆→N (resp. 𝜑 = 𝜎,⋆N ↦ 𝑆N in M→N), we write 𝜎
(resp. 𝜎⃖) for the substitution of M→N (resp. 𝜆→N) defined by(𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N)⃖⃖⃖⃖⃗ = 𝜎,⋆N ↦ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃗ (resp. 𝜎,⋆N ↦ 𝑆N⃖⃖ ⃖⃖⃖⃖⃖⃖⃖ = (𝜎⃖, 𝑆N⃖⃖))
Given two disubstitutions, 𝜑� in 𝜆→N and 𝜑� in M→N, we write 𝜑� ⇌ 𝜑� for 𝜑�⃖⃗ = 𝜑�, or
equivalently for 𝜑� = 𝜑�⃖⃖ .

The translations distribute over the translations:

Fact I.4.13: Compatibility of disubstitutions with⇌
We have 𝜑� ⇌ 𝜑� and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N ⇌ 𝑆�N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�N[𝜑�] ⇌ 𝑆�N[𝜑�]
and 𝜑� ⇌ 𝜑� and 𝐶�N ⇌ 𝐶�N ⇒ 𝐶�N[𝜑�] ⇌ 𝐶�N[𝜑�]
Proof

This holds for substitutions 𝜎 by Fact I.4.11 and for disubstitutions of the shape 𝜑� =(Id, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) (resp. 𝜑� =⋆N ↦ 𝑆N) by Fact I.4.7. We can therefore conclude by Fact I.3.2.
Reductions

The definitions of the operational reduction M of 𝜆→N and M→N are recalled in Figure I.4.4a.
These two definitions correspond to each other through⇌:

Fact I.4.14: Compatibility of M with⇌
We have 𝐶�N ⇌ 𝐶�N and 𝐶�′N ⇌ 𝐶�′N ⇒ (𝐶�N M 𝐶�′N ⇔ 𝐶�N M 𝐶�′N)
Proof

By compatibility of disubstitutions with⇌ (Fact I.4.13).

43

I. Pure call-by-name calculi

Figure I.4.4: Operational reduction in 𝜆→N and M→N
Figure I.4.4.a: Definition in 𝜆→N (left) and M→N (right)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N M

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N M → 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N]
M ≝ M → ∪ M

m

⟨𝑇N𝑈N∣𝑆N⟩ M

m ⟨𝑇N∣𝑈N ∙ 𝑆N⟩⟨𝜆𝑥N.𝑇N∣𝑈N ∙ 𝑆N⟩ M → ⟨𝑇N[𝑈N∕𝑥N]∣𝑆N⟩
M ≝ M → ∪ M

m

Figure I.4.4.b: Outside-out description in 𝜆→N (left) and M→N (right)𝑇N𝑈N M 𝑇N𝑈N(𝜆𝑥N.𝑇N)𝑈N M 𝑇N[𝑈N∕𝑥N]𝐶N M 𝐶′N𝐶N𝑈N M 𝐶′N𝑈N

⟨𝑇N𝑈N∣⋆N⟩ M ⟨𝑇N∣𝑈N ∙⋆N⟩⟨𝜆𝑥N.𝑇N∣𝑈N ∙⋆N⟩ M ⟨𝑇N[𝑈N∕𝑥N]∣⋆N⟩𝐶N M 𝐶′N𝐶N[𝑇N ∙⋆N∕⋆N] M 𝐶′N[𝑇N ∙⋆N∕⋆N]
Figure I.4.4.c: Inside-out description in 𝜆→N (left) and M→N (right)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N M 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (𝜆𝑥N.𝑇N)𝑈N M 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝑈N∕𝑥N] ⟨𝑇N𝑈N∣𝑆N⟩ M ⟨𝑇N∣𝑈N ∙ 𝑆N⟩⟨𝜆𝑥N.𝑇N∣𝑈N ∙ 𝑆N⟩ M ⟨𝑇N[𝑈N∕𝑥N]∣𝑆N⟩

44

I. Pure call-by-name calculi

Figures I.4.4b and I.4.4c give inside-out and outside-out descriptions via inferrence rules,
which are of course equivalent:

Fact I.4.15

In 𝜆→N (resp. M→N), the definition of M (Figure I.4.4a) is equivalent to its outside-out
description (Figure I.4.4b), and to its inside-out description (Figure I.4.4c).

Proof

• definition⇔ inside-out Trivial.

• definition⇔ outside-out Thinking of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N) as being an outside-out
stack, the ⇒ implication holds by induction on the stack, and the ⇐ holds by
induction on the derivation.

The fact that stacks should be inside-out in Figure I.4.4c would be clearer if we were to
give a similar inside-out description of the strong reduction . For example, wewould have𝑈N 𝑈′N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑈N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽𝑈N𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N𝑈N
An inside-out description of in 𝜆→n and Li→n is given in . We do not given one in 𝜆→N and
M→N because these calculi are not the right setting to study the strong reduction .

45

I. Pure call-by-name calculi

I.5. Translations between 𝛌→N and 𝜆→N
Focus insertion and erasure

We start by defining the focus-erasing translation ⌈ ⋅ ⌉ from 𝜆→N to 𝛌→N in Figure I.5.1 that
removes the underlinement in 𝐶N, and the corresponding translation fromM→N to 𝛌→N, which
we denote by the same symbol.

Figure I.5.1: The focus-erasing translations ⌈ ⋅ ⌉ ∶ 𝜆→N → 𝛌→N and ⌈ ⋅ ⌉ ∶ M→N → 𝛌→N
Figure I.5.1.a: Definition in 𝜆→N (left) and outside-out description in M→N (right)⌈𝑇N⌉ ≝ 𝑇N⌈𝐶N𝑇N⌉ ≝ ⌈𝐶N⌉𝑇N

⌈⟨𝑇N∣⋆N⟩⌉ ≝ 𝑇N⌈𝐶N[𝑇N ∙⋆N∕⋆N]⌉ ≝ ⌈𝐶N⌉[𝑇N ∙⋆N∕⋆N]
Figure I.5.1.b: Inside-out description in 𝜆→N (left) and definition in M→N (right)⌈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⌉ ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⌈⟨𝑇N∣𝑆N⟩⌉ ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N⃖⃖ 𝑇N

These two translations of course correspond to each other through⇌:

Fact I.5.1

We have 𝐶�N ⇌ 𝐶�N ⇒ ⌈𝐶�N⌉ = ⌈𝐶�N⌉
Proof

Immediate.

Erasing the underlinement preserves disubsitutions:

Fact I.5.2

For any configuration 𝐶N and disubstitution 𝜑, ⌈𝐶N[𝜑]⌉ = ⌈𝐶N⌉[𝜑].
Proof

Immediate.

The focus-erasing translation is a left inverse of ⋅ and ⟨-∣⋆N⟩:
46

I. Pure call-by-name calculi

Fact I.5.3

For any expression 𝑇N, we have⌈𝑇N⌉ = 𝑇N and ⌈⟨𝑇N∣⋆N⟩⌉ = 𝑇N
Proof

Immediate.

Composing these two maps in the opposite order yields the identity only up to M

m reduc-
tions:

Fact I.5.4

For any configuration 𝐶N of 𝜆→N (resp. M→N), we have⌈𝐶N⌉ M ∗
m 𝐶N (resp. ⟨⌈𝐶N⌉∣⋆N⟩ M ∗

m 𝐶N)
i.e. for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N) and term 𝑇N of 𝜆→N (resp. M→N), we have𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N M ∗

m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N (resp. ⟨𝑆N⃖⃖ 𝑇N ∣⋆N⟩ M ∗
m ⟨𝑇N∣𝑆N⟩)

Proof

We have⌈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⌉ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N M ∗
m 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N (resp. ⟨⌈⟨𝑇N∣𝑆N⟩⌉∣⋆N⟩ = ⟨𝑆N⃖⃖ 𝑇N ∣⋆N⟩ M ∗

m ⟨𝑇N∣𝑆N⟩)
where the equality is given by Fact I.5.2, and the M ∗

m reduction sequence is obtained
by induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N).

Reductions through focus erasure

Since M

m reductions only move focus, they are erased by ⌈ ⋅ ⌉:
Fact I.5.5

If 𝐶N M

m 𝐶′N then ⌈𝐶N⌉ = ⌈𝐶′N⌉.
Proof

By Fact I.5.2.

Conversely, two configurations whose image by ⌈ ⋅ ⌉ are equal are related by m steps:

47

I. Pure call-by-name calculi

Fact I.5.6

If ⌈𝐶N⌉ = ⌈𝐶′N⌉ then either 𝐶N M ∗
m 𝐶′N or 𝐶N M ∗

m 𝐶′N.
Proof

Applying Fact I.5.4 to both 𝐶N and 𝐶′N yields𝐶N M 𝑗
m ⌈𝐶N⌉ = ⌈𝐶′N⌉ M 𝑘

m 𝐶′N
By determinism of M , we can simplify this to get either 𝑗 = 0 or 𝑘 = 0.
The M → reductions of M→N are preserved by focus erasure:
Fact I.5.7

If 𝐶N M → 𝐶′N then ⌈𝐶N⌉ → ⌈𝐶′N⌉.
Proof

By Fact I.5.2.

Reductions through focus insertion

A top-level reduction → in 𝛌→N becomes M

m
M → in 𝜆→N:

Fact I.5.8

If 𝑇N → 𝑇′N then 𝑇N M

m
M → 𝑇′N.

Proof

We have (𝜆𝑥N.𝑇N)𝑈N M

m (𝜆𝑥N.𝑇N)𝑈N M → 𝑇N[𝑈N∕𝑥N]
The search for the redex is represented by a sequence of M

m reductions. The
M

m reduction
can find redexes under all operational contexts:

Fact I.5.9

For any operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N and expression 𝑇N, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N M ∗
m 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N .

48

I. Pure call-by-name calculi

Proof

Since all operational contexts 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N are stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, this is just Fact I.5.4.
We can therefore simulate → steps as follows:

Fact I.5.10

If 𝑇N → 𝑇′N then 𝑇N M ∗
m

M → M ∗
m 𝑇′N.

Proof

We have𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N (𝜆𝑥N.𝑇N)𝑈N M ∗
m 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N (𝜆𝑥N.𝑇N)𝑈N M

m
M → 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N[𝑈N∕𝑥N] M ∗

m 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N 𝑇N[𝑈N∕𝑥N]
where the M ∗

m and
M ∗
m reduction sequences are by Fact I.5.9.

We then look at sequences of reductions ∗→ . The fact that the abstract machine does not
need to go back to the top of the expression, sometimes called refocusing [DanNie04], can
be expressed as follows:

Fact I.5.11

If 𝑇N 𝑘→ 𝑇′N then 𝑇N (M ∗
m

M →)𝑘 M ∗
m 𝑇′N.

Proof

The previous fact gives us 𝑇N (M ∗
m

M → M ∗
m)𝑘 𝑇′N

which can be rewritten (for 𝑘 ≥ 1) as𝑇N M ∗
m

M →(M ∗
m

M ∗
m

M →)𝑘−1 M ∗
m 𝑇′N

Since M

m is deterministic, this implies𝑇N M ∗
m

M →((M ∗
m ∪ M ∗

m) →)𝑘−1 M ∗
m 𝑇′N

and since M

m and
M → have disjoint domains, we get𝑇N M ∗

m
M →(M ∗

m
M →)𝑘−1 M ∗

m 𝑇′N
i.e. 𝑇N (M ∗

m
M →)𝑘 M ∗

m 𝑇′N
Since M

m steps are erased by ⌈ ⋅ ⌉, the above implication is an equivalence, so that:
[DanNie04] “Refocusing in Reduction Semantics”, Danvy and Nielsen, 2004

49

I. Pure call-by-name calculi

Proposition I.5.12

For any configurations 𝐶N and 𝐶′N, we have⌈𝐶N⌉ ⊛ ⇔ 𝐶N M⊛
In particular, for any expressions 𝑇N and 𝑇′N, we have𝑇N ⊛ ⇔ 𝑇N M⊛
Proof

• ⇒ Suppose that 𝑇N ⊛ 𝑇′N. By the previous fact, we have𝑇N (M ∗
m

M →)𝑘 𝐶′N M ∗
m 𝑇′N

for some 𝐶′N. Since M

m is strongly normalizing (because the depth of the expres-
sion minus the depth of ⋅ in it strictly decreases at each M

m step), we can find𝐶′′N such that 𝑇N (M ∗
m

M →)𝑘 𝐶′N M⊛
m 𝐶′′N M⊛

m 𝑇′N
It now suffices to show that 𝐶′′N M → . By Fact I.5.5, we have⌈𝐶′′N ⌉ = ⌈𝑇′N⌉ = 𝑇′N
so that having 𝐶′′N M → would contradict the hypothesis 𝑇′N → by Fact I.5.7.

• ⇐ Suppose that𝐶N M⊛ 𝐶′N. By Facts I.5.5 and I.5.7, we have ⌈𝐶N⌉ ∗ ⌈𝐶′N⌉. Since𝐶′N M , Fact I.5.10 allows to conclude that ⌈𝐶′N⌉ → .

50

I. Pure call-by-name calculi

I.6. A pure call-by-name 𝜆-calculus with focus: 𝜆→n
In this section, we introduce the pure call-by-name 𝜆-calculus with focus 𝜆→n , which is the𝜆-like syntax for the calculus we are really interested in: Li→n . While it is suboptimal from
a technical standpoint, we expect the 𝜆→n syntax to make understanding how Li→n computes
easier.
Section I.6.1 refines M→N to allow decomposing the strong reduction, Section I.6.2 add lets

expressions, and Section I.6.3 describes the actual 𝜆→n calculus.
I.6.1. The simple fragment of the naive 𝜆→n calculus

Decomposing the strong reduction

As we have seen in Section I.5, the operational reduction of 𝜆→N andM→N refines that of 𝛌→N by
making the implicit m steps explicit. This has the unfortunate consequence of damaging the
relationship between the operational reduction and the strong reduction . For example,
the expression (𝜆𝑥N.𝐼N𝑊N)𝑉N (where 𝐼N = 𝜆𝑦N.𝑦N) of 𝛌→N is represented by (𝜆𝑥N.𝐼N𝑊N)𝑉N
Figure I.6.1: Example of strong reduction in subterms of abstract machines

Figure I.6.1.a: Example in 𝜆→N(𝜆𝑥N.𝐼N𝑊N)𝑉N m (𝜆𝑥N.𝐼N𝑊N)𝑉N → 𝐼N𝑊N[𝑉N∕𝑥N]

m

→ → 𝐼N𝑊N[𝑉N∕𝑥N]

→(𝜆𝑥N.𝑊N)𝑉N m (𝜆𝑥N.𝑊N)𝑉N → 𝑊N[𝑉N∕𝑥N]
Figure I.6.1.b: Example in 𝜆→n(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n → 𝐼n𝑤n[𝑣n∕𝑥n]

m m m(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n → 𝐼n𝑤n[𝑣n∕𝑥n]

→ → →(𝜆𝑥n.𝑤n)𝑣n m (𝜆𝑥n.𝑤n)𝑣n → 𝑤n[𝑣n∕𝑥n]

51

I. Pure call-by-name calculi

in 𝜆→N and reduces as shown in Figure I.6.1a, where the inner reduction 𝐼N𝑊N 𝑊N can not
be refined as two steps → m because 𝐼N𝑊N has no underlined subterm.
A naive attempt atmodifying 𝜆→N to allow to explicitlymoving the focus in subterms can be

found in Figure I.6.2. Just like in 𝜆→N, commands 𝑐n (which correspond to configurations of𝜆→N) are computations that can be reduced / evaluated by the operational reduction , while
an expression 𝑡n is only part of a computation meant to be combined with a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (or an
evaluation context 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n in the full calculus) to form a command. Of course, any expression 𝑡n
can be turned into a command by making it interact with the trivial stack ◽, which yields 𝑡n.
The distinction between commands and simple commands will become relevant later when
we add let-expressions (and the distinction between stacks and simple stacks will become

Figure I.6.2: The simple fragment of the naive call-by-name 𝜆-calculus with focus 𝜆→n
Figure I.6.2.a: Syntax (naive)

Expressions / values: Stacks / simple stacks:𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝑐n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, 𝑠̊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽∣𝜆𝑥n.𝑐n ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝑡n
Commands: Simple commands:𝑐n ⩴ 𝑐̊n 𝑐̊n ⩴ 𝑡n∣𝑐̊n𝑡n

Figure I.6.2.b: Expanded description of commands and stacks (naive)

Simple commands: Stacks / simple stacks:𝑐̊n ⩴ 𝑡n𝑢1n …𝑢𝑞n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, 𝑠̊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽𝑢1n …𝑢𝑞n
Figure I.6.2.c: Operational reduction (naive)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐̊n m 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐̊n𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n. 𝑐̊n)𝑡n → 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐̊n[𝑡n∕𝑥n]≝ m ∪ →
Figure I.6.2.d: Expanded description of the operational reduction (naive)𝑡n𝑣1n …𝑣𝑞n𝑤1n …𝑤𝑟n m 𝑡n𝑣1n …𝑣𝑞n𝑤1n …𝑤𝑟n(𝜆𝑥n.𝑡n𝑣1n …𝑣𝑞n)𝑤0n𝑤1n …𝑤𝑟n → 𝑡n[𝑤0n∕𝑥n](𝑣1n [𝑤0n∕𝑥n]) … (𝑣𝑞n [𝑤0n∕𝑥n])𝑤1n …𝑤𝑟n

52

I. Pure call-by-name calculi

relevant in call-by-value).
The main difference with 𝜆→N is that some subterms are now also represented with com-

mands, which allows the strong reduction to move focus in subterms: the expression(𝜆𝑥N.𝐼N𝑊N)𝑉N of 𝛌→N can be represented in 𝜆→n by(𝜆𝑥n.𝐼n𝑤n)𝑣n with 𝐼n = 𝜆𝑦n.𝑦n
and reduces as shown in Figure I.6.1b.

Focus erasure in place of focus movement

Since subcommands now already have their own focused subterm, the reduction now erases
the underlinement ⋅ instead of moving it. For example, the reduction(𝜆𝑥N.𝐼N𝑊N)𝑉N m (𝜆𝑥N.𝐼N𝑊N)𝑉N → 𝐼N𝑊N[𝑉N∕𝑥N]
becomes (𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n → 𝐼n𝑤n[𝑣n∕𝑥n]
where the first step erases the focus under (𝜆𝑥n.𝐼n𝑤n)𝑣n and the second step erases the fo-
cus under 𝜆𝑥n.𝐼n𝑤n and reduces the 𝛽-redex. The result 𝐼n𝑤n[𝑣n∕𝑥n] is the body 𝐼n𝑤n of the
function 𝜆𝑥n.𝐼n𝑤n with the substitution 𝑥n ↦ 𝑣n applied to it. Erasing the focus, instead of
moving it, is a way of ensuring the focus in subcommands can be moved by m indepen-
dently of what happens above: if we decide to first apply the reduction(𝜆𝑥n.𝐼n𝑤n)𝑣n m (𝜆𝑥n.𝐼n𝑤n)𝑣n
then the body is now 𝐼n𝑤n and after performing the same two m → steps, we get 𝐼n𝑤n[𝑣n∕𝑥n]
as expected.

I.6.2. The naive 𝜆→n calculus

Stack deferrals

We now add let-expressions to our naive 𝜆→n , which yields Figure I.6.3. The most important
difference is that stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n can now be moved by the operational reduction via the defer
operation. Indeed, in the simple fragment, we only had simple commands for which defer
only plugs the simple command in the stack:

defer(𝑡n #”𝑣𝑛, ◽ # ”𝑤𝑛) = (◽ # ”𝑤𝑛) 𝑡n #”𝑣𝑛 = 𝑡n #”𝑣𝑛 # ”𝑤𝑛
Having let-expressions allows us to form non-simple commands for which defer moves the
stack to the body of the let expression when this body is a simple command

defer(let𝑥n = 𝑡n in𝑢n #”𝑣𝑛 , ◽ # ”𝑤𝑛) = let𝑥n = 𝑡n in

defer(𝑢n #”𝑣𝑛, ◽ # ”𝑤𝑛) = let𝑥n = 𝑡n in(◽ # ”𝑤𝑛) 𝑢n #”𝑣𝑛 = let𝑥n = 𝑡n in𝑢n #”𝑣𝑛 # ”𝑤𝑛

53

I. Pure call-by-name calculi

Figure I.6.3: The call-by-name 𝜆-calculus with focus 𝜆→n (naive)
Figure I.6.3.a: Syntax (naive)

Expressions / values: Stacks / simple stacks:𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝑐n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, 𝑠̊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽∣𝜆𝑥n.𝑐n ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝑡n
Commands: Simple commands:𝑐n ⩴ 𝑐̊n 𝑐̊n ⩴ 𝑡n∣ let𝑥n ∶= 𝑡n in 𝑐n ∣𝑐̊n𝑡n

Figure I.6.3.b: Stack deferral (naive)

defer(𝑐̊n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐̊n
defer(let𝑥n ∶= 𝑡n in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) if 𝑥n fresh w.r.t. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n

Figure I.6.3.c: Operational reduction (naive)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐n 𝜇 defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)
let𝑥n ∶= 𝑡n in 𝑐n let 𝑐n[𝑡n∕𝑥n]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n.𝑐n)𝑡n → defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)≝ m ∪ let ∪ →

and further down if that body is again a let-expression
defer(let𝑥n1 = 𝑡1n in⋮

let𝑥n𝑞 = 𝑡𝑞n in𝑢n #”𝑣𝑛
, ◽ # ”𝑤𝑛) = … = let𝑥n1 = 𝑡1n in⋮

let𝑥n𝑞 = 𝑡𝑞n in
defer(𝑢n #”𝑣𝑛, ◽ # ”𝑤𝑛)

= let𝑥n1 = 𝑡1n in⋮
let𝑥n𝑞 = 𝑡𝑞n in(◽ # ”𝑤𝑛) 𝑢n #”𝑣𝑛

= let𝑥n1 = 𝑡1n in⋮
let𝑥n𝑞 = 𝑡𝑞n in𝑢n #”𝑣𝑛 # ”𝑤𝑛

𝜇 as a generalization of m and

The 𝜇 reduction therefore does two things: it erases the underline and moves the stack:(let𝑥n1 = 𝑡1n in⋮
let𝑥n𝑞 = 𝑡𝑞n in𝑢n #”𝑣𝑛) # ”𝑤𝑛 𝜇 let𝑥n1 = 𝑡1n in⋮

let𝑥n𝑞 = 𝑡𝑞n in𝑢n #”𝑣𝑛 # ”𝑤𝑛

54

I. Pure call-by-name calculi

The reduction m of the simple fragment of 𝜆→n corresponds to the case where there are 𝑞 = 0
nested let-expressions, and the reduction of 𝛌→N corresponds to(let𝑥n ∶= 𝑡n in𝑢n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in𝑢n𝑤n
i.e. to the case where there is 𝑞 = 1 let-expression whose body is underlined (i.e. ◽ #”𝑣𝑛 =◽) and the moved stack contains a single value (i.e. ◽ # ”𝑤𝑛 = ◽𝑤1n). The reduction 𝜇 can
therefore be though of as a combination of the reduction m that simply moves focus and
of a strenghened variant of that can move several arguments at once, and move them
through several let-expressions at once. This strengthening ensures that 𝜇 steps commute
with each other. Indeed, being able to move several values allows for(let𝑥n ∶= 𝑡n in𝑢n)𝑣n𝑤n 𝜇 (let𝑥n ∶= 𝑡n in𝑢n)𝑣n𝑤n

𝜇 𝜇(let𝑥n ∶= 𝑡n in𝑢n𝑣n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in𝑢n𝑣n𝑤n
and being able to move through let-expressions allows for(let𝑥n ∶= 𝑡n in let 𝑦n ∶= 𝑢n in 𝑣n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in(let 𝑦n ∶= 𝑢n in 𝑣n)𝑤n

𝜇 𝜇(let𝑥n ∶= 𝑡n in let 𝑦n ∶= 𝑢n in 𝑣n)𝑤n 𝜇 let𝑥n ∶= 𝑡n in let 𝑦n ∶= 𝑢n in 𝑣n𝑤n
See for a more formal statement.

Underlines as potential places of interaction

One way to think about the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐n 𝜇 defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)
reduction is that it moves the stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽ # ”𝑤𝑛 at the next point in 𝑐n where it might interact
with an expression. In non-simple commands 𝑐n = let𝑥n ∶= 𝑡n in 𝑐0n , that next point of
interaction of the stack with an expression is necessarily in the subcommand 𝑐0n , while for
simple commands 𝑐n = 𝑡n #”𝑣𝑛, the stack may interact with an expression that comes from
reducing 𝑡n #”𝑣𝑛 so we leave it here. Leaving it here does not mean that it will interact here,
only that it will follow ◽ #”𝑣𝑛 around until all values of ◽ #”𝑣𝑛 have been consumed. For example,
if 𝑡n is a non-simple command, it will be moved together with ◽ #”𝑣𝑛:(let𝑥n ∶= 𝑢1n in𝑢2n) #”𝑣𝑛 # ”𝑤𝑛 𝜇 (let𝑥n ∶= 𝑢1n in𝑢2n) #”𝑣𝑛 # ”𝑤𝑛 𝜇 let𝑥n ∶= 𝑢1n in𝑢2n #”𝑣𝑛 # ”𝑤𝑛
Note that this interpretation of underlines marking points of interaction also works for let-
expressions: a non-simple command

let𝑥n ∶= 𝑡n in 𝑐n
is an interaction between a term 𝑡n and an evaluation context𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n = let𝑥n ∶= ◽ in 𝑐n

55

I. Pure call-by-name calculi

Reducing let-expressions

Note that
let𝑥n ∶= 𝑣n in 𝑐n and (𝜆𝑥n.𝑐n)𝑣n

do not reduce in the same way. Indeed, while (𝜆𝑥n.𝑐n)𝑣n can be reduced under an arbitrary
stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, let𝑥n ∶= 𝑡n in 𝑐n can not:𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n.𝑐n)𝑣n → defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) for any 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, while𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n let defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) only for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽
(and for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n ≠ ◽, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n is not even in the syntax). This somewhat surprising
weakness of let compensates for the strength of defer (and hence of the 𝜇 reduction) on
let-expressions:

defer((𝜆𝑥n.𝑐n)𝑣n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) = (𝜆𝑥n.defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n))𝑣n only for 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽, while
defer(let𝑥n ∶= 𝑡n in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) = let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) for any 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n

Indeed, the expected reduction of a let-expression under a stack can be simulated via𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n 𝜇 let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) let defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)
The difference between let𝑥n ∶= 𝑡n in 𝑐n and (𝜆𝑥n.𝑐n)𝑣n is therefore that defer understands
that let𝑥n ∶= 𝑡n in 𝑐n will reduce without interacting with the surrounding stack, but has no
such knowledge for (𝜆𝑥n.𝑐n)𝑣n5. This implies that 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n let𝑥n ∶= 𝑡n in 𝑐n is 𝜇 reducible, and
since we want to be deterministic (and 𝑙1 and 𝑙2 to have disjoint domains for 𝑙1 ≠ 𝑙2), it
can not be let-reducible, which is why let is weaker than expected.

Undesirable strong reductions

In this naive version of 𝜆→n , the strong reduction 6 is somewhat unsatisfying because we
do not have 𝑐n 𝑐′n, and𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n is in the syntax} ⇒ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n
but only 𝑐n 𝑐′n,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n is in the syntax, and𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n is in the syntax

⎫⎬⎭ ⇒ 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n
5Note that 𝜇 sometimes failing to recognize that a termwill not interactwith the surrounding stack is perfectly
reasonable: “interacting with the surrounding stack” is an undecidable property (e.g. because a closed term
interacts with the surrounding stack if and only if it terminates), so that 𝜇 is necessarily an approximation.

6The strong reduction can be defined either by

𝓉 𝓉′ ≝ ∃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n, ∃𝑐n, ∃𝑐′n, ⎧⎨⎩
𝑐n 𝑐′n,𝓉 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n , and𝓉′ = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n

or equivalently by the expected inferrence rules.

56

I. Pure call-by-name calculi

For example, the reduction𝑐n = (let𝑥n ∶= 𝑡n in𝑢n)𝑣n 𝜇 let𝑥n ∶= 𝑡n in𝑢n𝑣n = 𝑐′n
is not preserved under 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n = ◽𝑤n because (let𝑥n ∶= 𝑡n in𝑢n𝑣n)𝑤n is not in the syntax:𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐n 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘n 𝑐′n= =(◽𝑤n) (let𝑥n ∶= 𝑡n in𝑢n)𝑣n (◽𝑤n) let𝑥n ∶= 𝑡n in𝑢n𝑣n= =(let𝑥n ∶= 𝑡n in𝑢n)𝑣n𝑤n 𝜇 (let𝑥n ∶= 𝑡n in𝑢n𝑣n)𝑤n
This is due to a reduction 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n 𝜇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n)
only being valid when there is no potential interaction between defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n , because
if there is, the the syntax requires making it with ⋅ , i.e. writing 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) . In other
words, since 𝜇 erases ⋅ , it must ensure that there is no potential interaction at that ⋅ by
deferring the whole stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n .
This can also be understood as stemming from the fact that simple commands are not

stable under 𝜇: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n is a simple command and can hence be plugged in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n while remaining
within the syntax, while defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) is simple only if 𝑐n is, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n) is therefore in
the syntax only if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n = ◽ or 𝑐n is simple.
I.6.3. The 𝜆→n calculus

Explicit command boundaries

The pure untyped call-by-name 𝜆-calculus with focus 𝜆→n is defined in Figure I.6.4. It deals
with the aforementioned quirks of the strong reduction by explicitlymarking the top of com-
mands with a constructor comn, i.e. replacing𝑐n ⩴ 𝑐̊n by 𝑐n ⩴ comn(𝑐̊n),
and restricting by only allowing it to reduce objects that have comn above them. This pre-
vents the problematic 𝜇 reductions because there is no comn around 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n in comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n),
and it can therefore not be reduced on its own. Adding the comn yields an invalid term
comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n)), unless we also add a ⋅ , which yields comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n 𝑐n)) for which
the problematic is disallowed by the extra ⋅ (and comn).
The need for comn was to be expected. Indeed, the calculus 𝜆→n was built as an outside-out

representation of Li→n (defined in the next section), and commands ⟨𝑡n∣𝑒n⟩ of Li→n have both
an explicit marker | for the point of potential interaction between 𝑡n and 𝑒n; and an explicit
marker ⟨ ⋅ ⟩ for the top of the command. It therefore makes sense for commands comn(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑡n)
of 𝜆→n to have both an explicit marker ⋅ for the point of interaction between 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n and 𝑡n; and
an explicit marker comn for the top of the command.

57

I. Pure call-by-name calculi

Figure I.6.4: The pure call-by-name 𝜆-calculus with focus 𝜆→n
Figure I.6.4.a: Syntax

Expressions / values: Stacks / simple stacks:𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣ctotn(𝑐n) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, 𝑠̊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 ⩴ ◽∣𝜆𝑥n.𝑐n ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝑡n
Commands: Incomplete simple commands:𝑐n ⩴ comn(𝑐̊n) 𝑐̊n ⩴ instkn(𝑡n)∣comn(let𝑥n ∶= 𝑡n in 𝑐n) ∣𝑐̊n𝑡n

Figure I.6.4.b: Notations
Evaluation contexts: Simple commands: Terms:𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n instkn(◽) 𝑐simplen ⩴ comn(𝑐̊n) 𝓉 ⩴ 𝑡n∣𝑐̊n∣𝑐n∣ let𝑥n ∶= ◽ in 𝑐n

Figure I.6.4.c: Deferred stacks

defer(𝑐̊n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐̊n
defer(let𝑥n ∶= 𝑡n in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ let𝑥n ∶= 𝑡n in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

Figure I.6.4.d: Deferred stacks (in evaluation contexts)

defer(𝑠̊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑠̊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛
defer(let𝑥n ∶= ◽ in 𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) ≝ let𝑥n ∶= ◽ in defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)

Figure I.6.4.e: Operational reduction

comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑐n) 𝜇 defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)
comn(let𝑥n ∶= 𝑡n in 𝑐n) let 𝑐n[𝑡n∕𝑥n]

comn(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n (𝜆𝑥n.𝑐n)𝑡n) → defer(𝑐n[𝑡n∕𝑥n], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n)≝ 𝜇 ∪ let ∪ →
Figure I.6.4.f: Top-level 𝜂-expansion𝑡n 𝜇 ctotn(𝑡n)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n let let𝑥n ∶= ◽ in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑥n if 𝑥n fresh w.r.t. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n𝑡n → 𝜆𝑥n.𝑡n𝑥n if 𝑥n fresh w.r.t. 𝑡n≝ 𝜇 ∪ let ∪ →

58

I. Pure call-by-name calculi

Coercions

In addition to explicit command boundaries comn, 𝜆→n has an explicit coercion ctotn from
command 𝑐n to expessions 𝑡n (hence the name 𝑐to𝑡) and an explicit marker instkn around
underlines ⋅ that will be placed within a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n. Both comn and instkn are often left im-
plicit because the former is only relevant when definining , and the latter is only relevant
when studying translations between 𝜆→n and Li→n . In particular, we will often denote simple
commands by 𝑐̊n instead of comn(𝑐̊n). While ctotn could also often be left implicit, not distin-
guishing the command 𝑐n from the expression ctotn(𝑐n)may lead to some confusion, and we
therefore keep ctotn explicit for the sake of clarity.
Evaluation contexts

Evaluation contexts 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n form a superset of stacks that are not required to define 𝜆→n . Com-
mands are exactly terms of the shape comn(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑡n) (see), and evaluation contexts are there-
fore useful whenever this inside-out description of commands is, e.g. when studying at
translations between 𝜆→n and Li→n .
The difference between a stack and an evaluation context is that an a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n can be

deferred so that something else is computed first, while a non-stack evaluation context 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n
can not. For example, placing 𝑡n = let𝑥n ∶= 𝑣n in𝑥n under 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n = ◽𝑤n results in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n being
moved 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑡n = (let𝑥n ∶= 𝑣n in𝑥n)𝑤n 𝜇 let𝑥n ∶= 𝑣n in𝑥n𝑤n = let𝑥n ∶= 𝑣n in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑥n
while placing it inside 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n = let 𝑦n ∶= ◽ in 𝑐n results in this let-expressiong being evaluated𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n 𝑡n = let 𝑦n ∶= (let𝑥n ∶= 𝑣n in𝑥n) in 𝑐n let 𝑐n[let𝑥n ∶= 𝑣n in𝑥n∕𝑦n] = 𝑐n[𝑡n∕𝑦n]
Disubstitution

Disubstitutions of 𝜆→n are defined just like in 𝜆→n , with plugging replaced by defer:

Definition I.6.1

A disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) composed of a substitution 𝜎 and a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n.
The action of a disubstitution 𝜑 = (𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) on commands (resp. evaluations contexts)
is defined by 𝑐n[𝜑] ≝ defer(𝑐n[𝜎], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) (resp. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n ≝ defer(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n))
and its action on expressionsa is defined by𝑡n[𝜑] ≝ 𝑡n[𝜎]
The composition 𝜑1[𝜑2] of two disubstitutions is defined by(𝜎1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n)[𝜎2, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n] ≝ (𝜎1[𝜎2], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n[𝜎2])
aSee .

59

I. Pure call-by-name calculi

Fact I.6.2

The set of disubstitutions 𝜑n has a monoid structure(𝜑n, ⚪, (Id𝒱 , ◽)) where 𝜑2 ⚪ 𝜑1 ≝ 𝜑1[𝜑2]
and this monoid acts on commands, expressions, and evaluation contexts via𝜑 ⚫ 𝓉 ≝ 𝓉[𝜑]
In particular, defer is associative: for any command 𝑐n and stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n , we have

defer(defer(𝑐n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n) = defer(𝑐n, defer(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1n , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2n))
Proof

Reductions

We write for the contextual closure of , for the contextual closure of , for ∪
and for ∪ (i.e. ∪ ∪ ∪). The 𝜂-expansion for functions is the usual one
with a conversion - from expressions to commands added, and the other 𝜂-expansions are
easier to understand in the Li→n where they look natural, and can safely be ignored for now.
The reductions have the properties announced in Figure ?? (see Section .2 for details).

60

I. Pure call-by-name calculi

I.7. Translations between 𝛌→N and 𝜆→n

61

I. Pure call-by-name calculi

I.8. A pure call-by-name intuitionistic L calculus: Li→n
In this section, we recall the intuitionistic call-by-name fragments of 𝜆𝜇𝜇 [CurHer00], which
we call Li→n .
I.8.1. From the M→N abstract machine to the Li→n calculus

Decomposing the strong reduction

Just like in 𝜆→N, the strong reduction is unsatisfying in M→N because it can not be decom-
posed like can, as shown in Figure I.8.1a. The naive Li→n calculus defined in Figure I.8.2
fixes this, as shown in Figure I.8.1b (where 𝐼n = 𝜆𝑦n.⟨𝑦n∣⋆n⟩), in the same way that 𝜆→n did:
by representing the body of 𝜆-abstraction by configurations / commands.
Pattern matching stacks

In the actual simple fragment of the Li→n calculus described in Figure I.8.3, the stack⋆n is
thought of as being a stack variable, and 𝜆-abstractions 𝜆𝑥n.𝑐n are denoted by 𝜇(𝑥n ∙⋆n).𝑐n to
emphasize that⋆n is bound in 𝜇(𝑥n ∙⋆n).𝑐n, and hence that the disubstitution⋆n ↦ 𝑠n acts
trivially on 𝜇(𝑥n ∙⋆n).𝑐n: (𝜇(𝑥n ∙⋆n).𝑐n)[𝑠n∕⋆n] = 𝜇(𝑥n ∙⋆n).𝑐n
This allows for a more succinct description of the → reduction⟨𝜇(𝑥n ∙⋆n).𝑐n∣𝑣n ∙ 𝑠n⟩ → 𝑐n[𝑣n∕𝑥n, 𝑠n∕⋆n]
which can be though of as pattern-maching the stack 𝑣n ∙ 𝑠n against the stack pattern 𝑥n ∙⋆n
and applying the unifier 𝑥n ↦ 𝑣n,⋆n ↦ 𝑠n to the command 𝑐n.
Stack variable names

Note that just like the same name 𝑥 can be used for several unrelated value variables 𝑥n
in the same expression, the name⋆ can be used for several unrelated stack variables. For
example, 𝐼n𝐼n = (𝜆𝑥n.𝑥n)(𝜆𝑥n.𝑥n)
stands for (𝜆𝑥n1.𝑥n1)(𝜆𝑥n2.𝑥n2)
and similarly ⟨𝐼n∣𝐼n ∙⋆n⟩ = ⟨𝜇(𝑥n ∙⋆n).⟨𝑥n∣⋆n⟩∣(𝜇(𝑥n ∙⋆n).⟨𝑥n∣⋆n⟩) ∙⋆n⟩
stands for ⟨𝜇(𝑥n1 ∙⋆1n).⟨𝑥n1∣⋆1n⟩∣(𝜇(𝑥n2 ∙⋆2n).⟨𝑥n2∣⋆2n⟩) ∙⋆0n⟩
The difference is that we have infinitely many value variables available, and can therefore
always rename the bound ones to avoid such name clashes, but only one stack variable in
Li→n and can therefore not avoid such clashes. The stack variable ⋆n can alternatively be
thought of as being the 0 de Bruijn index for stack variables. The difference between the
[CurHer00] “The duality of computation”, Curien and Herbelin, 2000

62

I. Pure call-by-name calculi

Figure I.8.1: Example of strong reduction in subterms of abstract machines

Figure I.8.1.a: Example in M→N⟨(𝜆𝑥N.𝐼N𝑊N)𝑉N∣⋆N⟩ m ⟨𝜆𝑥N.𝐼N𝑊N∣𝑉N ∙⋆N⟩ → ⟨𝐼N𝑊N[𝑉N∕𝑥N]∣⋆N⟩
m⟨𝐼N∣𝑊N[𝑉N∕𝑥N] ∙⋆N⟩→⟨(𝜆𝑥n.⟨𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝑊N[𝑉N∕𝑥N]∣⋆N⟩

Figure I.8.1.b: Example in naive Li→n⟨(𝜆𝑥n.⟨𝐼n𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝐼n𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n𝑤n[𝑣n∕𝑥n]∣⋆⟩

m m m⟨(𝜆𝑥n.⟨𝐼n∣𝑤n ∙⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝐼n∣𝑤n ∙⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n∣𝑤n[𝑣n∕𝑥n] ∙⋆n⟩
→ → →⟨(𝜆𝑥n.⟨𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ m ⟨𝜆𝑥n.⟨𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝑤n[𝑣n∕𝑥n]∣⋆n⟩

Figure I.8.1.c: Example in Li→n⟨(𝜇(𝑥n ∙⋆n).⟨𝐼n𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ 𝜇 ⟨𝜇(𝑥n ∙⋆n).⟨𝐼n𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n𝑤n[𝑣n∕𝑥n]∣⋆⟩
𝜇 𝜇 𝜇⟨(𝜇(𝑥n ∙⋆n).⟨𝐼n∣𝑤n ∙⋆n⟩)𝑣n∣⋆n⟩ 𝜇 ⟨𝜇(𝑥n ∙⋆n).⟨𝐼n∣𝑤n ∙⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝐼n∣𝑤n[𝑣n∕𝑥n] ∙⋆n⟩

→ → →⟨(𝜇(𝑥n ∙⋆n).⟨𝑤n∣⋆n⟩)𝑣n∣⋆n⟩ 𝜇 ⟨𝜇(𝑥n ∙⋆n).⟨𝑤n∣⋆n⟩∣𝑣n ∙⋆n⟩ → ⟨𝑤n[𝑣n∕𝑥n]∣⋆n⟩
two interpretations is only relevant when looking at the inclusion of Li→n into L→n , and will
be discussed in Section I.10.

Binding the stack variable

Since we think of⋆n as a variable, one can add a binder 𝜇⋆n.𝑐n for it, with the reduction⟨𝜇⋆n.𝑐n∣𝑠n⟩ 𝜇 𝑐n[𝑠n∕⋆n]
and define 𝑡n𝑢n as a notation for 𝜇⋆n.⟨𝑡n∣𝑢n ∙⋆n⟩. Indeed, with this notation, the reduction⟨𝑡n𝑢n∣𝑠n⟩ m ⟨𝑡n∣𝑢n ∙ 𝑠n⟩

63

I. Pure call-by-name calculi

Figure I.8.2: The simple fragment of the naive Li→n calculus
Figure I.8.2.a: Syntax (naive)

Terms / values: Stacks:𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝑡n𝑢n 𝑠n ⩴⋆n∣𝜆𝑥n.𝑐n ∣𝑡n ∙ 𝑠n
Commands:𝑐n ⩴ ⟨𝑡n∣𝑠n⟩

Figure I.8.2.b: Operational reduction (naive)⟨𝑡n𝑢n∣𝑠n⟩ m ⟨𝑡n∣𝑢n ∙ 𝑠n⟩⟨𝜆𝑥n.⟨𝑡n∣ # ”𝑤𝑛 ∙⋆n⟩∣𝑣0n ∙ #”𝑣𝑛 ∙⋆n⟩ → ⟨𝑡n[𝑣0n∕𝑥n]∣ # ”𝑤𝑛[𝑣0n∕𝑥n] ∙ #”𝑣𝑛 ∙⋆n⟩≝ m ∪ →

Figure I.8.3: The simple fragment of the Li→n calculus
Figure I.8.3.a: Syntax

Terms / values: Stacks:𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝜇⋆n.𝑐n 𝑠n ⩴⋆n∣𝜇(𝑥n ∙⋆n).𝑐n ∣𝑡n ∙ 𝑠n
Commands:𝑐n ⩴ ⟨𝑡n∣𝑠n⟩

Figure I.8.3.b: Operational reduction⟨𝜇⋆n.𝑐n∣𝑠n⟩ 𝜇 𝑐n[𝑠n∕⋆n]⟨𝜇(𝑥n ∙⋆n).𝑐n∣𝑣n ∙ 𝑠n⟩ → 𝑐n[𝑣n∕𝑥n, 𝑠n∕⋆n]≝ 𝜇 ∪ →

is a special case of 𝜇: ⟨𝑡n𝑢n∣𝑠n⟩ = ⟨𝜇⋆n.⟨𝑡n∣𝑢n ∙⋆n⟩∣𝑠n⟩ 𝜇 ⟨𝑡n∣𝑢n ∙ 𝑠n⟩

64

I. Pure call-by-name calculi

Remark I.8.1

For this particular calculus, removing 𝑡n𝑢n from the syntax and adding 𝜇⋆n.𝑐n does
not change the calculus much. However, in L calculi with more constructors, more
expressions can be expressed with 𝜇⋆n.𝑐n, so that the calculus with 𝜇⋆n.𝑐n ends up
being simpler. More precisely, without 𝜇⋆n.𝑐n, every stack constructor (e.g. 𝑢n ∙ 𝑠n)
needs to have an associated expression constructor (e.g. 𝑡n𝑢n), while with 𝜇⋆n.𝑐n, the
expression constructors can be defined as notation (e.g. 𝑡n𝑢n ntn= 𝜇⋆n.⟨𝑡n∣𝑠n ∙⋆n⟩). The
gain is therefore linear in the number of stack constructors. Here, nothing is gained
because there is only one stack constructor, but for larger calculi such as those in
Chapter IV, the gain is non-negligible.

I.8.2. The Li→n calculus

Let-expressions and 𝜇
The full Li→n calculus, described in Figure I.8.4, is its simple fragment extended by com-
mands ⟨𝑡n∣𝜇𝑥n.𝑐n⟩ that represent let-expressions let𝑥n ∶= 𝑡n in 𝑐n (and 𝜇𝑥n.𝑐n that represents
let𝑥n ∶= ◽ in 𝑐n). Their reduction is exactly what one would expect:⟨𝑡n∣𝜇𝑥n.𝑐n⟩ 𝜇 𝑐n[𝑡n∕𝑥n]
Note that commands could be defined without refering to evaluationg contexts 𝑒n:𝑐n ⩴ ⟨𝑡n∣𝑠n⟩∣⟨𝑡n∣𝜇𝑥n.𝑐n⟩
Indeed, 𝜇𝑥n.𝑐n can only appear inside contexts of the shape ⟨𝑡n∣◽⟩. It is nevertheless useful to
have 𝜇𝑥n.𝑐n be a term on its own because it makes the calculus more symmetric and makes
expressing some definitions nicer (e.g. 𝜂-expansion).
Coercions

Disubstitutions

Disubstitutions have the properties announced in (see Section .1 for details).

Reductions

The reductions have the properties announced in Figure ?? (see Section .2 for details).

65

I. Pure call-by-name calculi

Figure I.8.4: The Li→n calculus
Figure I.8.4.a: Syntax

Terms / values: Stacks:𝑡n, 𝑢n, 𝑣n, 𝑤n ⩴ 𝑥n∣𝜇⋆n.𝑐n 𝑠n ⩴⋆n∣𝜇(𝑥n ∙⋆n).𝑐n ∣𝑡n ∙ 𝑠n
Commands: Evaluation contexts:𝑐n ⩴ ⟨𝑡n∣𝑒n⟩ 𝑒n ⩴ stkn(𝑠n)∣𝜇𝑥n.𝑐n

Figure I.8.4.b: Notations 𝑡n𝑢n ntn= 𝜇⋆n.⟨𝑡n∣𝑢n ∙⋆n⟩
Figure I.8.4.c: Operational reduction⟨𝜇⋆n.𝑐n∣𝑠n⟩ 𝜇 𝑐n[𝑠n∕⋆n]⟨𝑡n∣𝜇𝑥n.𝑐n⟩ 𝜇 𝑐n[𝑡n∕𝑥n]⟨𝜇(𝑥n ∙⋆n).𝑐n∣𝑣n ∙ 𝑠n⟩ → 𝑐n[𝑣n∕𝑥n, 𝑠n∕⋆n]≝ 𝜇 ∪ 𝜇 ∪ →
Figure I.8.4.d: 𝜂-expansion𝑡n 𝜇 𝜇⋆n.⟨𝑡n∣⋆n⟩𝑒n let 𝜇𝑥n.⟨𝑥n∣𝑒n⟩ if 𝑥n fresh w.r.t. 𝑒n𝑡n → 𝜇(𝑥n ∙⋆n).⟨𝑡n∣𝑥n ∙⋆n⟩ if 𝑥n fresh w.r.t. 𝑡n≝ 𝜇 ∪ 𝜇 ∪ →

66

I. Pure call-by-name calculi

I.9. Equivalence between 𝜆→n and Li→n

67

I. Pure call-by-name calculi

I.10. A pure call-by-name classical L calculus: L→n

68

I. Pure call-by-name calculi

I.11. Simply-typed L calculi

69

II. Pure call-by-value calculi

70

II. Pure call-by-value calculi

II.1. A pure call-by-value 𝜆-calculus: 𝛌→V

71

II. Pure call-by-value calculi

II.2. A pure call-by-value 𝜆-calculus with focus: 𝜆→v

72

II. Pure call-by-value calculi

II.3. A pure call-by-value intuitionistic L calculus: Li→v

73

II. Pure call-by-value calculi

II.4. A pure call-by-value classical L calculus: L→v

74

Part B.

Untyped polarized calculi

75

Introduction

Introduction The 𝜆-calculus [Bar84] is a well-known abstraction used to study pro-
gramming languages and has two main evaluation strategies: call-by-name (CBN) and call-
by-value (CBV). A study of their typed models lead to Call-by-push-value (CBPV) [Lev04;
Lev06], a calculus that decomposes and subsumes both CBV and CBN. For quite some time,
the study of CBPVwas largely focused on its (denotational) semantics in a typed setting, but
recently the rewriting theory of the pure implicative fragment of untyped CBPV has been
studied in an alternative syntax called the Bang calculus [Ehr16; EhrGue16; BucKesRío-
Vis20].
On of the main difficulties is that, just like in call-by-value [AccGue16], the usual way

of defining the operational reduction yields an ill-behaved reduction: there are expressions
that should diverge but are reducible by neither the operational reduction nor its contextual
closure1. Neither of the two solutions to this problem that were put forward in the Bang
calculus seem to scale well to all of CBPV2. The Li→&⇑⊗⊕⇓p -calculus (also called3 LJ𝜂𝑝 [Cur-
FioMun16] or Lint [MunSch15]) also solves this problem thanks to the 𝜇-reductions that
plays the same role as the 𝜎-reductions in [EhrGue16], but can be described far more suc-
cinctly. The Li→&⇑⊗⊕⇓p -calculus is related to the 𝛌→&⇑⊗⊕⇓P -calculus, our “completed” variant of
CBPV, and hence also to CBPV.
Another difficulty is the presence of clashes, i.e. interactions between constructors and /

or constructors that were notmeans to interact. Clashes between positive and negative parts
of the calculus can be removed simply by restricting the syntax in a way that loses no expres-
sivity, and are already absent fromLi→&⇑⊗⊕⇓p . Clashes between two positive parts or two nega-
tive parts however are inherent to the Li→&⇑⊗⊕⇓p -calculus. In many well-known dynamically-
typed programming languages, it is possible to write pattern-matches that match over con-
structors of several types (by first matching on the type, and then on the constructors within
that type). This super-pattern-match can handle any positive expression (i.e. anything ex-
cept a function in these programming languages) without generating a clash (i.e. a runtime
type error). By dualizing this idea in Li→&⇑⊗⊕⇓p , we get negative expressions that can han-

1For example, 𝑇 = (let𝑥 ∶= 𝑦𝐼 in 𝜆_.𝛿)𝛿 with 𝛿 = 𝜆𝑧.𝑧𝑧 is both -normal and -normal, but 𝑇[𝜎] -
diverges for any closed substitution 𝜎.

2The number of necessary 𝜎-reductions grows quadratically in the size of the calculus, and the “reduction at
a distance” paradigm seems to break when trying to generalize it to sums.

3Up to minor differences.
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984
[Lev04] Call-By-Push-Value: A Functional/Imperative Synthesis, Levy, 2004
[Lev06] “Call-by-push-value: Decomposing call-by-value and call-by-name”, Levy, 2006
[Ehr16] “Call-By-Push-Value from a Linear Logic Point of View”, Ehrhard, 2016
[EhrGue16] “The Bang Calculus: An Untyped Lambda-Calculus Generalizing Call-by-Name and Call-by-
Value”, Ehrhard and Guerrieri, 2016
[BucKesRíoVis20] “The Bang Calculus Revisited”, Bucciarelli et al., 2020
[AccGue16] “Open Call-by-Value”, Accattoli and Guerrieri, 2016
[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016
[MunSch15] “Polarised Intermediate Representation of Lambda Calculus with Sums”, Munch-Maccagnoni
and Scherer, 2015

76

dle any negative stack4. By replacing all pattern-matches and negative expressions by this
super-pattern-match and its dual, we get a calculus Li𝒫𝒩p with no clashes in which Li→&⇑⊗⊕⇓p
can be embedded. While 𝛌→&⇑⊗⊕⇓P and Li→&⇑⊗⊕⇓p are clearly the right calculi in a typed setting,
there is a case to be made for 𝛌𝒫𝒩P and Li𝒫𝒩p being the right calculi in the untyped setting. We
contribute a first piece of evidence to that case in Part C by showing that there is a (relatively)
simple operational characterization of solvability in Li𝒫𝒩p , but that any such characterization
in Li→&⇑⊗⊕⇓p would be fairly complex.

Content

Contribution

4In 𝛌→&⇑⊗⊕⇓P , this implies having expressions 𝑇− that can act both as a function 𝜆𝑥+.𝑈1− and as a negative pair(𝑈2−&𝑈3−), i.e. such that 𝑇−𝑉+ 𝑈1−[𝑉+∕𝑥+] and 𝜋𝑖(𝑇−) 𝑈𝑖+1− .

77

III. Pure polarized calculi

78

III. Pure polarized calculi

III.1. Relative expresiveness of call-by-name and
call-by-value

The fundamental distinction between call-by-name and call-by-value is how let-expressions
are reduced. In call-by-name a let-expression let𝑥N ∶= 𝑇N in𝑈N is immediately reduced to𝑈N[𝑇N∕𝑥N] (i.e. any 𝑇N is considered to be a value 𝑉N), whereas in call-by-value the expres-
sion 𝑇V is first reduced until is reaches a value𝑊V (and if it never does, i.e. 𝑇V diverges, then
so does let𝑥V ∶= 𝑇V in𝑈V) and only then does the substitution happen.

let𝑥N ∶= 𝑇N in𝑈N = let𝑥N ∶= 𝑉N in𝑈N 𝑈N[𝑉N∕𝑥N]
let𝑥V ∶= 𝑇V in𝑈V ∗ let𝑥V ∶= 𝑊V in𝑈V 𝑈V[𝑊V∕𝑥V]

With that in mind, we now look at how 𝛌→N and 𝛌→V can be embedded in each other in
direct style (i.e. not in continuation-passing style). In Section III.1.1, we give an embedding
of 𝛌→N into a slight extension of 𝛌→V called 𝛌→⇑V and in Section III.1.2, we give an embedding
of 𝛌→V into a slight extension of 𝛌→N called 𝛌→⇓N . Since there is a translation from 𝛌→⇑V to 𝛌→V , we
could have embedded 𝛌→N into 𝛌→V directly, but introducing 𝛌→⇑V makes the translation easier
to understand, and the similarity between both translation more apparent.
The goal of this section is only to give some intuition in what shifts represent, and not

to prove any formal result. In Section III.2, formal results are given for similar translations
from 𝛌→N and 𝛌→V to 𝛌→⇑⇓P that refine the translations of this section.

III.1.1. Embedding call-by-name in call-by-value

The 𝛌→⇑V -calculus

The extension of 𝛌→V , called 𝛌→⇑V , is defined in Figure III.1.1. Given a computation 𝑇V, we
add freezeV(𝑇V) which represents the computation 𝑇V paused:

freezeV(𝑇V)
The computation can later be resumed with unfreezeV:

unfreezeV(freezeV(𝑇V)) 𝑇V
Since freezeV(𝑇V) is a value, we can now pass “paused” computations to functions, and let
these functions resume the computation if needed by using unfreezeV . In a typed calculus,
freezeV would be the constructor of a type ⇑𝐴V called upshift, and unfreezeV its destructor,
as shown in Figure III.1.1.

Embedding 𝛌→⇑V in 𝛌→V
Both freezeV and unfreezeV can actually be encoded in 𝛌→V so that there is a translation from𝛌→⇑V to 𝛌→V . The idea is that we can take freezeV(𝑇V) = 𝜆𝑥V .𝑇V and unfreezeV(𝑉V) = 𝑉V𝑊V
where 𝑥V is an arbitrary fresh variable, and𝑊V an arbitrary value. The reduction

unfreezeV(freezeV(𝑇V)) 𝑇V
then becomes (𝜆_V .𝑇V)𝑊V 𝑇V

79

III. Pure polarized calculi

Figure III.1.1: The call-by-value 𝜆-calculus with upshift 𝛌→⇑V
Figure III.1.1.a: Syntax

Values:𝑉V,𝑊V ⩴ 𝑥V∣𝜆𝑥V .𝑇V∣freezeV(𝑇V)
Terms:𝑇V, 𝑈V ⩴ valV(𝑉V)∣ let𝑥V ∶= 𝑇V in𝑈V∣𝑇V𝑉V∣unfreezeV(𝑇V)

Figure III.1.1.b: Top-level reduction(𝜆𝑥V .𝑇V)𝑉V let 𝑇V[𝑉V∕𝑥V]
let𝑥V ∶= 𝑉V in𝑇V → 𝑇V[𝑉V∕𝑥V]

unfreezeV(freezeV(𝑇V)) ⇑ 𝑇V≝ let ∪ → ∪ ⇑
Figure III.1.1.c: Operational contexts

Operational contexts:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂V ⩴ ◽∣ let𝑥V ∶= 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂V in𝑇V∣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂V𝑉V∣unfreezeV(𝑇V)
Figure III.1.1.d: Typing rules

… Γ ⊢ 𝑇V∶𝐴VΓ ⊢ freezeV(𝑇V)∶ ⇑𝐴V
Γ ⊢ 𝑇V∶ ⇑𝐴VΓ ⊢ unfreezeV(𝑇V)∶𝐴V

80

III. Pure polarized calculi

In call-by-value programming languages that have a 1 or unit type with a unique inhabitant()V, it is common to take freezeV(𝑇V) = 𝜆()V .𝑇V and unfreezeV(𝑉V) = 𝑉v()V which works
for the same reasons, but has two additional advantages: there are no arbitrary choices for
the variable 𝑥v and the value 𝑊v , and the fact that 𝑥v is not free in 𝑇v is easier to see. In
expressions of types, this means that we can encode ⇑𝐴V as ⇑𝐴V = 1→𝑉 𝐴V (which is how⇑𝐴 is defined in [CurFioMun16]). The definition operational reduction and contexts can be
understood through this encoding: we reduce under unfreezeV(◽) because we reduce under◽() and we do not reduce under freezeV(◽) because we do not reduce under 𝜆()V .◽.
Embedding 𝛌→N in 𝛌→⇑V
Figure III.1.2: Translations from 𝛌→N to 𝛌→⇑V⋅ V ∶ 𝐓N → 𝐕V𝑥NV ≝ 𝑥V𝜆𝑥N.𝑇NV ≝ freezeV(𝜆𝑥V .unfreezeV(𝑇NV))𝑇N𝑈NV ≝ freezeV(unfreezeV(𝑇NV)𝑈NV)

let𝑥N ∶= 𝑇N in𝑈NV ≝ freezeV(let𝑥V ∶= 𝑇NV in unfreezeV(𝑈NV))
The translation ⋅ V described in Figure III.1.2 embeds 𝛌→N into 𝛌→⇑V by freezing all compu-

tations, and only unfreezing themwhen they are on the left of an application. The evaluation
of an expression 𝑇N is simulated by the evaluation of unfreezeV(𝑇NV), e.g.

unfreeze
V((𝜆𝑥N.𝑇N)𝑈NV) = unfreeze

V(freeze
V(unfreeze

V(freeze
V(𝜆𝑥V .unfreeze

V(𝑇NV)))𝑈NV))⇑ unfreeze
V(freeze

V(𝜆𝑥V .unfreeze
V(𝑇NV)))𝑈NV⇑ (𝜆𝑥V .unfreeze

V(𝑇NV))𝑈NV→ unfreeze
V(𝑇NV[𝑈NV∕𝑥V])= unfreeze
V(𝑇N[𝑈N∕𝑥N]V)

and
unfreeze

V(let𝑥N ∶= 𝑇N in𝑈NV) = unfreeze
V(freeze

V(let𝑥V ∶= 𝑇NV in unfreeze
V(𝑈NV)))⇑ let𝑥V ∶= 𝑇NV in unfreeze

V(𝑈NV)
let unfreeze

V(𝑈NV[𝑇NV∕𝑥V])= unfreeze
V(𝑈N[𝑇N∕𝑥N]V)

[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

81

III. Pure polarized calculi

where the equalities 𝑇N[𝑈N∕𝑥N]V = 𝑇NV[𝑈NV∕𝑥V]
come from ⋅ V mapping variables 𝑥N to variables 𝑥V .
III.1.2. Embedding call-by-value in call-by-name

The 𝛌→⇓N -calculus

The extension of 𝛌→N, called 𝛌→⇓V , is described in Figure III.1.3. The idea is that in 𝛌→N there is
no way of distinguishing a value 𝜆𝑥N.𝑇N from an arbitrary expression 𝑈N because𝑈N ≈𝜂 𝜆𝑥N.𝑈N𝑥N
and two 𝜂-convertible expressions can not be distinguished. We therefore add a way to
“mark” an expression 𝑇N and a way of forcing evaluating to a “marked” expression:

boxN(𝑇N) and match 𝑇N with[boxN(𝑥N).𝑈N]
In a typed calculus, boxN would be the constructor of a type ⇓𝐴 called downshift, and
match 𝑇N with[boxN(𝑥N).𝑈N] its associated pattern-match, as shown in Figure III.1.3.
Note that the pattern-match can be used to define a destructor

unboxN(𝑇N) ntn= match 𝑇N with[boxN(𝑥N).𝑥N]
with the expected induced reduction

unboxN(boxN(𝑇N)) ⇓ 𝑇N
The destructor, however, can not be used to define the pattern-match. Indeed, while one
could try to define the pattern-match

match 𝑇N with[boxN(𝑥N).𝑥N] as let𝑥N ∶= unboxN(𝑇N) in𝑈N,
this would not work because the let-expression is call-by-name and will hence immediately
reduce to 𝑈N[unboxN(𝑇N)∕𝑥N] while the match would first reduce 𝑇N until it reaches an ex-
pression of the shape boxN(𝑇′N). Note that in a call-by-value calculus, the pattern-match could
be expressed using the destructor because let𝑥V ∶= unboxV(𝑇V) in𝑈V would also start by re-
ducing 𝑇v as expected.
Embedding 𝛌→⇓N in 𝛌→⊗N This boxN operator is not really common in programming lan-
guages but some other constructors are. For example, many calculi have pairs and the cor-
responding pattern match(𝑉N⊗𝑊N) and match 𝑇N with[(𝑥N⊗𝑦N).𝑈N]
with the reduction

match(𝑉N⊗𝑊N)with[(𝑥N⊗𝑦N).𝑈N] ⊗ 𝑈N[𝑉N∕𝑥N,𝑊N∕𝑦N]
TGiven those, constructor boxN(𝑇N) can then be encoded as (𝑇N⊗𝑉N)where𝑉N is an arbitrary
expression, and the match match 𝑇N with[boxN(𝑥N).𝑈N] by match 𝑇N with[(𝑥N⊗𝑦N).𝑈N] with𝑦N fresh. Just like when encoding freezeV(𝑇V) as 𝜆()V .𝑇V instead of 𝜆𝑥V .𝑇V, the intended
behavior becomes more apparent by replacing unused variables and values by ()N, so that
boxN(𝑇N) becomes (𝑇N⊗N()N) andmatch 𝑇N with[boxN(𝑥N).𝑈N] becomesmatch 𝑇N with[(𝑥N⊗()N).𝑈N].

82

III. Pure polarized calculi

Figure III.1.3: The 𝛌→⇓N calculus

Figure III.1.3.a: Syntax

Terms / values:𝑇N, 𝑈N, 𝑉N,𝑊N ⩴ 𝑥N∣ let𝑥N ∶= 𝑇N in𝑈N∣𝜆𝑥N.𝑇N∣𝑇N𝑈N∣boxN(𝑉N)∣match 𝑇N with[boxN(𝑥N).𝑈N]
Figure III.1.3.b: Top-level reduction

let𝑥N ∶= 𝑇N in𝑈N let 𝑈N[𝑇N∕𝑥N](𝜆𝑥N.𝑇N)𝑈N → 𝑇N[𝑈N∕𝑥N]
match boxN(𝑉N)with[boxN(𝑥N).𝑈N] ⇓ 𝑈N[𝑉N∕𝑥N]≝ let ∪ → ∪ ⇓

Figure III.1.3.c: Operational contexts

Operational contexts:𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N ⩴ ◽∣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N𝑇N∣match 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂N with[boxN(𝑥N).𝑈N]
Figure III.1.3.d: Notations and induced reductions

unboxN(𝑇+) ntn= match 𝑇N with[boxN(𝑥N).𝑥N] unboxN(boxN(𝑉N)) ⇓ 𝑉N
Figure III.1.3.e: Typing rules

… 𝛤 ⊢ 𝑇N∶𝐴N𝛤 ⊢ boxN(𝑇N)∶ ⇓𝐴N
𝛤 ⊢ 𝑇N∶ ⇓𝐴N 𝛤, 𝑥N ∶ 𝐴N ⊢ 𝑈N∶𝐵N𝛤 ⊢ match 𝑇N with[boxN(𝑥N).𝑈N]∶𝐵N

83

III. Pure polarized calculi

In a typed calculus, this would correspond to encoding ⇓𝐴N as ⇓𝐴N = 𝐴N ⊗ 1 (which is
how ⇓𝐴 is defined in [CurFioMun16]).

Figure III.1.4: Translation from 𝛌→V to 𝛌→⇓N
VN ⋅ ∶ 𝑉V → 𝑇N

VN𝑥V ≝ 𝑥N
VN𝜆𝑥V .𝑇V ≝ 𝜆𝑥N.VN𝑇V
TN ⋅ ∶ 𝑇V → 𝑇N

TNvalV(𝑉V) ≝ boxN(VN𝑉V)
TN𝑇V𝑉V ≝ unboxV(TN𝑇V)VN𝑉V

TNlet𝑥V ∶= 𝑇V in𝑈V ≝ matchT N𝑇V with[boxN(𝑥N).TN𝑇N]
Embedding 𝛌→V in 𝛌→⇓N The translation from 𝛌→V to 𝛌→⇓N is described in Figure III.1.4. The
idea is to translate values as expected with the VN ⋅ part of the translation, and then use boxN
tomark values, i.e. we translate valV by boxN. We then extract the actual valuewhen applying
it or substituting it for a variable. The evaluation of 𝑇V is simulated by the evaluation of TN𝑇V,
e.g.

TN(𝜆𝑥V .𝑇V)𝑉V TN𝑇V[𝑉V∕𝑥V]= =

unboxV(boxV(𝜆𝑥N.TN𝑇V))VN𝑉V ⇓ (𝜆𝑥N.TN𝑇V)VN𝑉V → TN𝑇V[VN𝑉V∕𝑥N]
and

TNlet𝑥V ∶= 𝑉V in𝑈V TN𝑈V[𝑉V∕𝑥V]= =

match boxN(VN𝑉V)with[boxN(𝑥N).TN𝑈N] ⇓ TN𝑈V[VN𝑉V∕𝑥N]
Oneway to think of this translation in thewell-typed fragment is that boxN and its pattern-

match provide a runnable monad [ErwRen04] as explained in [Mun13; Mun14]. A compu-
tation of type 𝐴 is represented as an element of M𝐴 = ⇓𝐴, and the monad M has an
extra operation run ∶ M𝐴 → 𝐴 that runs the computation, in addition to the usual ones:return ∶𝐴 → M𝐴 and bind ∶ M𝐴 → (𝐴 → M𝐵) → M𝐵. Here, return is boxN, bind (𝑇N, 𝑈N)
is match 𝑇N with[boxN(𝑥N).𝑈N𝑥N] and run is unboxN.

[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016
[ErwRen04] “Monadification of Functional Programs”, Erwig and Ren, 2004
[Mun13] “Syntax and Models of a non-Associative Composition of Programs and Proofs”, Munch-
Maccagnoni, 2013
[Mun14] “Models of a Non-Associative Composition”, Munch-Maccagnoni, 2014

84

III. Pure polarized calculi

III.2. A pure polarized 𝜆-calculus: 𝛌→⇑⇓P

85

III. Pure polarized calculi

III.3. A pure polarized 𝜆-calculus with focus: 𝜆→⇑⇓p

86

III. Pure polarized calculi

III.4. A pure polarized intuitionistic L-calculus: Li→⇑⇓p

87

III. Pure polarized calculi

III.5. A pure polarized classical L-calculus: L→⇑⇓p

88

IV. Polarized calculi with pairs and sums

89

IV. Polarized calculi with pairs and sums

IV.1. A polarized 𝜆-calculus with pairs and sums: 𝛌→&⇑⊗⊕⇓P

90

IV. Polarized calculi with pairs and sums

IV.2. CBPV as a subcalculus of 𝛌→&⇑⊗⊕⇓P
Call-by-push-value (CBPV) [Lev01; Lev04; Lev06] is a well-known calculus that subsumes
both call-by-name and call-by-value (including in the presence of side effects). It does so by
decomposing Moggi’s computation monad [Mog89] as an adjunction. Typed models of LJ𝜂𝑝
(i.e. of Li→&⇑⊗⊕⇓p) have been shown to generalize that of CBPV in [CurFioMun16]. In this
section, we explain how 𝛌→&⇑⊗⊕⇓p can be though of as being CBPV “completed” by adding
positive expressions, and in Section IV.6, we will explain how the CBPV abstract machine
relates to Li→&⇑⊗⊕⇓p .

IV.2.1. CBPV

Syntax

We recall the syntax of Call-by-Push-Value (CBPV) in Figure IV.2.1a1, with a few minor
differences: we only have binary sum and negative pairs (and not those of arbitrary finite
arity), we write (𝑉pv,𝑊pv)pv for a pair instead of ⟨𝑉,𝑊⟩, and we add pv subscripts and super-
scripts. In CBPV, return(𝑉pv) is sometimes called produce(𝑉pv), and application 𝑇pv𝑉pv and
(resp. projection 𝑇pv𝑖) are sometimes written in the reverse order 𝑉pv ‘𝑇pv (resp. 𝑖 ‘𝑇pv).

Operational semantics

We recall the big-step operational semantics of CBPV Figure IV.2.1d2, where𝑇pv ⇓ 𝑅pv stands
for “the computation 𝑇pv terminates and its result is 𝑅pv”. Results form a subset of the set of
computations, and their grammar is described in Figure IV.2.1c.

Complex values

Figure IV.2.1b3 extends CBPV with complex values such as pm𝑥pv as[(𝑦pv, 𝑧pv)pv .𝑦pv]. These
are usefulwhen looking at the semantics of CBPV, but not suitable for operational semantics
because “they detract from the rigid sequential nature of the language, because they can be
evaluated at any time” [Lev06]. Adding complex values has no effect on what computations
can be expressed (see Proposition 14 of [Lev06]), because CBPV with complex values can be
translated to CBPV without complex values (see Figure 13 of [Lev06]).

1This figure corresponds to figure 3.1 of [Lev01], figure 2.1 of [Lev04], figure 2 of [Lev06].
2This figure corresponds to Figure 4 of [Lev06].
3This figure corresponds to Figure 12 of [Lev06].
[Lev01] “Call-by-push-value”, Levy, 2001
[Lev04] Call-By-Push-Value: A Functional/Imperative Synthesis, Levy, 2004
[Lev06] “Call-by-push-value: Decomposing call-by-value and call-by-name”, Levy, 2006
[Mog89] “Computational Lambda-Calculus and Monads”, Moggi, 1989
[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

91

IV. Polarized calculi with pairs and sums

Figure IV.2.1: Call-by-Push-Value

Figure IV.2.1.a: Syntax

Values:𝑉pv ⩴ 𝑥pv∣(𝑉pv,𝑊pv)pv∣(1, 𝑉pv)pv∣(2, 𝑉pv)pv∣thunk(𝑇pv)
Expressions / computations:𝑇pv, 𝑈pv ⩴ 𝑉pv∣ let𝑥pv be𝑉pv.𝑈pv∣𝜆𝑥pv.𝑇pv∣𝑇pv𝑉pv∣𝜆pv[1.𝑇pv ∣ 2.𝑈pv]∣𝑇pv1∣𝑇pv2∣return(𝑉pv)∣𝑇pv to𝑥pv.𝑈pv∣pm𝑉pv as[(𝑥pv, 𝑦pv)pv .𝑈pv]∣pm𝑉pv as[(1, 𝑥pv1)pv .𝑈1

pv ∣ (2, 𝑥pv2)pv .𝑈2
pv]∣force(𝑉pv)

Figure IV.2.1.b: Syntax with complex values

Complex values:𝑉cv ,𝑊cv ⩴ 𝑥pv∣ let𝑥pv be𝑉cv .𝑊cv∣(𝑉cv ,𝑊cv)pv∣pm𝑉cv as[(𝑥pv, 𝑦pv)pv .𝑊cv]∣(1, 𝑉cv)pv∣(2, 𝑉cv)pv∣pm𝑉cv as[(1, 𝑥pv1)pv .𝑊1cv ∣ (2, 𝑥pv2)pv .𝑊2cv]∣thunk(𝑇cv)
Expressions / computations (with complex values):𝑇cv , 𝑈cv ⩴ (Same production rules as 𝑇pv

with all occurrences of 𝑉pv replaced by 𝑉cv .
See Figure IV.2.2.)

92

IV. Polarized calculi with pairs and sums

Figure IV.2.1.c: Syntax of results

Results:𝑅pv ⩴ return(𝑉pv)∣𝜆𝑥pv.𝑇pv∣𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv]
Figure IV.2.1.d: Big-step operational semantics𝑇pv[𝑉pv∕𝑥pv] ⇓ 𝑅pv

let𝑥pv be𝑉pv.𝑇pv ⇓ 𝑅pv

𝜆𝑥pv.𝑇pv ⇓ 𝜆𝑥pv.𝑇pv

𝑇pv ⇓ 𝜆𝑥pv.𝑈pv 𝑈pv[𝑉pv∕𝑥pv] ⇓ 𝑅pv𝑇pv𝑉pv ⇓ 𝑅pv

𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv] ⇓ 𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv] 𝑇pv ⇓ 𝜆pv[1.𝑈1
pv ∣ 2.𝑈2

pv] 𝑈𝑖
pv ⇓ 𝑅pv𝑇pv𝑖 ⇓ 𝑅pv

return(𝑉pv) ⇓ return(𝑉pv) 𝑇pv ⇓ return(𝑉pv) 𝑈pv[𝑉pv∕𝑥pv] ⇓ 𝑅pv𝑇pv to𝑥pv.𝑈pv ⇓ 𝑅pv𝑇pv ⇓ 𝑅pv

force(thunk(𝑇pv)) ⇓ 𝑅pv𝑇pv[𝑉pv∕𝑥pv,𝑊pv∕𝑦pv] ⇓ 𝑅pv

pm(𝑉pv,𝑊pv)pv as[(𝑥pv, 𝑦pv)pv .𝑇pv] ⇓ 𝑅pv𝑇𝑖pv[𝑉pv∕𝑥pv𝑖] ⇓ 𝑅pv

pm(𝑖, 𝑉pv)pv as[(1, 𝑥pv1)pv .𝑇1pv ∣ (2, 𝑥pv2)pv .𝑇2pv] ⇓ 𝑅pv

93

IV.
Polarized

calculiw
ith

pairsand
sum

s

Figure IV.2.2: Syntax of 𝛌→&⇑⊗⊕⇓P (left) and CBPV (right)

Positive values: Values:𝑉+,𝑊+ ⩴ 𝑥+ 𝑉pv ⩴ 𝑥pv∣(𝑉+⊗𝑊+) ∣(𝑉pv,𝑊pv)pv∣𝜄1(𝑉+)∣𝜄2(𝑉+) ∣(1, 𝑉pv)pv∣(2, 𝑉pv)pv∣box(𝑉−) ∣thunk(𝑇pv)
Negative values / expressions: Expressions / computations:𝑉−,𝑊−, 𝑇−, 𝑈− ⩴ 𝑥− ∣ let𝑥+ ∶= 𝑇+ in𝑈−∣ let𝑥− ∶= 𝑇− in𝑈− 𝑇pv, 𝑈pv ⩴ 𝑉pv∣ let𝑥pv be𝑉pv.𝑈pv∣𝜆𝑥+.𝑇−∣𝑇−𝑉+ ∣𝜆𝑥pv.𝑇pv∣𝑇pv𝑉pv∣(𝑇−&𝑈−)∣𝜋1(𝑇−)∣𝜋2(𝑇−) ∣𝜆pv[1.𝑇pv ∣ 2.𝑈pv]∣𝑇pv1∣𝑇pv2∣freeze(𝑇+) ∣return(𝑉pv)∣ 𝑇pv to𝑥pv.𝑈pv∣match 𝑇+ with[(𝑥+⊗𝑦+).𝑈−] ∣pm𝑉pv as[(𝑥pv, 𝑦pv)pv .𝑈pv]∣match 𝑇+ with[𝜄1(𝑥+1).𝑈1𝜀 | 𝜄2(𝑥+2).𝑈2−] ∣pm𝑉pv as[(1, 𝑥pv1)pv .𝑈1

pv ∣ (2, 𝑥pv2)pv .𝑈2
pv]∣ match 𝑇+ with[box(𝑥−).𝑈−] ∣force(𝑉pv)

Positive expressions: Complex values:𝑇+, 𝑈+ ⩴ 𝑉+ 𝑉cv ,𝑊cv ⩴ 𝑥pv∣(𝑉cv , 𝑊cv)pv∣(1, 𝑉cv)pv∣(2, 𝑉cv)pv∣thunk(𝑇pv)∣ let𝑥+ ∶= 𝑇+ in 𝑈+ ∣ let𝑥− ∶= 𝑇− in𝑈+ ∣ let𝑥pv be𝑉cv .𝑊cv∣ unfreeze(𝑇−) ∣∣match 𝑇+ with[(𝑥+⊗𝑦+). 𝑈+] ∣pm𝑉cv as[(𝑥pv, 𝑦pv)pv .𝑊cv]∣match 𝑇+ with[𝜄1(𝑥+1). 𝑈1+ | 𝜄2(𝑥+2). 𝑈2+] ∣pm𝑉cv as[(1, 𝑥pv1)pv .𝑊cv ∣ (2, 𝑥pv2)pv .𝑊cv]∣ match 𝑇+ with[box(𝑥+).𝑈+]

94

IV. Polarized calculi with pairs and sums

IV.2.2. Embedding CBPV into 𝛌→&⇑⊗⊕⇓P
Embedding values and computations

The syntaxes of 𝛌→&⇑⊗⊕⇓P and CBPV are shown side by side in Figure IV.2.2, with expres-
sions and values that correspond to each other placed on the same line, and things that
are present in one calculus but not the other highlighted. Values 𝑉pv of CBPV correspond
to positive values 𝑉+ of 𝛌→&⇑⊗⊕⇓P , and expressions 𝑇pv of CBPV correspond to negative ex-
pressions 𝑇− of 𝛌→&⇑⊗⊕⇓P . For shifts (see Figure IV.2.3), thunk(𝑇pv) corresponds to box(𝑇−),
force(𝑉pv) to unbox(𝑉+), and return(𝑉pv) to freeze(val(𝑉+)) (i.e. the restriction of the gen-
eral freeze(𝑇+) to values). The “inverse” 𝑇pv to𝑥pv.𝑈pv of return(𝑉pv) corresponds to let𝑥+ ∶=
unfreeze(𝑇−) in𝑈−. The values types 𝐴pv and computation type 𝐵pv of CBPV (which are not
described here) correspond to positive types 𝐴+ and negative types 𝐵− respectively, with
Fpv(𝐴pv) corresponding to ⇑𝐴+ and Upv(𝐵pv) to ⇓𝐵−4. More precisely, the translation⋅ P∶CBPV → 𝛌→&⇑⊗⊕⇓P
described in Figure IV.2.4 is an embedding:

Fact IV.2.1

The translation ⋅ P∶CBPV → 𝛌→&⇑⊗⊕⇓p is injective.

Proof

By induction on the syntax.

Fact IV.2.2

The translation ⋅ P is substitutive: for any computation 𝑇pv (resp. value 𝑉pv), variable𝑥pv, and value𝑊pv, we have𝑇pv[𝑊pv∕𝑥pv]P = 𝑇pvP[𝑊pvP∕𝑥+] (resp. 𝑉pv[𝑊pv∕𝑥pv]P = 𝑉pvP[𝑊pvP∕𝑥+])
Proof

By induction on the syntax of 𝑇pv (resp. 𝑉pv).

Differences between CBPV and 𝛌→&⇑⊗⊕⇓P
With these correspondances in mind, there are two main differences between CBPV and𝛌→&⇑⊗⊕⇓P :
4For this correspondance, one can remember that Upv unfortunately does not corresponds to the Upshift ⇑, or
notice that both ⊃ and⇒ are common symbols for implication, and that applying the same rotation to both
of them yields Upv and ⇓.

95

IV. Polarized calculi with pairs and sums

Figure IV.2.3: Shifts in 𝛌→&⇑⊗⊕⇓P (left) and CBPV (right)

𝐕+ 𝐕− 𝐓−
𝐓+⊆

box =
freeze

𝐕pv 𝐓pv
return

thunk

Figure IV.2.4: Embedding ⋅ P of CBPV into 𝛌→&⇑⊗⊕⇓P
Values: ⋅ P ∶ 𝐕pv → 𝐕+𝑥pvP ≝ 𝑥+(𝑉pv,𝑊pv)pvP ≝ (𝑉pvP⊗𝑊pvP)(𝑖, 𝑉pv)pvP ≝ 𝜄𝑖(𝑉pvP)

thunk(𝑇pv)P ≝ box(𝑇pvP)
Expressions: ⋅ P ∶ 𝐓pv → 𝐓−

pm𝑉pv as[(𝑥pv, 𝑦pv)pv .𝑇pv]P ≝ match 𝑉pvP with[(𝑥+⊗𝑦+).𝑇pvP]
pm𝑉pv as[(1, 𝑥pv1)pv .𝑇1pv ∣ (2, 𝑥pv2)pv .𝑇2pv]P ≝ match 𝑉pvP with[𝜄1(𝑥+1).𝑉pvP | 𝜄2(𝑥+2).𝑇2pvP]

force(𝑉pv)P ≝ unbox(𝑉pvP)
let𝑥pv be𝑉pv.𝑇pvP ≝ let𝑥+ ∶= 𝑉pvP in𝑇pvP𝜆𝑥pv.𝑇pvP ≝ 𝜆𝑥+.𝑇pvP𝑇pv𝑉pvP ≝ 𝑇pvP𝑉pvP𝜆pv[1.𝑇1pv ∣ 2.𝑇2pv]P ≝ (𝑇1pvP&𝑇2pvP)𝑇pv𝑖P ≝ 𝜋𝑖(𝑇pvP)

return(𝑉pv)P ≝ freeze(𝑉pvP)𝑇pv to𝑥pv.𝑈pvP ≝ let𝑥+ ∶= unfreeze(𝑇pvP) in𝑈pvP

96

IV. Polarized calculi with pairs and sums

• There are no negative variables 𝑥− in CBPV, and hence no let𝑥− ∶= 𝑉− in𝑈𝜀. The
only other use of negative variables in 𝛌→&⇑⊗⊕⇓P , namelymatch 𝑇+ with[box(𝑥−).𝑈−], is
restricted to the cases where 𝑇+ is a value 𝑇+ = 𝑉+ and𝑈− = 𝑥−, i.e. to unbox(𝑉+), and
is denoted by force(𝑉pv).

• There are no non-value positive expressions 𝑇+ in CBPV (without complex values),
which corresponds to replacing 𝑇+ by 𝑉+ everywhere in the syntax of 𝛌→&⇑⊗⊕⇓P . Since
unfreeze(𝑇−) is a positive expression, it is no longer expressible, and is therefore re-
placed by 𝑇pv to𝑥pv.𝑈pv which corresponds to its composition with a let-expression
let𝑥+ ∶= unfreeze(𝑇+) in𝑈−.

Complex values and positive expressions

Complex values 𝑉cv are very similar to positive expressions 𝑇+, but neither of the set is con-
tained in the other:

• unfreeze(𝑇−) corresponds to no complex value; and
• (((𝜆𝑥pv.return(𝑥pv))𝑉pv),𝑊pv)pv is a complex value, while (((𝜆𝑥+.freeze(𝑥+))𝑉+)⊗𝑊+) is
not a positive term (because (𝜆𝑥+.freeze(𝑥+))𝑉+ is not a value).

Complex values can nevertheless be represented by positive terms via let-expansions, e.g.(((𝜆𝑥pv.return(𝑥pv))𝑉pv),𝑊pv)pv corresponds to let 𝑦+ ∶= (𝜆𝑥+.freeze(𝑥+))𝑉+ in(𝑦+⊗𝑊+)
More generally, if 𝑉cv corresponds to 𝑇+, and𝑊cv to 𝑈+, then the complex value(𝑉cv ,𝑊cv)pv corresponds to let𝑥+ ∶= 𝑇+ in let 𝑦+ ∶= 𝑈+ in(𝑥+⊗𝑦+)
Expanding CBPV with positive terms (i.e. to 𝛌→&⇑⊗⊕⇓p) has the same advantages as extend-

ing it with complex values (i.e. it makes it better suited for semantic endeavors), but avoids
the complications of the operational semantics induced by complex values: the choice of
when to evaluate complex values is pushed to the “user” through the need for let-expression
to express some complex values. Of course, in an actual programming language, we would
want to be able to write (𝑇+⊗𝑈+), but this could be a notation for let𝑥+ ∶= 𝑇+ in let 𝑦+ ∶=𝑈+ in(𝑥+⊗𝑦+), and can therefore be ignored for theoretical purposes.
Preservation of operational semantics

In 𝛌→&⇑⊗⊕⇓p , we have a small-step operational semantics , which induces a big-step opera-
tional semantics given by 𝑇𝜀 ⇓ 𝑇′𝜀 ≝ 𝑇𝜀 ∗ 𝑇′𝜀
Through the translation ⋅ P, the big-step operational semantics of CBPV corresponds exactly
to the one of 𝛌→&⇑⊗⊕⇓p :

Proposition IV.2.3

For any closed expression 𝑇pv, 𝑇pv ⇓ 𝑅pv if and only if 𝑇pvP ⇓ 𝑅pvP.

97

IV. Polarized calculi with pairs and sums

Proof

• ⇒ Wehave𝑇pvP ∗ 𝑅pvP by induction on the derivation of𝑇pv ⇓ 𝑅pv andFact IV.2.2,
and 𝑅pvP by case analysis on the syntax of 𝑅pv.

• ⇐ By induction on the length of the reduction 𝑇pvP ∗ 𝑅pvP.

98

IV. Polarized calculi with pairs and sums

IV.3. A polarized 𝜆-calculus with focus: 𝜆→&⇑⊗⊕⇓p

99

IV. Polarized calculi with pairs and sums

IV.4. A polarized intuitionistic L calculus: Li→&⇑⊗⊕⇓p

100

IV. Polarized calculi with pairs and sums

IV.5. A polarized classical L calculus: L→&⇑⊗⊕⇓p

101

IV. Polarized calculi with pairs and sums

IV.6. The CBPV abstract machine as a subcalculus of𝜆→&⇑⊗⊕⇓p

102

V. Polarized calculi with arbitrary
constructors

V.1. A (classical) polarized L-calculus: L
#”𝜏p . 104

V.2. Intuitionistic and minimalistic polarized L-calculi: Li
#”𝜏p and Lm #”𝜏p 126

V.3. A polarized 𝜆-calculus with focus equivalent to Lm #”𝜏p: 𝜆 #”𝜏p 147
V.4. Equivalence between 𝜆 #”𝜏p and Lm #”𝜏p . 148
V.5. A polarized 𝜆-calculus: 𝛌 #”𝜏P . 149

103

V. Polarized calculi with arbitrary constructors

V.1. A (classical) polarized L-calculus: L
#”𝜏p

V.1.1. Syntax

Type formers

Everything starts with a (finite) set of positive type formers 𝜏1+, … , 𝜏𝑛+ and negative type for-
mers 𝜏1−, … , 𝜏𝑚− that generate positive types 𝐴+ and negative types 𝐴− as described in Fig-
ure V.1.1a. With the usual type formers, this yields Figure V.1.1e. For binary type formers
(e.g. →), we often use the infix notation (e.g. we write𝐴+→𝐵− for→(𝐴+, 𝐵−)). Even though
the notation 𝜏𝑗𝜀 (#”𝐴) may suggested it, the type formers 𝜏𝑗𝜀 do not take arbitrary sequence #”𝐴
of arguments: the arity of each 𝜏𝑗𝜀 is fixed (e.g. →(𝐴−) would be invalid), and the polarity of
each argument is also fixed (e.g. →(𝐴+, 𝐵+) would also be invalid). A more precise notation
would be 𝜏𝑗𝜀 (𝐴1

pol(𝜏𝑗𝜀 ,1), … , 𝐴ar(𝜏𝑗𝜀)
pol(𝜏𝑗𝜀 ,ar(𝜏𝑗𝜀)))

where ar(𝜏𝑗𝜀) is the arity of 𝜏𝑗𝜀 , and pol(𝜏𝑗𝜀 , 𝑘) is the polarity of the 𝑘th argument of 𝜏𝑗𝜀 . In other
words, when we write 𝜏𝑗𝜀 (#”𝐴), the length and shape of #”𝐴 depends on 𝜏𝑗𝜀 , but we do not make
this dependence explicit in the notations.

Value and stack constructors

We denote by 𝑎 and call argument any value 𝑣 or stack 𝑠, and write #”𝑎 for an arbitrary list𝑎1, … , 𝑎𝑞 of arguments. We denote by 𝜒1 and call variable any value variable 𝑥𝜀 or stack
variable 𝛼𝜀, and write #”𝜒 for an arbitrary list 𝜒1, … , 𝜒𝑞 of variables.
As depicted in Figure V.1.2, each positive type former 𝜏𝑗+ (resp. negative type former 𝜏𝑗−)

has 𝑙+𝑗 ∈ ℕ (positive) value constructors v𝜏𝑗+1 , … , v𝜏𝑗+𝑙+𝑗 (resp. 𝑙−𝑗 ∈ ℕ (negative) stack construc-

tors ‘𝜏𝑗−1 , … , ‘𝜏𝑗−𝑙−𝑗), which can be applied to suitable arguments to form positive values v𝜏𝑗+𝑘 (#”𝑎)
(resp. negative stacks ‘𝜏𝑗−𝑘 (#”𝑎))2, and a positive stack (resp. negative value)𝜇[v𝜏𝑗+1 (# ”𝜒1). 𝑐1⋮

v
𝜏𝑗+𝑙+𝑗 (# ”𝜒𝑙+𝑗). 𝑐𝑙+𝑗] (resp. 𝜇< ‘𝜏𝑗−1 (# ”𝜒1). 𝑐1⋮

‘
𝜏𝑗−𝑙−𝑗 (# ”𝜒𝑙−𝑗). 𝑐𝑙−𝑗 >)

that matches over all values (resp. stacks) formed using these constructors. This stack (resp.
value) is often denoted by𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v𝜏𝑗+𝑙+𝑗 (# ”𝜒𝑙+𝑗).𝑐𝑙+𝑗] (resp. 𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏𝑗−𝑙−𝑗 (# ”𝜒𝑙−𝑗).𝑐𝑙−𝑗 >)
When 𝑙+𝑗 = 1 (resp. 𝑙−𝑗 = 1), we sometimes write these without the [⋅] (resp. <⋅>), e.g.
1Mnemonic: the symbol for variables 𝜒 looks like the symbol for value variables 𝑥 and is from the Greek
alphabet just like the symbol for stack variables 𝛼 .

2Note that even though we write v𝜏𝑗+𝑘 (#”𝑎) (resp. ‘𝜏𝑗+𝑘 (#”𝑎)), the length and shape of #”𝑎 depend on 𝜏𝑗+ and v𝜏𝑗+𝑘 (resp.𝜏𝑗− and ‘𝜏𝑗−𝑘), just like we wrote write 𝜏𝑗𝜀 (#”𝐴) even though the length and shape of #”𝐴 could depend on 𝜏𝑗𝜀 .
104

V. Polarized calculi with arbitrary constructors

Figure V.1.1: Types generated by a set of type formers #”𝜏
Figure V.1.1.a: Types generated by #”𝜏 = 𝜏1+…𝜏𝑛+𝜏1−…𝜏𝑚−

Positive types: Negative types:𝐴+, 𝐵+ ⩴ 𝜏1+(#”𝐴) 𝐴−, 𝐵− ⩴ 𝜏1−(#”𝐴)∣⋮ ∣⋮∣𝜏𝑛+(#”𝐴) ∣𝜏𝑚− (#”𝐴)
Figure V.1.1.b: Types generated by #”𝜏 = →−

Positive types: Negative types:𝐴+, 𝐵+ ⩴ (none) 𝐴−, 𝐵− ⩴ 𝐴− →− 𝐵−
Figure V.1.1.c: Types generated by #”𝜏 = →+⇓

Positive types: Negative types:𝐴+, 𝐵+ ⩴ ⇓𝐴− 𝐴−, 𝐵− ⩴ 𝐴+ →+ 𝐵+
Figure V.1.1.d: Types generated by #”𝜏 = →⇓⇑

Positive types: Negative types:𝐴+, 𝐵+ ⩴ 𝐴−, 𝐵− ⩴ 𝐴+ → 𝐵−∣⇓𝐴− ∣⇑𝐴+
Figure V.1.1.e: Types generated by #”𝜏 = →⇓⇑¬−¬+⊗`⊕&1⊥0⊤

Positive types: Negative types:𝐴+, 𝐵+ ⩴ 𝐴−, 𝐵− ⩴ 𝐴+ → 𝐵−∣⇓𝐴− ∣⇑𝐴+∣¬+(𝐴−) ∣¬−(𝐴+)∣𝐴+ ⊗ 𝐵+ ∣𝐴− ` 𝐵−∣𝐴+ ⊕ 𝐵+ ∣𝐴− & 𝐵−∣1 ∣⊥∣0 ∣⊤

105

V. Polarized calculi with arbitrary constructors

Figure V.1.2: Examples of value and stack constructors

Figure V.1.2.a: Examples of value constructors and value pattern-matchings

Positive type former Value constructors Value pattern match⇓ v
⇓1(𝑣−) = {𝑣−} 𝜇{𝑥−}.𝑐¬+ v
¬+1 (𝑠−) = ¬+(𝑠−) 𝜇¬+(𝛼−).𝛼𝑐⊗ v

⊗1 (𝑣+, 𝑤+) = (𝑣+⊗𝑤+) 𝜇(𝑥+⊗𝑦+).𝑐⊕ v
⊕1 (𝑣+) = 𝜄1(𝑣+) 𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2]v
⊕2 (𝑣+) = 𝜄2(𝑣+) 𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2]1 v11() = () 𝜇().𝑐0 (none) 𝜇[]

Figure V.1.2.b: Examples of stack constructors and stack pattern-matchings

Negative type former Stack constructors Stack pattern match→ ‘
→1 (𝑣+, 𝑠−) = 𝑣+ ∙ 𝑠− 𝜇(𝑥+ ∙ 𝛼−).𝑐→− ‘
→−1 (𝑣−, 𝑠−) = 𝑣− −∙ 𝑠− 𝜇(𝑥− −∙ 𝛼−).𝑐→+ ‘
→+1 (𝑣+, 𝑠+) = 𝑣+ +∙ 𝑠+ 𝜇(𝑥+ +∙ 𝛼+).𝑐⇑ ‘

⇑1(𝑠+) = {𝑠+} 𝜇{𝑥+}.𝑐¬− ‘
¬−1 (𝑣+) = ¬−(𝑣+) 𝜇¬−(𝑥+).𝑥𝑐

` ‘1̀ (𝑠1−, 𝑠2−) = (𝑠1−`𝑠2−) 𝜇(𝛼−`𝛽−).𝑐& ‘&1(𝑠−) = 𝜋1 ∙ 𝑠− 𝜇<(𝜋1 ∙ 𝛼−1). 𝑐1(𝜋2 ∙ 𝛼−2). 𝑐2>‘&2(𝑠−) = 𝜋2 ∙ 𝑠− 𝜇<(𝜋1 ∙ 𝛼−1). 𝑐1(𝜋2 ∙ 𝛼−2). 𝑐2>⊥ ‘⊥1() = (̃) 𝜇(̃).𝑐⊤ (none) 𝜇<>

106

V. Polarized calculi with arbitrary constructors

writing 𝜇{𝑥+}.𝑐 for 𝜇[{𝑥+}.𝑐] (resp. 𝜇{𝛼−}.𝑐 for 𝜇<{𝛼−}.𝑐>)
To simplify notations, we sometimes assume that constructors take value arguments be-

fore stack arguments:

Definition V.1.1

A constructor v𝜏𝑗+𝑘 (resp. ‘𝜏𝑗−𝑘) is said to be vs-sorted when its value arguments are on
the left of its stack arguments, i.e. when

v
𝜏𝑗+𝑘 (#”𝑎) = v𝜏𝑗+𝑘 (#”𝑣 , #”𝑠) (resp. ‘𝜏𝑗−𝑘 (#”𝑎) = ‘𝜏𝑗−𝑘 (#”𝑣 , #”𝑠))

Replacing a constructor v𝜏𝑗+𝑘 (resp. ‘𝜏𝑗−𝑘) by another one that takes its arguments in another
order changes nothing for our purposes, and we therefore assume that all constructors are
vs-sorted when convenient.

Syntax

The syntax of L
#”𝜏p is given inFigureV.1.3a, and the result of instanciating itwith #”𝜏 = →⇓⇑¬−¬+⊗`⊕&1⊥0⊤

is given in Figure V.1.4a. The polarities 𝜀 on commands ⟨⋅∣⋅⟩𝜀, and + and − on the coer-
cions val+ and stk− are there to ensure that the induced grammar of fragments (see) is
non-ambiguous, but are superfluous in the grammar of terms (i.e. removing them does not
make the grammar of terms ambiguous). The coercions val+ and stk= are often left implicit3.
V.1.2. Reductions

Definitions

The operational reduction (which is also the top-level 𝛽-reduction in L
#”𝜏p) is defined de-

fined in Figure V.1.3c, and the top-level 𝜂-expansion is defined in Figure V.1.3d. The result
of instanticating these with #”𝜏 = →⇓⇑¬−¬+⊗`⊕&1⊥0⊤ is described in Figure V.2.3b and
Figure V.2.3c respectively. The strong reduction is defined as the contextual closure𝓚
of the operational reduction , and the 𝜂-expansion as the contextual closure𝓚 of the
top-level 𝜂-expansion . The reduction ¬o is defined as the closure (𝓚 ⧵ {◽}) of the oper-
ational reduction under non-trivial contexts. Alternative definitions of these closures via
inferrence rules can be found in .

3We only use these coercions when defining the 𝜂-expansions 𝜇 and 𝜇 (see Remark V.1.2), and for everything
else, we leave these coercions implicit.

107

V. Polarized calculi with arbitrary constructors

Figure V.1.3: The L
#”𝜏p calculus

Figure V.1.3.a: Syntax

Positive values: Positive stacks / evaluation contexts:𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+, 𝑒+ ⩴ 𝛼+∣𝜇𝑥+.𝑐∣v𝜏1+1 (#”𝑎)∣ … ∣v𝜏1+𝑙+1 (#”𝑎) ∣𝜇[v𝜏1+1 (# ”𝜒1).𝑐1∣…∣v𝜏1+𝑙+1 (# ”𝜒𝑙+1).𝑐𝑙+1]∣⋮ ∣⋱∣⋮ ∣⋮∣v𝜏𝑛+1 (#”𝑎)∣ … ∣v𝜏𝑛+𝑙+𝑛 (#”𝑎) ∣𝜇[v𝜏𝑛+1 (# ”𝜒1).𝑐1∣…∣v𝜏𝑛+𝑙+𝑛 (# ”𝜒𝑙+𝑛).𝑐𝑙+𝑛]
Positive expressions:𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇𝛼+.𝑐
Negative values / expressions: Negative stacks:𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣𝜇𝛼−.𝑐 𝑠− ⩴ 𝛼−∣𝜇<‘𝜏1−1 (# ”𝜒1).𝑐1∣…∣‘𝜏1−𝑙−1 (# ”𝜒𝑙−1).𝑐𝑙−1 > ∣‘𝜏1−1 (#”𝑎)∣ … ∣‘𝜏1−𝑙−1 (#”𝑎)∣⋮ ∣⋮ ∣⋱∣⋮∣𝜇<‘𝜏𝑚−1 (# ”𝜒1).𝑐1∣…∣‘𝜏𝑚−𝑙−𝑚(# ”𝜒𝑙−𝑚).𝑐𝑙−𝑚> ∣‘𝜏𝑚−1 (#”𝑎)∣ … ∣‘𝜏𝑚−𝑙−𝑚(#”𝑎)

Negative evaluation contexts:𝑒− ⩴ stk−(𝑠−)∣𝜇𝑥−.𝑐
Commands:𝑐 ⩴ ⟨𝑡+∣𝑒+⟩+∣⟨𝑡−∣𝑒−⟩−

Figure V.1.3.b: Notations

Polarities: Arguments: Variables: Term:𝜀 ⩴ +∣ − 𝑎 ⩴ 𝑣𝜀∣𝑠𝜀 𝜒 ⩴ 𝑥𝜀∣𝛼𝜀 𝓉 ⩴ 𝑡𝜀∣𝑣𝜀∣𝑒𝜀∣𝑠𝜀∣𝑐

108

V. Polarized calculi with arbitrary constructors

Figure V.1.3.c: Operational reduction ⟨𝜇𝛼𝜀.𝑐∣𝑠𝜀⟩𝜀 𝜇 𝑐[𝑠𝜀∕𝛼𝜀]⟨𝑣𝜀∣𝜇𝑥𝜀.𝑐⟩𝜀 𝜇 𝑐[𝑣𝜀∕𝑥𝜀]⟨𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏𝑗−𝑙 (#”𝜒𝑙).𝑐𝑙>∣‘𝜏𝑗−𝑘 (#”𝑎)⟩− 𝜏𝑗− 𝑐𝑘[#”𝑎∕ # ”𝜒𝑘]⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝜒𝑙).𝑐𝑙]⟩+ 𝜏𝑗+ 𝑐𝑘[#”𝑎∕ # ”𝜒𝑘]≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (⋃𝑗 𝜏𝑗+)
Figure V.1.3.d: Top-level 𝜂-expansion𝑡𝜀 𝜇 𝜇𝛼𝜀.⟨𝑡𝜀∣𝛼𝜀⟩𝜀 if 𝛼𝜀 fresh w.r.t. 𝑡𝜀𝑒𝜀 𝜇 𝜇𝑥𝜀.⟨𝑥𝜀∣𝑒𝜀⟩𝜀 if 𝑥𝜀 fresh w.r.t. 𝑒𝜀𝑣− 𝜏𝑗− 𝜇<‘𝜏𝑗−1 (# ”𝜒1). ⟨𝑣−∣‘𝜏𝑗−1 (# ”𝜒1)⟩−⋮

‘
𝜏𝑗−𝑙 (#”𝜒𝑙). ⟨𝑣−∣‘𝜏𝑗−𝑙 (#”𝜒𝑙)⟩−> if # ”𝜒1, … , #”𝜒𝑙 fresh w.r.t. 𝑣−

𝑠+ 𝜏𝑗+ 𝜇[v𝜏𝑗+1 (# ”𝜒1). ⟨v𝜏𝑗+1 (# ”𝜒1)∣𝑠+⟩+⋮
v
𝜏𝑗+𝑙 (#”𝜒𝑙). ⟨v𝜏𝑗+𝑙 (#”𝜒𝑙)∣𝑠+⟩+] if # ”𝜒1, … , #”𝜒𝑙 fresh w.r.t. 𝑠+

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (⋃𝑗 𝜏𝑗+)

109

V. Polarized calculi with arbitrary constructors

Figure V.1.4: The L→⇓⇑¬−¬+⊗`⊕&1⊥0⊤p calculus

Figure V.1.4.a: Syntax

Positive values: Positive stacks / evaluation contexts:𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+, 𝑒+ ⩴ 𝛼+∣𝜇𝑥+.𝑐∣(𝑣+⊗𝑤+) ∣𝜇(𝑥+⊗𝑦+).𝑐∣𝜄1(𝑣+)∣𝜄2(𝑣+) ∣𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]∣{𝑣−} ∣𝜇{𝑥−}.𝑐∣¬+(𝑠−) ∣𝜇¬+(𝛼−).𝛼𝑐∣() ∣𝜇().𝑐∣𝜇[]
Positive expressions:𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇𝛼+.𝑐
Negative values / expressions: Negative stacks:𝑣−, 𝑤−, 𝑡−, 𝑢− ⩴ 𝑥−∣𝜇𝛼−.𝑐 𝑠− ⩴ 𝛼−∣𝜇(𝑥+ ∙ 𝛼−).𝑐 ∣𝑣+ ∙ 𝑠−∣𝜇(𝛼−`𝛽−).𝑐 ∣(𝑠1−`𝑠2−)∣𝜇<(𝜋1 ∙ 𝛼−1).𝑐1∣(𝜋2 ∙ 𝛼−2).𝑐2> ∣𝜋1 ∙ 𝑠−∣𝜋2 ∙ 𝑠−∣𝜇{𝛼+}.𝑐 ∣{𝑠+}∣𝜇¬−(𝑥+).𝑥𝑐 ∣¬−(𝑣+)∣𝜇(̃).𝑐 ∣(̃)∣𝜇<>

Negative evaluation contexts:𝑒− ⩴ stk−(𝑠−)∣𝜇𝑥−.𝑐
Commands:𝑐 ⩴ ⟨𝑡+∣𝑒+⟩+∣⟨𝑡−∣𝑒−⟩−

110

V. Polarized calculi with arbitrary constructors

Figure V.1.4.b: Operational reduction⟨𝜇𝛼𝜀.𝑐∣𝑠𝜀⟩𝜀 𝜇 𝑐[𝑠𝜀∕𝛼𝜀]⟨𝑣𝜀∣𝜇𝑥𝜀.𝑐⟩𝜀 𝜇 𝑐[𝑣𝜀∕𝑥𝜀]⟨𝜇(𝑥+ ∙ 𝛼−).𝑐∣𝑣+ ∙ 𝑠−⟩− → 𝑐[𝑣+∕𝑥+, 𝑠−∕𝛼−]⟨𝜇{𝛼+}.𝑐∣{𝑠+}⟩− ⇑ 𝑐[𝑠+∕𝛼+]⟨𝜇¬−(𝑥+).𝑥𝑐∣¬−(𝑣+)⟩− ¬− 𝑐[𝑣+∕𝑥+]⟨𝜇(𝛼−`𝛽−).𝑐∣(𝑠1−`𝑠2−)⟩− ` 𝑐[𝑠1−∕𝛼−, 𝑠2−∕𝛽−]⟨𝜇<(𝜋1 ∙ 𝛼−1).𝑐1∣(𝜋2 ∙ 𝛼−2).𝑐2>∣𝜋𝑖 ∙ 𝑠−⟩− & 𝑐𝑖[𝑠−∕𝛼−𝑖]⟨𝜇(̃).𝑐∣(̃)⟩− ⊥ 𝑐(⊤ is trivial)⟨{𝑣−}∣𝜇{𝑥−}.𝑐⟩+ ⇓ 𝑐[𝑣−∕𝑥−]⟨¬+(𝑠−)∣𝜇¬+(𝛼−).𝛼𝑐⟩+ ¬+ 𝑐[𝑠−∕𝛼−]⟨(𝑣+⊗𝑤+)∣𝜇(𝑥+⊗𝑦+).𝑐⟩+ ⊗ 𝑐[𝑣+∕𝑥+, 𝑤+∕𝑦+]⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]⟩+ ⊕ 𝑐𝑖[𝑣+∕𝑥+𝑖]⟨()∣𝜇().𝑐⟩+ 1 𝑐(0 is trivial)≝ 𝜇 ∪ 𝜇 ∪ → ∪ ` ∪ & ∪ ⇑ ∪ ¬− ∪ ⊥ ∪ ⊗ ∪ ⊕ ∪ ⇓ ∪ ¬+ ∪ 1

111

V. Polarized calculi with arbitrary constructors

Figure V.1.4.c: Top-level 𝜂-expansion𝑡𝜀 𝜇 𝜇𝛼𝜀.⟨𝑡𝜀∣𝛼𝜀⟩𝜀 if 𝛼𝜀 fresh w.r.t. 𝑡𝜀𝑒𝜀 𝜇 𝜇𝑥𝜀.⟨𝑥𝜀∣𝑒𝜀⟩𝜀 if 𝑥𝜀 fresh w.r.t. 𝑒𝜀𝑣− → 𝜇(𝑥+ ∙ 𝛼−).⟨𝑣−∣𝑥+ ∙ 𝛼−⟩− if 𝑥+ and 𝛼− fresh w.r.t. 𝑣−𝑣− ⇑ 𝜇{𝛼+}.⟨𝑣−∣{𝛼+}⟩− if 𝛼+ fresh w.r.t. 𝑣−𝑣− ¬− 𝜇¬−(𝑥+).𝑥⟨𝑣−∣¬−(𝑥+)⟩− if 𝑥+ fresh w.r.t. 𝑣−𝑣− ` 𝜇(𝛼−`𝛽−).⟨𝑣−∣(𝛼−`𝛽−)⟩− if 𝛼− and 𝛽− fresh w.r.t. 𝑣−𝑣− & 𝜇<(𝜋1 ∙ 𝛼−1).⟨𝑣−∣𝛼−1 ⟩−∣(𝜋2 ∙ 𝛼−2).⟨𝑣−∣𝛼−2 ⟩−> if 𝛼−1 and 𝛼−2 fresh w.r.t. 𝑣−𝑣− ⊥ 𝜇(̃).⟨𝑣−∣(̃)⟩−𝑣− ⊤ 𝜇<>𝑠+ ⇓ 𝜇{𝑥−}.⟨{𝑥−}∣𝑠+⟩+ if 𝑥− fresh w.r.t. 𝑠+𝑠+ ¬+ 𝜇¬+(𝛼−).𝛼⟨¬+(𝛼−)∣𝑠+⟩+ if 𝛼− fresh w.r.t. 𝑠+𝑠+ ⊗ 𝜇(𝑥+⊗𝑦+).⟨(𝑥+⊗𝑦+)∣𝑠+⟩+ if 𝑥+ and 𝑦+ fresh w.r.t. 𝑠+𝑠+ ⊕ 𝜇[𝜄1(𝑥+1).⟨𝜄1(𝑥+1)∣𝑠+⟩+∣𝜄2(𝑥+2).⟨𝜄2(𝑥+2)∣𝑠+⟩+] if 𝑥+1 and 𝑥+2 fresh w.r.t. 𝑠+𝑠+ 1 𝜇().⟨()∣𝑠+⟩+𝑠+ 0 𝜇[]≝ 𝜇 ∪ 𝜇 ∪ → ∪ ⇑ ∪ ¬− ∪ ` ∪ & ∪ ⊥ ∪ ⊤ ∪ ⇓ ∪ ¬+ ∪ ⊗ ∪ ⊕ ∪ 1 ∪ 0

112

V. Polarized calculi with arbitrary constructors

Remark V.1.2

Note that the coercions val+ (resp. stk−) are what ensures that the syntax is closed
under 𝜂-expansions. Indeed, if we removed val+ (resp. stk−), then we would have𝑣+ 𝜇 𝜇𝛼+.⟨𝑣+∣𝛼+⟩+ (resp. 𝑠− 𝜇 𝜇𝑥−.⟨𝑥−∣𝑠−⟩−)
and hence(𝑣+⊗𝑤+) ((𝜇𝛼+.⟨𝑣+∣𝛼+⟩+)⊗𝑤+) (resp. 𝑣+ ∙ 𝑠− 𝑣+ ∙(𝜇𝑥−.⟨𝑥−∣𝑠−⟩))
With the coercions, this problemdisapears because 𝑣+ (resp. 𝑠−) cannot be 𝜂-expanded
on its own, and (val+(𝑣+)⊗𝑤+) (resp. 𝑣+ ∙ stk−(𝑠−)) is not within the syntaxa.
aOf course, one can also fix this by allowing expressions (resp. evaluation contexts) in value and stack
constructors, see .

Remark V.1.3

We could also add coercions val− (resp. stk+), i.e. define negative expressions (resp.
positive evaluation contexts) by𝑡−, 𝑢− ⩴ val−(𝑣−) (resp. 𝑒+ ⩴ stk+(𝑠+))
While this could be useful in future calculi, here it would be completely superfluous
(because these coercions would be bijections), while requiring duplications in the
definition of : 𝑡− 𝜇 𝜇𝛼−.⟨𝑡−∣𝛼−⟩− (resp. 𝑒+ 𝜇𝑥+.⟨𝑥+∣𝑒+⟩+)
would need to be replaced by𝑣− 𝜇 𝜇𝛼−.⟨𝑣−∣𝛼−⟩− (resp. 𝑠+ 𝜇𝑥+.⟨𝑥+∣𝑠+⟩+)
to ensure that e.g.{𝑣−} 𝜇 {𝜇𝛼−.⟨𝑣−∣𝛼−⟩−} (resp. {𝑠+} {𝜇𝑥+.⟨𝑥+∣𝑠+⟩+})
while 𝑡+ 𝜇 𝜇𝛼+.⟨𝑡+∣𝛼+⟩+ (resp. 𝑒− 𝜇𝑥−.⟨𝑥−∣𝑒−⟩−)
can not bemade to act on 𝑣+ (resp. 𝑠−) if onewants 𝜂-expansion to preserve the syntax.

Normal forms, clashes and waiting commands

There are several kinds of -normal forms:

Definition V.1.4

A command 𝑐 is said to be:

113

V. Polarized calculi with arbitrary constructors

• a clash when it is of one of the following shapes:𝑐 = ⟨v𝜏𝑗1+𝑘 (#”𝑎)∣𝜇[v𝜏𝑗2+1 (# ”𝜒1).𝑐1∣…∣v𝜏𝑗2+𝑙 (#”𝜒𝑙).𝑐𝑙]⟩+ with 𝜏𝑗1+ ≠ 𝜏𝑗2+ , or𝑐 = ⟨𝜇<‘𝜏𝑗1−1 (# ”𝜒1).𝑐1∣…∣‘𝜏𝑗1−𝑙 (#”𝜒𝑙).𝑐𝑙>∣‘𝜏𝑗2−𝑘 (#”𝑎)⟩−with 𝜏𝑗1− ≠ 𝜏𝑗2−
• waiting when it is of one of the following shapes:𝑐 = ⟨𝑥𝜀∣𝛼𝜀⟩𝜀, 𝑐 = ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝛼+⟩+, 𝑐 = ⟨𝑥+∣𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝜒𝑙).𝑐𝑙]⟩+,𝑐 = ⟨𝑥−∣‘𝜏𝑗−𝑘 (#”𝑎)⟩−, or 𝑐 = ⟨𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏𝑗−𝑙 (#”𝜒𝑙).𝑐𝑙>∣𝛼−⟩−

Example V.1.5

The commands ⟨𝜄1(𝑣+)∣𝜇(𝑥+⊗𝑦+).𝑐⟩+ and ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝜇[]⟩+
are clashes.

These two definitions cover exactly all -normal commands:

Fact V.1.6

A command is -normal if and only if it is either a clash or a waiting command, and
those two cases are mutually exclusive.

Proof

By case analysis on the command.

We now look at the effect of disubstitutions on -normal commands. For clashes, disub-
stitutions have no effect:

Fact V.1.7

The set of clashes is disubstitutive: for any clash 𝑐 and disubstitution 𝜑, the command𝑐[𝜑] is a clash.
Proof

By case analysis on 𝑐.
Waiting commands are waiting on a particular variable, and until this variable is substi-

tuted by a non-variable, they remain waiting:

114

V. Polarized calculi with arbitrary constructors

Definition V.1.8

A command 𝑐 is said to be:
• waiting for 𝑥− if it is of the shape 𝑐 = ⟨𝑥−∣𝛼−⟩− or 𝑐 = ⟨𝑥−∣‘𝜏𝑗−𝑘 (#”𝑎)⟩−;
• waiting for 𝛼+ if it is of the shape 𝑐 = ⟨𝑥+∣𝛼+⟩+ or 𝑐 = ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝛼+⟩+;
• waiting for 𝛼− if it is of the shape 𝑐 = ⟨𝜇<‘𝜏𝑗−1 (# ”𝜒1).𝑐1∣…∣‘𝜏𝑗−𝑙 (#”𝜒𝑙).𝑐𝑙>∣𝛼−⟩−;
• waiting for 𝑥+ if it is of the shape 𝑐 = ⟨𝑥+∣𝜇[v𝜏𝑗+1 (# ”𝜒1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝜒𝑙).𝑐𝑙]⟩+.

Fact V.1.9

If 𝑐 is waiting for 𝜒 then there exists an argument 𝑎 such that 𝑐[𝑎∕𝜒] is reducible.
Proof

Defining 𝑎 as 𝜇⋆−.𝑐, 𝜇𝑥+.𝑐, ‘𝜏𝑗−𝑘 (#”𝑎) or v𝜏𝑗+𝑘 (#”𝑎)works when 𝜒 is 𝑥−, 𝛼+, 𝛼− and 𝑥+ respec-
tively (with 𝜏𝑗𝜀 being the type former of the displayed 𝜇<…> or 𝜇[…]).
Fact V.1.10

If 𝑐 is waiting for 𝜒 then for any disubstitution 𝜑 such that 𝜑(𝜒) is a variable, 𝑐[𝜑] is
waiting for 𝜑(𝜒).
Proof

By case analysis on 𝑐.
Remark V.1.11

If 𝑐 is waiting for 𝜒 then given a non-variable 𝑎, 𝑐[𝑎∕𝜒]may be:
• reducible, e.g. ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝛼+⟩+[𝜇𝑥+.𝑐∕𝛼+] = ⟨v𝜏𝑗+𝑘 (#”𝑎)∣𝜇𝑥+.𝑐⟩+
is reducible;

• a clash, e.g. ⟨v𝜏𝑗1+𝑘 (#”𝑎)∣𝛼+⟩+[𝜇[v𝜏𝑗2−1 (𝜒1).𝑐1∣…∣v𝜏𝑗2−𝑙 (𝜒𝑙).𝑐𝑙]∕𝛼+]
115

V. Polarized calculi with arbitrary constructors

is a clash when 𝑗1 ≠ 𝑗2;
• waiting for another variable, e.g. ⟨𝑥−∣𝛼−⟩− is waiting for 𝑥− and⟨𝑥−∣𝛼−⟩−[𝜇(𝑦+ ∙ 𝛽−).𝑐∕𝑥−] = ⟨𝜇(𝑦+ ∙ 𝛽−).𝑐∣𝛼−⟩−
is waiting for 𝛼−.

This last case could make us want to say that ⟨𝑥−∣𝛼−⟩− waits for both 𝑥− and 𝛼− but
this is not really the case because⟨𝑥−∣𝛼−⟩−[𝜇𝛽−.𝑐∕𝑥−] = ⟨𝜇𝛽−.𝑐∣𝛼−⟩−
is not waiting for 𝛼− in general (e.g. it -diverges whenever 𝑐 does).
Definition V.1.12

A command 𝑐 is said to:
• converge to 𝑐′, written 𝑐 ⇓ 𝑐′ or 𝑐 ⊛ 𝑐′, when 𝑐 ∗ 𝑐′ ;

• converge, written 𝑐 ⇓ or 𝑐 ⊛, when there exists some 𝑐′ it converges to;
• diverge, written 𝑐 ⇑ or 𝑐 𝜔, when there is an infinite reduction sequence𝑐 𝑐′ 𝑐′′ …
starting at 𝑐.

There are three possible outcomes for a command:

Fact V.1.13

Any command either diverges, converges to a clash, or converges to a waiting com-
mand, and those three cases are mutually exclusive.

Proof

By determinism of , it either converges or diverges, and by Fact V.1.6, the -normal
command it converges to is either a clash or a waiting command.

Properties

Just like we distinguish substitution from disubstitutions, we distinguish substitutivity from
disubstitutivity:

116

V. Polarized calculi with arbitrary constructors

Definition V.1.14

A reduction⇝ of L
#”𝜏p is said to be substitutive (resp. disubstitutive) when for any terms𝓉 and #”𝓉 , and substitution 𝜎 (resp. disubstitution 𝜑), we have𝓉 ⇝ 𝓉′ ⇒ 𝓉[𝜎] ⇝ 𝓉′[𝜎] (resp. 𝓉 ⇝ 𝓉′ ⇒ 𝓉[𝜑] ⇝ 𝓉′[𝜑])

The properties of the reductions are summarized in Figure V.1

Table V.1.: Properties of reductions in the L
#”𝜏p calculus ¬o

Substitutive ✓ ✓ ✓ ✓
Disubstitutive ✓ ✓ ✓ ✓

Deterministic ✓ ✗ ✗ ✗
Confluent ✓ ✓ ✓ ✓

Postpones after ✓ ✓ ✓ ✓

The proofs of all of these properties are either trivial or routine, and are therefore relegated
to in the appendix. Confluence and postponement are proven in a standard way using a
parallel reduction [Tak95; Bar84]. The only slightly non-standard choice is the definition
of :

Remark V.1.15

The most common definitions of the parallel reduction contain rules two kinds of
rules: those that simply combine reduction sequences on subterms such as𝑡𝜀 𝑡′𝜀 𝑒𝜀 𝑒′𝜀⟨𝑡𝜀∣𝑒𝜀⟩𝜀 ⟨𝑡′𝜀 ∣𝑒′𝜀 ⟩𝜀 , 𝑣+ 𝑣′+𝜄𝑖(𝑣+) 𝜄𝑖(𝑣+) , and

𝑐1 𝑐′1 𝑐2 𝑐′2𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2] 𝜇[𝜄1(𝑥+1). 𝑐′1𝜄2(𝑥+2). 𝑐′2]
and those that add a reduction step such as𝑣+ 𝑣′+ 𝑐1 𝑐′1 𝑐2 𝑐′2⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2]⟩+ 𝑐′𝑖 [𝑣′+∕𝑥+𝑖]
Let be the restriction of defined by 𝓉 𝓉′ meaning that there exists a deriva-
tion of 𝓉 𝓉′ whose last rule is not a step rule. With the usual definition of , the

[Tak95] “Parallel Reductions in 𝜆-Calculus”, Takahashi, 1995
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984

117

V. Polarized calculi with arbitrary constructors

two following rules are admissible:𝓉 𝓉′𝓉 𝓉′ and
𝓉 𝓉′ 𝓉′ 𝓉′′𝓉 𝓉′′

For L
#”𝜏p, since there are four kinds of reductions (namely 𝜇, 𝜇, 𝜏𝑗− , and 𝜏𝑗+), the

usual definition of has four step rules. It is hence slightly easier to define and
by mutual induction by adding the two rules above in the definition, removing

the step rules, and strenghening the other rules to remember that no step was taken
at the top-level, e.g.𝑡𝜀 𝑡′𝜀 𝑒𝜀 𝑒′𝜀⟨𝑡𝜀∣𝑒𝜀⟩𝜀 ⟨𝑡′𝜀 ∣𝑒′𝜀 ⟩𝜀 , 𝑣+ 𝑣′+𝜄𝑖(𝑣+) 𝜄𝑖(𝑣+) , and

𝑐1 𝑐′1 𝑐2 𝑐′2𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2] 𝜇[𝜄1(𝑥+1). 𝑐′1𝜄2(𝑥+2). 𝑐′2]
The usual step rules are then derivable, e.g.

𝑣+ 𝑣′+𝜄𝑖(𝑣+) 𝜄𝑖(𝑣′+)𝜄𝑖(𝑣+) 𝜄𝑖(𝑣′+)
𝑐1 𝑐′1 𝑐2 𝑐′2𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2] 𝜇[𝜄1(𝑥+1). 𝑐′1𝜄2(𝑥+2). 𝑐′2]𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2] 𝜇[𝜄1(𝑥+1). 𝑐′1𝜄2(𝑥+2). 𝑐′2]⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2]⟩+ ⟨𝜄𝑖(𝑣′+)∣𝜇[𝜄1(𝑥+1). 𝑐′1𝜄2(𝑥+2). 𝑐′2]⟩+ ⟨𝜄𝑖(𝑣′+)∣𝜇[𝜄1(𝑥+1). 𝑐′1𝜄2(𝑥+2). 𝑐′2]⟩+ 𝑐′𝑖 [𝑣′+∕𝑥+𝑖]⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+1). 𝑐1𝜄2(𝑥+2). 𝑐2]⟩+ 𝑐′𝑖 [𝑣′+∕𝑥+𝑖]

This alternative definition of also has the advantage of disentangling the part of
that depends on from the rest, which makes parametric in .

V.1.3. Well-typed and well-polarized terms

Well-typed terms

Simply typed L
#”𝜏p is described in Figure V.1.5. Each type former 𝜏𝑗+ (resp. 𝜏𝑗−) has logic rules(⊢v𝜏𝑗+𝑘) (resp. (‘𝜏𝑗−𝑘 ⊢)) that introduce its constructors, and (𝜏𝑗+⊢)(resp. (⊢𝜏𝑗−)) that introduces

the correspond pattern match. Of course, in these logic rules, sequence of types given to 𝜏𝑗𝜀
in the conclusions depends on the type in the premises, and if one wants the subformula
property to hold, on should require { #”𝐴} ⊆ { #”𝐵} in (‘𝜏𝑗−𝑘 ⊢) and (⊢v𝜏𝑗+𝑘) and { #”𝐴, #”𝐵} ⊆ { #”𝐶} in(⊢𝜏𝑗−) and (𝜏𝑗+⊢).

118

V. Polarized calculi with arbitrary constructors

Figure V.1.5: Simply typed L
#”𝜏p

Figure V.1.5.a: Core rules

𝑥𝜀∶𝐴𝜀 ⊢ 𝑥𝜀∶𝐴𝜀 ∣ (⊢ax) ∣ 𝛼𝜀∶𝐴𝜀 ⊢ 𝛼𝜀∶𝐴𝜀 (ax⊢)𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝐴𝜀, 𝛥)𝛤 ⊢ 𝜇𝛼𝜀.𝑐∶𝐴𝜀 ∣ 𝛥 (⊢𝜇) 𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢ 𝛥)𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝐴𝜀 ⊢ 𝛥 (𝜇⊢)
𝛤1 ⊢ 𝑡𝜀∶𝐴𝜀 ∣ 𝛥1 𝛤2 ∣ 𝑒𝜀∶𝐴𝜀 ⊢ 𝛥2⟨𝑡𝜀∣𝑒𝜀⟩𝜀∶(𝛤1, 𝛤2 ⊢ 𝛥1, 𝛥2) (cut)

Figure V.1.5.b: Structural rules (commands)𝑐∶(𝛤 ⊢ 𝛥)𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝐴𝜀, 𝛥) (⊢w𝑐) 𝑐∶(𝛤 ⊢ 𝛼𝜀1∶𝐴𝜀, 𝛼𝜀2∶𝐴𝜀, 𝛥)𝑐[𝛽𝜀∕𝛼𝜀1, 𝛽𝜀∕𝛼𝜀2]∶(𝛤 ⊢ 𝛽𝜀∶𝐴𝜀, 𝛥) (⊢c𝑐)𝑐∶(𝛤 ⊢ 𝛥)𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢ 𝛥) (w𝑐⊢) 𝑐∶(𝛤, 𝑥𝜀1∶𝐴𝜀, 𝑥𝜀2∶𝐴𝜀 ⊢ 𝛥)𝑐[𝑦𝜀∕𝑥𝜀1, 𝑦𝜀∕𝑥𝜀2]∶(𝛤, 𝑦𝜀∶𝐴𝜀 ⊢ 𝛥) (c𝑐⊢)𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀1∶𝐴𝜀, 𝛼𝜀2∶𝐴𝜀, 𝛥2)𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀2∶𝐴𝜀, 𝛼𝜀1∶𝐴𝜀, 𝛥2) (⊢p𝑐) 𝑐∶(𝛤1, 𝑥𝜀1∶𝐴𝜀, 𝑥𝜀2∶𝐴𝜀, 𝛤2 ⊢ 𝛥)𝑐∶(𝛤1, 𝑥𝜀2∶𝐴𝜀, 𝑥𝜀1∶𝐴𝜀, 𝛤2 ⊢ 𝛥) (p𝑐⊢)
Figure V.1.5.c: Structural rules (expressions)𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛼𝜀∶𝐵𝜀, 𝛥 (⊢w𝑡) 𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛼𝜀1∶𝐵𝜀, 𝛼𝜀2∶𝐵𝜀, 𝛥𝛤 ⊢ 𝑡𝜀0[𝛽𝜀∕𝛼𝜀1, 𝛽𝜀∕𝛼𝜀2]∶𝐴𝜀0 ∣ 𝛽𝜀∶𝐵𝜀, 𝛥 (⊢c𝑡)

𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥𝛤, 𝑥𝜀∶𝐵𝜀 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥 (w𝑡⊢) 𝛤, 𝑥𝜀1∶𝐵𝜀, 𝑥𝜀2∶𝐵𝜀 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥𝛤, 𝑥𝜀∶𝐵𝜀 ⊢ 𝑡𝜀0[𝑥𝜀∕𝑥𝜀1, 𝑥𝜀∕𝑥𝜀2]∶𝐴𝜀0 ∣ 𝛥 (c𝑡⊢)
𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥1, 𝛼𝜀1∶𝐵𝜀, 𝛼𝜀2∶𝐵𝜀, 𝛥2𝛤 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥1, 𝛼𝜀2∶𝐵𝜀, 𝛼𝜀1∶𝐵𝜀, 𝛥2 (⊢p𝑡) 𝛤1, 𝑥𝜀1∶𝐵𝜀, 𝑥𝜀2∶𝐵𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥𝛤1, 𝑥𝜀2∶𝐵𝜀, 𝑥𝜀1∶𝐵𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝐴𝜀0 ∣ 𝛥 (p𝑡⊢)

119

V. Polarized calculi with arbitrary constructors

Figure V.1.5.d: Structural rules (evaluation contexts)𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛼𝜀∶𝐵𝜀, 𝛥 (⊢w𝑒) 𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛼𝜀1∶𝐵𝜀, 𝛼𝜀2∶𝐵𝜀, 𝛥𝛤 ∣ 𝑒𝜀0[𝛽𝜀∕𝛼𝜀1, 𝛽𝜀∕𝛼𝜀2]∶𝐴𝜀0 ⊢ 𝛽𝜀∶𝐵𝜀, 𝛥 (⊢c𝑒)
𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥𝛤, 𝑥𝜀∶𝐵𝜀 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥 (w𝑒⊢) 𝛤, 𝑥𝜀1∶𝐵𝜀, 𝑥𝜀2∶𝐵𝜀 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥𝛤, 𝑥𝜀∶𝐵𝜀 ∣ 𝑒𝜀0[𝑥𝜀∕𝑥𝜀1, 𝑥𝜀∕𝑥𝜀2]∶𝐴𝜀0 ⊢ 𝛥 (c𝑒⊢)

𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥1, 𝛼𝜀1∶𝐵𝜀, 𝛼𝜀2∶𝜀, 𝛥2𝛤 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥1, 𝛼𝜀2∶𝐵𝜀, 𝛼𝜀1∶𝜀, 𝛥2 (⊢p𝑒) 𝛤1, 𝑥𝜀1∶𝐵𝜀, 𝑥𝜀2∶𝐵𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥𝛤1, 𝑥𝜀2∶𝐵𝜀, 𝑥𝜀1∶𝐵𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝐴𝜀0 ⊢ 𝛥 (p𝑒⊢)
Figure V.1.5.e: General shape of logic rules𝛤1 ⊢ 𝑣1𝜀1∶𝐴1𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝐴𝑞𝜀𝑞 ∣ 𝛥𝑞𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝐴𝑞+1𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝐴𝑞+𝑟𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟𝛤1, … , 𝛤𝑞+𝑟 ∣ ‘𝜏𝑗−𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 , … , 𝑠𝑟𝜀𝑞+𝑟)∶𝜏𝑗−(#”𝐵) ⊢ 𝛥1, … , 𝛥𝑞+𝑟 (‘𝜏𝑗−𝑘 ⊢)𝑐1∶(𝛤, # ”𝑥1∶ # ”𝐴1 ⊢ # ”𝛼1∶ # ”𝐵1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ # ”𝐴𝑙 ⊢ #”𝛼𝑙 ∶ #”𝐵𝑙, 𝛥)𝛤 ⊢ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙>∶𝜏𝑗−(#”𝐶) ∣ 𝛥 (⊢𝜏𝑗−)

𝛤1 ⊢ 𝑣1𝜀1∶𝐴1𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝐴𝑞𝜀𝑞 ∣ 𝛥𝑞𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝐴𝑞+1𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝐴𝑞+𝑟𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟𝛤1, … , 𝛤𝑞 ⊢ v𝜏𝑗+𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 , … , 𝑠𝑟𝜀𝑞+𝑟)∶𝜏𝑗+(#”𝐵) ∣ 𝛥1, … , 𝛥𝑞 (⊢v𝜏𝑗+𝑘)
𝑐1∶(𝛤, # ”𝑥1∶ # ”𝐴1 ⊢ # ”𝛼1∶ # ”𝐵1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ # ”𝐴𝑙 ⊢ #”𝛼𝑙 ∶ #”𝐵𝑙, 𝛥)𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙]∶𝜏𝑗+(#”𝐶) ⊢ 𝛥 (𝜏𝑗+⊢)

120

V. Polarized calculi with arbitrary constructors

Figure V.1.5.f: Logic rules for multiplicative types𝑐∶(𝛤, 𝑥+∶𝐴+ ⊢ 𝛼−∶𝐵−, 𝛥)𝛤 ⊢ 𝜇(𝑥+ ∙ 𝛼−).𝑐∶𝐴+ → 𝐵− ∣ 𝛥 (⊢→) 𝛤1 ⊢ 𝑣+∶𝐴+ ∣ 𝛥1 𝛤2 ∣ 𝑠−∶𝐵− ⊢ 𝛥2𝛤1, 𝛤2 ∣ 𝑣+ ∙ 𝑠−∶𝐴+ → 𝐵− ⊢ 𝛥1, 𝛥2 (→⊢)
𝑐∶(𝛤 ⊢ 𝛼−∶𝐴−, 𝛽−∶𝐵−, 𝛥)𝛤 ⊢ 𝜇(𝛼−`𝛽−).𝑐∶𝐴− & 𝐵− ∣ 𝛥 (⊢`) 𝛤1 ∣ 𝑠1−∶𝐴1− ⊢ 𝛥1 𝛤2 ∣ 𝑠2−∶𝐴2− ⊢ 𝛥2𝛤1, 𝛤2 ∣ (𝑠1−`𝑠2−)∶𝐴1− & 𝐴2− ⊢ 𝛥1, 𝛥2 (`⊢)

𝛤1 ⊢ 𝑣1+∶𝐴1+ ∣ 𝛥1 𝛤2 ⊢ 𝑣2+∶𝐴2+ ∣ 𝛥2𝛤1, 𝛤2 ⊢ (𝑣1+⊗𝑣2+)∶𝐴+ ⊗ 𝐵+ ∣ 𝛥1, 𝛥2 (⊢⊗) 𝑐∶(𝛤, 𝑥+∶𝐴+, 𝑦+∶𝐵+ ⊢ 𝛥)𝛤 ∣ 𝜇(𝑥+⊗𝑦−).𝑐∶𝐴+ ⊗ 𝐵+ ⊢ 𝛥 (⊗⊢)
𝑐∶(𝛤 ⊢ 𝛥)𝛤 ⊢ 𝜇(̃).𝑐∶⊥ ∣ 𝛥 (⊢⊥) ∣ (̃)∶⊥ ⊢ (⊥⊢)

⊢ ()∶1 ∣ (1⊢) 𝑐∶(𝛤 ⊢ 𝛥)𝛤 ∣ 𝜇().𝑐∶1 ⊢ 𝛥 (⊢1)
Figure V.1.5.g: Logic rules for additive types𝑐1∶(𝛤 ⊢ 𝛼−1 ∶𝐴1−, 𝛥) 𝑐2∶(𝛤 ⊢ 𝛼−2 ∶𝐴2−, 𝛥)𝛤 ⊢ 𝜇<(𝜋1 ∙ 𝛼−1).𝑐1∣(𝜋2 ∙ 𝛼−2).𝑐2>∶𝐴1− & 𝐴2− ∣ 𝛥 (⊢&) 𝛤 ∣ 𝑠−∶𝐴𝑖− ⊢ 𝛥𝛤 ∣ 𝜋𝑖 ∙ 𝑠−∶𝐴1− & 𝐴2− ⊢ 𝛥 (&⊢)

𝛤 ⊢ 𝑣+∶𝐴𝑖+ ∣ 𝛥𝛤 ⊢ 𝜄𝑖(𝑣+)∶𝐴1+ ⊕𝐴2+ ∣ 𝛥 (⊢⊕) 𝑐1∶(𝛤, 𝑥+1 ∶𝐴1+ ⊢ 𝛥) 𝑐2∶(𝛤, 𝑥+2 ∶𝐴2+ ⊢ 𝛥)𝛤 ∣ 𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]∶𝐴1+ ⊕𝐴2+ ⊢ 𝛥 (⊕⊢)
𝛤 ⊢ 𝜇<>∶⊤ ∣ 𝛥 (⊢⊤) (No (⊤⊢) rule)
(No (⊢0) rule) 𝛤 ∣ 𝜇[]∶0 ⊢ 𝛥 (0⊢)

121

V. Polarized calculi with arbitrary constructors

Figure V.1.5.h: Logic rules for shifts𝑐∶(𝛤 ⊢ 𝛼+∶𝐴+, 𝛥)𝛤 ⊢ 𝜇{𝛼+}.𝑐∶ ⇑𝐴+ ∣ 𝛥 (⊢⇑) 𝛤 ∣ 𝑠+∶𝐴+ ⊢ 𝛥𝛤 ∣ {𝑠+}∶ ⇑𝐴+ ⊢ 𝛥 (⇑⊢)
𝛤 ⊢ 𝑣−∶𝐴− ∣ 𝛥𝛤 ⊢ {𝑣−}∶ ⇓𝐴− ∣ 𝛥 (⊢⇓) 𝑐∶(𝛤, 𝑥−∶𝐴− ⊢ 𝛥)𝛤 ∣ 𝜇{𝑥−}.𝑐∶ ⇓𝐴− ⊢ 𝛥 (⇓⊢)

Figure V.1.5.i: Logic rules for negations𝑐∶(𝛤, 𝑥+∶𝐴+ ⊢ 𝛥)𝛤 ⊢ 𝜇¬−(𝑥+).𝑥𝑐∶¬−(𝐴+) ∣ 𝛥 (⊢¬−) 𝛤 ⊢ 𝑣+∶𝐴+ ∣ 𝛥𝛤 ∣ ¬−(𝑣+)∶¬−(𝐴+) ⊢ 𝛥 (¬−⊢)
𝛤 ∣ 𝑠−∶𝐴− ⊢ 𝛥𝛤 ⊢ ¬+(𝑠−)∶¬+(𝐴−) ∣ 𝛥 (⊢¬+) 𝑐∶(𝛤 ⊢ 𝛼−∶𝐴−, 𝛥)𝛤 ∣ 𝜇¬+(𝛼−).𝛼𝑐∶¬+(𝐴−) ⊢ 𝛥 (¬+⊢)

122

V. Polarized calculi with arbitrary constructors

Definition V.1.16

An expression 𝑡𝜀 (resp. evaluation context 𝑒𝜀) of L #”𝜏p is said to be of type 𝐴𝜀 when there
exists a derivation of 𝛤 ⊢ 𝑡𝜀∶𝐴𝜀 ∣ 𝛥 (resp. 𝛤 ∣ 𝑒𝜀∶𝐴𝜀 ⊢ 𝛥)
in the type sytem described in Figure V.1.5, and well-typed when it is of type 𝐴𝜀 for
some type 𝐴𝜀. A command 𝑐 is said to be well-typed when there exists a derivation of𝑐∶(𝛤 ⊢ 𝛥)
in the type sytem described in Figure V.1.5. A term is said to be ill-typed when it is
not well-typed.

Alternative presentations

Presentations of simply typed L-calculi sometimes use a syntax of preterms (i.e. possibly ill-
typed terms) that treats polarities less rigidly, e.g. the syntax of preterms of [CurFioMun16,
Figure 1, p. 4] allows pairs (𝑉𝜀1⊗𝑊𝜀2) for values𝑉𝜀1 and𝑊𝜀2 of arbitrary polarities. Of course,
extending the syntax of preterms without really changing the type system leaves the set of
well-typed terms unchanged, e.g. extending simply typed L

#”𝜏p with these pairs and the rules𝛤1 ⊢ 𝑉𝜀1∶𝐴+ ∣ 𝛥1 𝛤2 ⊢ 𝑊𝜀2∶𝐵+ ∣ 𝛥2𝛤1, 𝛤2 ⊢ (𝑉𝜀1⊗𝑊𝜀2)∶𝐴+ ⊗ 𝐵+ and
𝑐∶(𝛤, 𝑥𝜀1∶𝐴+, 𝑦𝜀2∶𝐵+ ⊢ 𝛥)𝛤 ∣ 𝜇(𝑥𝜀1⊗𝑦𝜀2).𝑐∶𝐴+ ⊗ 𝐵+ ⊢ 𝛥

would not change anything since these rules can only be used with 𝜀1 = 𝜀2 = +. How-
ever, often, the typing rules also allow types of arbitrary polarities, e.g. the type system of
[CurFioMun16, Figure 2, p. 5] has the rules𝛤1 ⊢ 𝑉𝜀1∶𝐴𝜀1 ∣ 𝛥1 𝛤2 ⊢ 𝑊𝜀2∶𝐵𝜀2 ∣ 𝛥2𝛤1, 𝛤2 ⊢ (𝑉𝜀1⊗𝑊𝜀2)∶𝐴𝜀1 ⊗ 𝐵𝜀2 and

𝑐∶(𝛤, 𝑥𝜀1∶𝐴𝜀1 , 𝑦𝜀2∶𝐵𝜀2 ⊢ 𝛥)𝛤 ∣ 𝜇(𝑥𝜀1⊗𝑦𝜀2).𝑐∶𝐴𝜀1 ⊗ 𝐵𝜀2 ⊢ 𝛥
This corresponds to an instance of L

#”𝜏p with several instances of the type former indexed by
the polarities of its argument, e.g. four type formers⊗ indexed by the polarities 𝜀1 and 𝜀2 of
the left and right arguments. These can often be though of as being combinations of a single
type former with shifts, e.g. we have isomorphisms𝐴− −,+⊗ 𝐵+ ≅ ⇓𝐴− +,+⊗ 𝐵+, 𝐴+ +,−⊗ 𝐵− ≅ 𝐴+ +,+⊗ ⇓𝐵+ and 𝐴− −,−⊗ 𝐵− ≅ ⇓𝐴− +,+⊗ ⇓𝐵+
Conversely, while these presentations often do not define the shifts, they are often express-
ible: ⇑𝐴+ ≅ 1→ 𝐴+ and ⇓𝐴− ≅ 1 ⊗ 𝐴−
Most presentations therefore end up being more or less equivalent.

[CurFioMun16] “A Theory of Effects and Resources: Adjunction Models and Polarised Calculi”, Curien,
Fiore, and Munch-Maccagnoni, 2016

123

V. Polarized calculi with arbitrary constructors

Well-polarized terms

The type system in Figure V.1.5 can be weakened by replacing each type 𝐴𝜀 by its polarity𝜀, which yields the type system described in Figure .4.1 of the appendix. Terms that are
well-typed in this weaker system are called well-polarized:

Definition V.1.17

A termof L
#”𝜏p is said to bewell-polarized (resp. ill-polarized) when it is well-typed (resp.

ill-typed) in the type system described in Figure .4.1.

Fact V.1.18

Well-typed terms are well-polarized.

Proof

By induction on the derivation, replacing each type 𝐴𝜀 by its polarity 𝜀.
Many presentations of L-calculi in the litterature mostly focus on well-typed terms, and

can hence choose a presentation that allows ill-polarized terms in the syntax for the sake
of simplicity. Here, however, we want to study an untyped L-calculus, and must therefore
reject the ill-polarized terms explicitly. The L

#”𝜏p calculus (or rather its instances for specific
choices of #”𝜏) can be obtained from L-calculi of the litterature by restricting to well-polarized
terms.
The rigid treatment of polarities in the syntax of L

#”𝜏p ensures that all terms arewell-polarized:
Fact V.1.19

For any command 𝑐 (resp. expression 𝑡𝜀, evaluation context 𝑒𝜀) of L #”𝜏p, we have𝑐∶(𝛤 ⊢ 𝛥) (resp. 𝛤 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛥, 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛥)
if and only if 𝛤 and 𝛥map all free variables of 𝑐 (resp. 𝑡𝜀, 𝑒𝜀) to their polarities, i.e.𝛤 = # ”𝑥+∶+, #”𝑦−∶ − and 𝛥 = # ”𝛼+∶+, # ”𝛽−∶ −
with
FV(𝑐) ⊆ { # ”𝑥+, #”𝑦+, # ”𝛼+, # ”𝛽−} (resp. FV(𝑡𝜀) ⊆ { # ”𝑥+, #”𝑦+, # ”𝛼+, # ”𝛽−}, FV(𝑒𝜀) ⊆ { # ”𝑥+, #”𝑦+, # ”𝛼+, # ”𝛽−})
In particular, all terms of L

#”𝜏p are well-polarized.
Proof

The⇒ implication is by induction on the typing derivation, and the⇐ implication it
by induction on the syntax (using the structural rules to preserve the whole context

124

V. Polarized calculi with arbitrary constructors

through multiplicative rules).

125

V. Polarized calculi with arbitrary constructors

V.2. Intuitionistic and minimalistic polarized L-calculi: Li
#”𝜏p

and Lm
#”𝜏p

In this section, we start the process of transforming L
#”𝜏p into a corresponding 𝜆-calculus (𝛌 #”𝜏P

of Section V.5), by carving out its intuitionistic fragment Li
#”𝜏p and its minimalistic fragment

Lm
#”𝜏p. In a typed setting, those fragments correspond to the restrictions of classical logic to

minimal and intuitionistic logic respectively.

V.2.1. Intuitionistic and minimalistic fragments

Fragment definitions

It is well-known Gentzen’s sequent calculus for classical logic can be restricted to minimal
logic (resp. intuitionistic logic) by only considering sequents with exactly one (resp. at most
one) succedent. We define the minimalistic4 (resp. intuitionistic) fragment of L

#”𝜏p similarly:
Definition V.2.1

Given a set of nice type formers #”𝜏, a term of L
#”𝜏p is said to beminimalistically well-typed

(resp. intuitionisticallywell-typed) when there is a derivation of itswell-typedness that
only contains sequents with exactly one (resp. at most one) succedenta. This yields
the type system described in for minimalistically well-typed terms.
aThe number of conclusions of a sequent is the number of types on the right of the ⊢ symbol, so that
sequents with one succedent are those of the shape𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝐴𝜀), 𝛤 ⊢ 𝑡𝜀∶𝐴𝜀 ∣, or 𝛤 ∣ 𝑒𝜀1 ∶𝐴𝜀1 ⊢ 𝛼𝜀2 ∶𝐴𝜀2
and sequents with zero succedents are those of the shape𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝐴𝜀 ⊢

These restrictions can also be applied to the trivial type system that only accounts for
polarities:

Definition V.2.2

A term of L
#”𝜏p is said to beminimalistically well-polarized (resp. intuitionistically well-

polarized), orminimalistic (resp. intuitionistic), when there is a derivation of its well-
polarization that only contains sequents with exactly one (resp. at most one) succe-
dent. This yields the type system described in Figure V.2.1 for minimalistically well-
typed terms. We call minimalistic fragment (resp. intuitionistic fragment) of L

#”𝜏p, and
denote by Lm

#”𝜏p (resp. Li #”𝜏p), the subset of L #”𝜏p that consists of all minimalistically (resp.
intuitionistically) well-polarized terms.

4Since we use this adjective for many kinds of objects, including some that are equipped with a preorder (e.g.
terms with the observational preorder), we use “minimalistic” instead of “minimal” to avoid any ambiguity.

126

V. Polarized calculi with arbitrary constructors

Figure V.2.1: Well polarized Lm
#”𝜏p

Figure V.2.1.a: Core rules

𝑥𝜀∶𝜀 ⊢ 𝑥𝜀∶𝜀 ∣ (⊢ax) ∣ 𝛼𝜀∶𝜀 ⊢ 𝛼𝜀∶𝜀 (ax⊢)𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀)𝛤 ⊢ 𝜇𝛼𝜀.𝑐∶𝜀 ∣ (⊢𝜇) 𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟 (𝜇⊢)𝛤1 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛤2 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟⟨𝑡𝜀∣𝑒𝜀⟩𝜀∶(𝛤1, 𝛤2 ⊢ 𝛼𝜀𝑟∶𝜀𝑟) (cut)
Figure V.2.1.b: Structural rules (commands)(Inoperable (⊢w𝑐) rule) (Inoperable (⊢c𝑐) rule)𝑐∶(𝛤 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟) (w𝑐⊢) 𝑐∶(𝛤, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)𝑐[𝑦𝜀∕𝑥𝜀1, 𝑦𝜀∕𝑥𝜀2]∶(𝛤, 𝑦𝜀∶𝜀 ⊢ 𝛼𝜀𝑟∶𝜀𝑟) (c𝑐⊢)

(Inoperable (⊢p𝑐) rule) 𝑐∶(𝛤1, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀, 𝛤2 ⊢ 𝛼𝜀𝑟∶𝜀𝑟)𝑐∶(𝛤1, 𝑥𝜀2∶𝜀, 𝑥𝜀1∶𝜀, 𝛤2 ⊢ 𝛼𝜀𝑟∶𝜀𝑟) (p𝑐⊢)
Figure V.2.1.c: Structural rules (expressions)(Inoperable (⊢w𝑡) rule) (Inoperable (⊢c𝑡) rule)𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣ (w𝑡⊢) 𝛤, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0[𝑥𝜀∕𝑥𝜀1, 𝑥𝜀∕𝑥𝜀2]∶𝜀0 ∣ (c𝑡⊢)

(Inoperable (⊢p𝑡) rule) 𝛤1, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣𝛤1, 𝑥𝜀2∶𝜀, 𝑥𝜀1∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣ (p𝑡⊢)

127

V. Polarized calculi with arbitrary constructors

Figure V.2.1.d: Structural rules (evaluation contexts)(Inoperable (⊢w𝑒) rule) (Inoperable (⊢c𝑒) rule)𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟 (w𝑒⊢) 𝛤, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0[𝑥𝜀∕𝑥𝜀1, 𝑥𝜀∕𝑥𝜀2]∶𝜀0 ⊢ 𝛼𝜀𝑟∶𝜀𝑟 (c𝑒⊢)
(Inoperable (⊢p𝑒) rule) 𝛤1, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥𝛤1, 𝑥𝜀2∶𝜀, 𝑥𝜀1∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥 (p𝑒⊢)

Figure V.2.1.e: General shape of logic rules (assuming vs-sorted constructors)𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝜀𝑞+1 ⊢ 𝛼𝜀𝑟∶𝜀𝑟𝛤1, … , 𝛤𝑞+𝑟 ∣ ‘𝜏𝑗−𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠𝜀𝑞+1)∶ − ⊢ 𝛼𝜀𝑟∶𝜀𝑟 (‘𝜏𝑗−𝑘 ⊢)𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ 𝛼𝜀𝑟1 ∶𝜀𝑟) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ 𝛼𝜀𝑟𝑙 ∶𝜀𝑟)𝛤 ⊢ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , 𝛼1).𝑐1∣…∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 , 𝛼𝑙).𝑐𝑙>∶ − ∣ (⊢𝜏𝑗−)
𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣𝛤1, … , 𝛤𝑞 ⊢ v𝜏𝑗+𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 , … , 𝑠𝑟𝜀𝑞+𝑟)∶+ ∣ (⊢v𝜏𝑗+𝑘)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ 𝛼𝜀𝑟𝑟 ∶𝜀𝑟) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ 𝛼𝜀𝑟𝑟 ∶𝜀𝑟)𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙]∶+ ⊢ 𝛼𝜀𝑟𝑟 ∶𝜀𝑟 (𝜏𝑗+⊢)

128

V. Polarized calculi with arbitrary constructors

Figure V.2.1.f: Logic rules for multiplicative types𝑐∶(𝛤, 𝑥+∶+ ⊢ 𝛼−∶ −)𝛤 ⊢ 𝜇(𝑥+ ∙ 𝛼−).𝑐∶ − ∣ (⊢→) 𝛤1 ⊢ 𝑣+∶+ ∣ 𝛤2 ∣ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀𝛤1, 𝛤2 ∣ 𝑣+ ∙ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀 (→⊢)
(Inoperable (⊢`) rule) (Inoperable (`⊢) rule)𝛤1 ⊢ 𝑣1+∶+ ∣ 𝛤2 ⊢ 𝑣2+∶+ ∣𝛤1, 𝛤2 ⊢ (𝑣1+⊗𝑣2+)∶+ ∣ (⊢⊗) 𝑐∶(𝛤, 𝛼+∶+, 𝑦+∶+ ⊢ 𝛼𝜀∶𝜀)𝛤 ∣ 𝜇(𝑥+⊗𝑦−).𝑐∶+ ⊢ 𝛼𝜀∶𝜀 (⊗⊢)
(Inoperable (⊢⊥) rule) (Inoperable (⊥⊢) rule)
⊢ ()∶+ ∣ (1⊢) 𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀)𝛤 ∣ 𝜇().𝑐∶+ ⊢ 𝛼𝜀∶𝜀 (⊢1)

Figure V.2.1.g: Logic rules for additive types𝑐1∶(𝛤 ⊢ 𝛼−1 ∶ −) 𝑐2∶(𝛤 ⊢ 𝛼−2 ∶ −)𝛤 ⊢ 𝜇<(𝜋1 ∙ 𝛼−1).𝑐1∣(𝜋2 ∙ 𝛼−2).𝑐2>∶ − ∣ (⊢&) 𝛤 ∣ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀𝛤 ∣ 𝜋𝑖 ∙ 𝑠−∶ − ⊢ 𝛼𝜀∶𝜀 (&⊢)𝛤 ⊢ 𝑣+∶+ ∣𝛤 ⊢ 𝜄𝑖(𝑣+)∶+ ∣ (⊢⊕) 𝑐1∶(𝛤, 𝑥+1 ∶+ ⊢ 𝛼𝜀∶𝜀) 𝑐2∶(𝛤, 𝑥+2 ∶+ ⊢ 𝛼𝜀∶𝜀)𝛤 ∣ 𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]∶+ ⊢ 𝛼𝜀∶𝜀 (⊕⊢)
𝛤 ⊢ 𝜇<>∶ − ∣ (⊢⊤) (No (⊤⊢) rule)
(No (⊢0) rule) 𝛤 ∣ 𝜇[]∶+ ⊢ 𝛼𝜀∶𝜀 (0⊢)

Figure V.2.1.h: Logic rules for shifts𝑐∶(𝛤 ⊢ 𝛼+∶+)𝛤 ⊢ 𝜇{𝛼+}.𝑐∶ − ∣ (⊢⇑) 𝛤 ∣ 𝑠+∶+ ⊢ 𝛼𝜀∶𝜀𝛤 ∣ {𝑠+}∶ − ⊢ 𝛼𝜀∶𝜀 (⇑⊢)𝛤 ⊢ 𝑣−∶ − ∣𝛤 ⊢ {𝑣−}∶+ ∣ (⊢⇓) 𝑐∶(𝛤, 𝑥−∶ − ⊢ 𝛼𝜀∶𝜀)𝛤 ∣ 𝜇{𝑥−}.𝑐∶+ ⊢ 𝛼𝜀∶𝜀 (⇓⊢)

129

V. Polarized calculi with arbitrary constructors

Figure V.2.1.i: Logic rules for negations(Inoperable (⊢¬−) rule) (Inoperable (¬−⊢) rule)(Inoperable (⊢¬+) rule) (Inoperable (¬+⊢) rule)

130

V. Polarized calculi with arbitrary constructors

Inoperable rules

The restriction prevent the use of some some rules:

Definition V.2.3

A typing rule of L
#”𝜏p is said to be operable in Lm #”𝜏p (resp. operable in Li #”𝜏p) when there ex-

ists a derivation that a term isminimalistically (resp. intuitionistically)well-polarized
that uses an instance of that typing rule.

Example V.2.4

The core rules, the left structural rules, and the logic rules for→, ⇓, ⇑,⊗,⊕, &, 1, 0,
and ⊤ are operable in Lm

#”𝜏p, while the right structural rules and the logic rules for ¬−,¬+, `, and ⊥ are not.

Note that removing type formers whose typing rules are not operable does not change the
calculus, e.g.

Lm→⇓⇑¬−¬+⊗`⊕&1⊥0⊤p = Lm→⇓⇑⊗⊕&10⊤p
Operability of logic rules in Lm

#”𝜏p can be fully characterized via fairly simple criteria:
Fact V.2.5

For logic rules, we have:(‘𝜏𝑗−𝑘 ⊢) is operable in Lm #”𝜏p ⇔ ‘
𝜏𝑗−𝑘 has a single stack argument(⊢𝜏𝑗−) is operable in Lm #”𝜏p ⇔ ∀𝑘, ‘𝜏𝑗−𝑘 has a single stack argument(⊢v𝜏𝑗+𝑘) is operable in Lm #”𝜏p ⇔ v
𝜏𝑗+𝑘 has a no stack argument(𝜏𝑗+⊢) is operable in Lm #”𝜏p ⇔ ∀𝑘, v𝜏𝑗+𝑘 has a no stack argument

Proof

Proofs that rules are not operable and the⇒ implications are by case analysis on the
number of succedents in each sequent of the rule. Proofs that rules are operable and
the ⇐ implications simply exhibit a derivation in Lm

#”𝜏p that uses the rule. For (⊢𝜏𝑗−)
and (⊢v𝜏𝑗+𝑘), any derivation that

‘
𝜏𝑗−𝑘 (#”𝑥 , 𝛼𝜀, #”𝑦) and v

𝜏𝑗+𝑘 (#”𝑥)
are minimalistically well-polarized works, and for (𝜏𝑗−⊢) and (𝜏𝑗+⊢), any derivation

131

V. Polarized calculi with arbitrary constructors

that 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , 𝛼𝜀11 , #”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀11 ⟩𝜀1⋮
‘
𝜏𝑗−𝑙 (#”𝑥𝑙 , 𝛼𝜀𝑙𝑙 , #”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙𝑙 ⟩𝜀𝑙 > and 𝜇[v𝜏𝑗+1 (# ”𝑥1). ⟨𝑦𝜀1∣𝛼𝜀⟩𝜀⋮

v
𝜏𝑗+𝑙 (#”𝑥𝑙). ⟨𝑦𝜀𝑙 ∣𝛼𝜀⟩𝜀]

are minimalistically well-polarized works.

Operability of rules in Li
#”𝜏p is a bit more complex:

Example V.2.6

All rules that were operable in Lm
#”𝜏p are still operable in Li #”𝜏p. Among rules that were

inoperable in Lm
#”𝜏p, the right contraction rules, the right permutation rules, the weak-

ening rule for terms (⊢w𝑡), and the logic rule (⊢`) remain inoperable in Li #”𝜏p, while
the left logic rules (⊥⊢), (¬−⊢), and (¬+⊢) become operable in Li #”𝜏p. The operability
of the remaining rules depends on the ability to instanciate enough of the premises
with sequents that have no succedents. The rule (⊢⊥) (resp. (⊢¬−)) is always oper-
able in Li

#”𝜏p because this ability is provided by the corresponding left logic rule (⊥⊢)
(resp. (¬−⊢))a. The rules (⊢w𝑐), (⊢w𝑒), (`⊢), and (⊢¬+)may be operable in Li #”𝜏p or
not depending on what type formers are in #”𝜏: none are operable in Li`¬+p , the first two
are operable in Li`¬+0p while the latter two are not, and all four are operable in Li`¬+⊥p
and in Li⇑`¬+0p .
aIndeed, the 𝜂-expansion of 𝑥−𝜇(̃).⟨𝑥−∣(̃)⟩−, (resp. 𝜇¬−(𝑦+).𝑦⟨𝑥−∣¬−(𝑦+)⟩−)
is always in Li

#”𝜏p (assuming that ⊥ ∈ #”𝜏 (resp. ¬− ∈ #”𝜏)).
This characterization can most likely be generalized to arbitrary type formers by defining𝐗 = {𝜀 ∈ {+, − }∣the judgement 𝛤 ∣ 𝑠𝜀∶𝜀 ⊢ is derivable in Li

#”𝜏p for some 𝑠𝜀 and 𝛤}
(which is such that − ∈ 𝐗 implies + ∈ 𝐗 because we can form 𝜇𝑥+.⟨𝑦−∣𝑠−⟩−) and using
conditions such as “‘𝜏𝑗−𝑘 has at most one stack argument whose polarity is not in 𝐗”, but we
have no use for such a characterization, and therefore do not work out the details here.

Inclusions

We of course have inclusions:

Fact V.2.7

For any #”𝜏, we have
Lm

#”𝜏p ⊆ Li
#”𝜏p ⊊ L

#”𝜏p

132

V. Polarized calculi with arbitrary constructors

Proof

The inclusions are immediate. We have Li
#”𝜏p ⊉ L

#”𝜏p because for 𝛼𝜀 ≠ 𝛽𝜀,
Li

#”𝜏p ∌ ⟨𝜇𝛼𝜀.⟨𝑥𝜀∣𝛽𝜀⟩𝜀∣𝛽𝜀⟩𝜀 ∈ L
#”𝜏p

The first inclusion may be an equality or not depending on #”𝜏:
Fact V.2.8

The following are equivalent:
• (i) there exists a derivation of well-polarization which is valid in Li

#”𝜏p but not in
Lm

#”𝜏p;
• (ii) there exists a derivation of well-polarization which is valid in Li

#”𝜏p but not in
Lm

#”𝜏p, and whose conclusion is of the shape𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢
i.e. has no succedent;

• (iii) there exists a stack 𝑠𝜀 in Li #”𝜏p such that 𝛤 ∣ 𝑠𝜀∶𝜀 ⊢ is derivable for some 𝛤;
• (iv) at least one of the following holds:

– (a) there exists a stack constructor ‘𝜏𝑗−𝑘 with zero stack arguments (e.g.¬−(𝑣+) or (̃)); or
– (b) there exists a postitive type former 𝜏𝑗+ whose value constructors v𝜏𝑗+𝑘 all
have exactly one stack arguments (e.g. ¬+ or 0).

• (v) there exists a stack 𝑠𝜀 in Li #”𝜏p of the shape𝑠𝜀 = ‘𝜏𝑗−𝑘 (#”𝑥) (e.g. ¬−(𝑥+) or (̃))
or 𝑠𝜀 = 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼𝜀11 , #”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀11 ⟩𝜀1⋮

v
𝜏𝑗+𝑙 (#”𝑥𝑙 , 𝛼𝜀𝑙𝑙 , #”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙𝑙 ⟩𝜀𝑙] (e.g. 𝜇¬+(𝛼−).𝛼⟨𝑥−∣𝛼−⟩− or 𝜇[])

Furthermore, if all positive type formers in #”𝜏 have at least one constructor (i.e. there
are no copies of 0), then these are also equivalent to:

• (vi) Lm
#”𝜏p ⊊ Li

#”𝜏p.
In particular, for #”𝜏 ⊆ {→⇓⇑¬−¬+⊗`⊕&1⊥⊤}a, we have

Lm
#”𝜏p ⊊ Li

#”𝜏p ⇔ #”𝜏 ∩ {¬−¬+⊥} ≠ ∅
aNote the absence of 0.

133

V. Polarized calculi with arbitrary constructors

Proof sketch (See page 232 for details)

The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i) ⇐ (iv) are either immediate or
by induction on the derivation, and in the particular case, the implication (v) ⇒ (iv)
is immediate.

Straightforwardly minimalistic type formers

The restriction to sequents with exactly one (resp. at most one) conclusion is mostly used in
systems in which “classical” type formers have already been removed, and for an arbitrary
set of type formers #”𝜏, there might be some subtleties that Definition V.2.2 fails to consider5.
However, for some sets of type formers, no such subtleties arise:

Definition V.2.9

A negative type former is said to be straightforwardly minimalistic when all its rules
are operable in Lm

#”𝜏p, and a positive type former is said to be straightforwardly mini-
malisticwhen all its rules are operable in Lm

#”𝜏p and it has at least one constructor (i.e.
it is not a copy of 0).
Example V.2.10

The type formers→,⇓,⇑,⊗,⊕,&, 1, and⊤ are straightforwardlyminimalistic, while¬−, ¬+, `, 0, and ⊥ are not.

The restriction to type formers that are operable in Lm
#”𝜏p is fairly natural: we remove un-

wanted type formers before applying the restriction. The rejection of 0 is a bit harder to
justify, but is not completely unheard of6, not completely arbitrary7, and fairly harmless:

5For example, negations can not be used in Lm
#”𝜏p while some sequents with negations are provable in minimal

logic according to the ncatlab page on minimal logic.
6The type former 0 needs to be removed to ensure that the teleological version of 𝐈𝐋𝐋 is faithful [Gir11, p. 217].
7One could restrict 𝛤 ∣ 𝜇[]∶0 ⊢ 𝛥 (0⊢) to ∣ 𝜇[]∶0 ⊢
This would have no effect in L

#”𝜏p since the full rule would be derivable by composing the restricted rule with
weakening rules, but this would make the rule (0⊢) inoperable in Lm #”𝜏p.
Furthermore, this restriction can be seen as an instance of a natural and systematic transformation of

additive rules that allows them to have different contexts in their premises and takes their unions in the
conclusions, e.g. replacing𝑐1∶(𝛤, 𝑥+1 ∶𝐴1+ ⊢ 𝛥) 𝑐2∶(𝛤, 𝑥+2 ∶𝐴2+ ⊢ 𝛥)𝛤 ∣ 𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]∶𝐴1+ ⊕𝐴2+ ⊢ 𝛥 (⊕⊢) by

𝑐1∶(𝛤1, 𝑥+1 ∶𝐴1+ ⊢ 𝛥1) 𝑐2∶(𝛤2, 𝑥+2 ∶𝐴2+ ⊢ 𝛥2)𝛤1 ∪ 𝛤2 ∣ 𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]∶𝐴1+ ⊕𝐴2+ ⊢ 𝛥1 ∪ 𝛥2
For other additive types, this yields a more general rule which is derivable in L

#”𝜏p by composing the normal
rules with weakening rules, but for (0⊢), since there are no premises, we get the neutral element for context
union, i.e. the empty context.

134

https://ncatlab.org/nlab/show/minimal+logic

V. Polarized calculi with arbitrary constructors

Fact V.2.11

Given a set of straightforwardly minimalistic type formers #”𝜏, for any term 𝓉, we have𝓉′ ∈ Lm
#”𝜏0p ⇔ ∃𝓉 ∈ Lm

#”𝜏p, 𝓉 ∗0 𝓉′
i.e. terms of Lm

#”𝜏0p are exactly those of Lm
#”𝜏p with some positive stacks replaced by 𝜇[].

Proof

The ⇒ implication is by induction on the derivation that 𝓉′ ∈ Lm
#”𝜏0p , and the ⇐ im-

plication follows from Lm
#”𝜏p ⊆ Lm

#”𝜏0p and closure of Lm
#”𝜏0p under 0, which is proven by

induction on the derivation of 𝓉 0 𝓉′.
Restricting to straightforwardly minimalistic type formers forces all commands and eval-

uation contexts to have at least one free stack variable (which is crucial for):

Fact V.2.12

Given a set of straightforwardly minimalistic type formers #”𝜏, for any evaluation con-
text 𝑒𝜀 (resp. command 𝑐) of L #”𝜏p, we have|FV𝒮(𝑒𝜀)| ≥ 1 (resp. |FV𝒮(𝑐)| ≥ 1)
In particular, there are no derivations whose conclusion is of the shape𝛤 ∣ 𝑒𝜀∶𝜀 ⊢ (resp. 𝑐∶(𝛤 ⊢))
Proof

By induction on the derivation that 𝑒𝜀 (resp. 𝑐) is well-polarized. The restriction on
derivations follows by Fact V.1.19.

Note that this property fails if 0 ∈ #”𝜏:𝛤 ∣ 𝜇[]∶+ ⊢ 𝛼𝜀∶𝜀 but FV𝒮(𝜇[]) = ∅
By forbidding these judgements, the restriction to straightforwardlyminimalistic type for-

mers erases the distinction between Lm
#”𝜏p and Li #”𝜏p:

Fact V.2.13

For any set of straightforwardly minimalistic type formers #”𝜏, we have Lm #”𝜏p = Li
#”𝜏p.

Proof

By the previous fact.

135

V. Polarized calculi with arbitrary constructors

V.2.2. A syntax for the minimalistic fragment

Characterization of Lm
#”𝜏p via free stack variables

The Lm
#”𝜏p calculus can be characterized as a subcalculus of L #”𝜏p as follows:

Proposition V.2.14

Given a set of straightforwardly minimalistic type formers #”𝜏, a term 𝓉 of L #”𝜏p is in Lm #”𝜏p,
if and only if all of the following hold:

• for any subexpression 𝑡𝜀 of 𝓉, |FV𝒮(𝑡𝜀)| = 0;
• for any sub-evaluation-context 𝑒𝜀 of 𝓉, |FV𝒮(𝑒𝜀)| = 1; and
• for any subcommand 𝑐 of 𝓉, |FV𝒮(𝑐)| = 1 (and this last condition on commands
is redundant).

Proof

• ⇒ The≤ inequalities are given byFactV.1.19 and the≥ inequalities byFactV.2.12.
• ⇐ It suffices to remove all right weakening rules in the derivation. More pre-
cisely, we show by induction on the derivation that𝛤 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛥, (resp. 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛥, 𝑐∶(𝛤 ⊢ 𝛥))
implies 𝛤 ⊢m 𝑡𝜀∶𝜀 ∣, (resp. 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢m 𝛼𝜀⋆∶𝜀⋆, 𝑐∶(𝛤 ⊢m 𝛼𝜀⋆∶𝜀⋆))
for some 𝛼𝜀⋆ . For right weakening rules, we simply apply the induction hy-
pothesis to the premise, and for other rules, we apply the induction hypothesis
to the premises and then reapply the same rule. This works for the (⊢𝜏𝑗−) (resp.(⊢𝜇)) rule because the |FV𝒮(𝜇<…>)| = 0 (resp. |FV𝒮(𝜇𝛼𝜀.𝑐)| = 0) hypothesis
ensures that the free stack variables it binds are exactly those that are free in the
subcommands, and for the (𝜏𝑗+⊢) rule of types with more than one constructor
because the condition |FV𝒮(𝜇[…])| = 1 ensures that all the variables 𝛼𝜀⋆ given
by the induction hypothesis are the same.

• The condition on commands is redundant because|FV𝒮(⟨𝑡𝜀∣𝑒𝜀⟩𝜀)| = |FV𝒮(𝑡𝜀) ∪ FV𝒮(𝑒𝜀)| = |∅ ∪ FV𝒮(𝑒𝜀)| = |FV𝒮(𝑒𝜀)| = 1
Output polarities

The inferrence rules that define Lm
#”𝜏p can be seen as production rules of a general grammar

whose non-terminal symbols are the judgements, and whose terminal symbols are paren-

136

V. Polarized calculi with arbitrary constructors

theses and rule names: an inferrence rule
first premise … last premise

conclusion
name

becomes a production rule
conlusion→ name((first premise), … , (last premise))

This grammar is not really a syntax (i.e. it is not context-free) because there are infinitely
many distinct judgements. By Proposition V.2.14, we can discard 𝛤. This is not sufficient be-
cause𝛼𝜀⋆ ranges over infinitelymanynames, andwe cannot discard it because𝜇𝛽𝜀.⟨𝑥𝜀⋆ ∣𝛼𝜀⋆⟩𝜀⋆
being in Lm

#”𝜏p depends on whether 𝛼𝜀⋆ = 𝛽𝜀 or not. Instead, we switch to a presentation
where stack variable names 𝛼 are replace by de Bruijn indices ⋆0 , ⋆1 , and so on, and we
write⋆ for⋆0 . With this presentation, judgements are of the shape𝛤 ⊢ 𝑡𝜀∶𝜀 ∣, 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢⋆𝜀⋆∶𝜀⋆, or 𝑐∶(𝛤 ⊢⋆𝜀⋆∶𝜀⋆)
and 𝜇𝛽𝜀.⟨𝑥𝜀⋆ ∣⋆𝜀⋆⟩𝜀⋆ is in Lm #”𝜏p if and only if 𝛽𝜀 = ⋆𝜀⋆ . By erasing 𝛤 and replacing it by ®, we
get a finite set of judgements:

® ⊢ 𝑡+∶+ ∣ ® ⊢ 𝑡−∶ − ∣𝑐∶(® ⊢⋆+∶+) 𝑐∶(® ⊢⋆−∶ −)
® ∣ 𝑒+∶+ ⊢⋆+∶+ ® ∣ 𝑒+∶+ ⊢⋆−∶ −
® ∣ 𝑒−∶ − ⊢⋆+∶+ ® ∣ 𝑒−∶ − ⊢⋆−∶ −

We introduce concise notations that allowmaking explicit which one of these judgements
holds for the term under consideration:

Definition V.2.15

Given an evaluation context 𝑒𝜀 (resp. command 𝑐) of Lm #”𝜏p, we say that it has output
polarity 𝜀⋆ when there exists a derivation of𝑐∶(𝛤 ⊢⋆𝜀⋆∶𝜀⋆) (resp. 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢⋆𝜀⋆∶𝜀⋆)
for some 𝛤. We write 𝑒𝜀↝𝜀⋆ (resp. 𝑐↝𝜀⋆) for evaluation contexts 𝑒𝜀 (resp. commands 𝑐)
of output polarity 𝜀⋆. We call the polarity 𝜀 of a term 𝑡𝜀 (resp. evaluation context 𝑒𝜀) its
interaction polarity, and sometimes also call the interaction polarity 𝜀 of an evaluation
context 𝑒𝜀↝𝜀⋆ its input polarity.

A BNF grammar for Lm
#”𝜏p

137

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.2: The Lm
#”𝜏p calculus

Figure V.2.2.a: Syntax

Negative values / expressions: Negative stacks:𝑣−, 𝑤− ⩴ 𝑥−∣𝜇⋆−.𝑐↝− 𝑠−↝𝜀 ⩴ ⋆−} 𝜀=−∣𝜇<‘𝜏1−1 (# ”𝑥1 ,⋆𝜀1,1).𝑐1↝𝜀1,1 ∣…∣‘𝜏1−𝑙−1 (# ”𝑥𝑙−1 ,⋆𝜀1,𝑙−1).𝑐𝑙−1↝𝜀1,𝑙−1 > ∣‘𝜏1−1 (#”𝑣 , 𝑠𝜀1,1↝𝜀) ∣… ∣‘𝜏1−𝑙−1 (#”𝑣 , 𝑠𝜀1,𝑙−1 ↝𝜀)∣⋮ ∣⋮ ∣⋱∣⋮∣𝜇<‘𝜏𝑚−1 (# ”𝑥1 ,⋆𝜀𝑚,1).𝑐1↝𝜀𝑚,1 ∣…∣‘𝜏𝑚−𝑙−𝑚(# ”𝑥𝑙−𝑚 ,⋆𝜀𝑚,𝑙−𝑚).𝑐𝑙−𝑚↝𝜀𝑚,𝑙−𝑚> ∣‘𝜏𝑚−1 (#”𝑣 , 𝑠𝜀𝑚,1↝𝜀)∣… ∣‘𝜏𝑚−𝑙−𝑚(#”𝑣 , 𝑠𝜀𝑚,𝑙−𝑚↝𝜀)
Negative evaluation contexts:𝑒−↝𝜀 ⩴ stk−(𝑠−↝𝜀)∣𝜇𝑥−.𝑐↝𝜀

Positive values: Positive stacks / evaluation contexts:𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+↝𝜀, 𝑒+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀∣v𝜏1+1 (#”𝑣)∣… ∣v𝜏1+𝑙+1 (#”𝑣) ∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v𝜏1+𝑙+1 (# ”𝑥𝑙+1).𝑐𝑙+1↝𝜀]∣⋮ ∣⋱∣⋮ ∣⋮∣v𝜏𝑛+1 (#”𝑣)∣… ∣v𝜏𝑛+𝑙+𝑛 (#”𝑣) ∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v𝜏𝑛+𝑙+𝑛 (# ”𝑥𝑙+𝑛).𝑐𝑙+𝑛↝𝜀]
Positive expressions:𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇⋆+.𝑐↝+

Commands:𝑐↝𝜀 ⩴ ⟨𝑡+∣𝑒+↝𝜀⟩+∣⟨𝑡−∣𝑒−↝𝜀⟩−

138

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.2.b: Operational reduction ⟨𝜇⋆𝜀.𝑐↝𝜀∣𝑠𝜀⟩𝜀 𝜇 𝑐↝𝜀[𝑠𝜀∕⋆𝜀]⟨𝑣𝜀1 ∣𝜇𝑥𝜀1 .𝑐↝𝜀2⟩𝜀1 𝜇 𝑐↝𝜀2[𝑣𝜀1∕𝑥𝜀1]⟨𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1).𝑐1↝𝜀𝑗,1 ∣…∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙).𝑐𝑙↝𝜀𝑗,𝑙>∣‘𝜏𝑗−𝑘 (#”𝑣 , 𝑠𝜀𝑗,𝑘↝𝜀)⟩− 𝜏𝑗− 𝑐𝑘↝𝜀𝑗,𝑘[#”𝑣 ∕ # ”𝑥𝑘 , 𝑠𝜀𝑗,𝑘↝𝜀∕⋆𝜀𝑗,𝑘]⟨v𝜏𝑗+𝑘 (#”𝑣)∣𝜇[v𝜏𝑗+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v𝜏𝑗+𝑙 (𝑥𝑙).𝑐𝑙↝𝜀]⟩+ 𝜏𝑗+ 𝑐𝑘↝𝜀[#”𝑣 ∕ # ”𝑥𝑘]≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (⋃𝑗 𝜏𝑗+)
Figure V.2.2.c: Top-level 𝜂-expansion𝑡𝜀 𝜇 𝜇⋆𝜀.⟨𝑡𝜀∣⋆𝜀⟩𝜀𝑒𝜀1↝𝜀2 𝜇 𝜇𝑥𝜀1 .⟨𝑥𝜀1 ∣𝑒𝜀1↝𝜀2⟩𝜀1 if 𝑥𝜀1 fresh w.r.t. 𝑒𝜀1↝𝜀2𝑣− 𝜏𝑗− 𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1). ⟨𝑣−∣‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1)⟩−⋮

‘
𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙). ⟨𝑣−∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙)⟩− >if # ”𝑥1 , … , #”𝑥𝑙 fresh w.r.t. 𝑣−

𝑠+↝𝜀 𝜏𝑗+ 𝜇[v𝜏𝑗+1 (# ”𝑥1). ⟨v𝜏𝑗+1 (# ”𝑥1)∣𝑠+↝𝜀⟩+⋮
v
𝜏𝑗+𝑙 (#”𝑥𝑙). ⟨v𝜏𝑗+𝑙 (#”𝑥𝑙)∣𝑠+↝𝜀⟩+] if # ”𝑥1 , … , #”𝑥𝑙 fresh w.r.t. 𝑠+↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (⋃𝑗 𝜏𝑗+)

139

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.3: The Lm→⇓⇑⊗⊕&10⊤p calculus

Figure V.2.3.a: Syntax

Negative values / expressions: Negative stacks:𝑣−, 𝑤− ⩴ 𝑥−∣𝜇⋆−.𝑐↝− 𝑠−↝𝜀 ⩴ ⋆−} 𝜀=−∣𝜇(𝑥+ ∙⋆−).𝑐↝− ∣𝑣+ ∙ 𝑠−↝𝜀∣𝜇<(𝜋1 ∙ ⋆−).𝑐1↝−∣(𝜋2 ∙ ⋆−).𝑐2↝−> ∣𝜋1 ∙ 𝑠−↝𝜀∣𝜋2 ∙ 𝑠−↝𝜀∣𝜇{𝛼+}.𝑐 ∣{𝑠+↝𝜀}∣𝜇<>
Negative evaluation contexts:𝑒−↝𝜀 ⩴ stk−(𝑠−↝𝜀)∣𝜇𝑥−.𝑐↝𝜀

Positive values: Positive stacks / evaluation contexts:𝑣+, 𝑤+ ⩴ 𝑥+ 𝑠+↝𝜀, 𝑒+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀∣(𝑣+⊗𝑤+) ∣𝜇(𝑥+⊗𝑦+).𝑐↝𝜀∣𝜄1(𝑣+)∣𝜄2(𝑣+) ∣𝜇[𝜄1(𝑥+1).𝑐1↝𝜀∣𝜄2(𝑥+2).𝑐2↝𝜀]∣{𝑣−} ∣𝜇{𝑥−}.𝑐↝𝜀∣() ∣𝜇().𝑐↝𝜀
Positive expressions:𝑡+, 𝑢+ ⩴ val+(𝑣+)∣𝜇⋆+.𝑐↝+

Commands:𝑐↝𝜀 ⩴ ⟨𝑡+∣𝑒+↝𝜀⟩+∣⟨𝑡−∣𝑒−↝𝜀⟩−

140

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.3.b: Operational reduction ⟨𝜇⋆𝜀.𝑐↝𝜀∣𝑠𝜀⟩𝜀 𝜇 𝑐↝𝜀[𝑠𝜀∕⋆𝜀]⟨𝑣𝜀1 ∣𝜇𝑥𝜀1 .𝑐↝𝜀2⟩𝜀1 𝜇 𝑐↝𝜀2[𝑣𝜀1∕𝑥𝜀1]⟨𝜇(𝑥+ ∙⋆−).𝑐↝−∣𝑣+ ∙ 𝑠−↝𝜀⟩− → 𝑐↝−[𝑣+∕𝑥+, 𝑠−↝𝜀∕⋆−]⟨𝜇{⋆+}.𝑐↝+∣{𝑠+↝𝜀}⟩− ⇑ 𝑐↝+[𝑠+↝𝜀∕⋆+]⟨𝜇<(𝜋1 ∙ ⋆−).𝑐1↝−∣(𝜋2 ∙ ⋆−).𝑐2↝−>∣𝜋𝑖 ∙ 𝑠−↝𝜀⟩− & 𝑐𝑖↝−[𝑠−↝𝜀∕⋆−](⊤ is trivial)⟨{𝑣−}∣𝜇{𝑥−}.𝑐↝𝜀⟩+ ⇓ 𝑐↝𝜀[𝑣−∕𝑥−]⟨(𝑣+⊗𝑤+)∣𝜇(𝑥+⊗𝑦+).𝑐↝𝜀⟩+ ⊗ 𝑐↝𝜀[𝑣+∕𝑥+, 𝑤+∕𝑦+]⟨𝜄𝑖(𝑣+)∣𝜇[𝜄1(𝑥+1).𝑐1↝𝜀∣𝜄2(𝑥+2).𝑐2↝𝜀]⟩+ ⊕ 𝑐𝑖↝𝜀[𝑣+∕𝑥+𝑖]⟨()∣𝜇().𝑐↝𝜀⟩+ 1 𝑐↝𝜀≝ 𝜇 ∪ 𝜇 ∪ → ∪ & ∪ ⇑ ∪ ⊗ ∪ ⊕ ∪ ⇓ ∪ 1

141

V.
Polarized

calculiw
ith

arbitrary
constructors

Figure V.2.3.c: Top-level 𝜂-expansion𝑡𝜀 𝜇 𝜇⋆𝜀.⟨𝑡𝜀∣⋆𝜀⟩𝜀𝑒𝜀1↝𝜀2 𝜇 𝜇𝑥𝜀1 .⟨𝑥𝜀1 ∣𝑒𝜀1↝𝜀2⟩𝜀1 if 𝑥𝜀1 fresh w.r.t. 𝑒𝜀1↝𝜀2𝑣− 𝜏𝑗− 𝜇<‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1). ⟨𝑣−∣‘𝜏𝑗−1 (# ”𝑥1 ,⋆𝜀𝑗,1)⟩−⋮
‘
𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙). ⟨𝑣−∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 ,⋆𝜀𝑗,𝑙)⟩− >if # ”𝑥1 , … , #”𝑥𝑙 fresh w.r.t. 𝑣−

𝑠+↝𝜀 𝜏𝑗+ 𝜇[v𝜏𝑗+1 (# ”𝑥1). ⟨v𝜏𝑗+1 (# ”𝑥1)∣𝑠+↝𝜀⟩+⋮
v
𝜏𝑗+𝑙 (#”𝑥𝑙). ⟨v𝜏𝑗+𝑙 (#”𝑥𝑙)∣𝑠+↝𝜀⟩+] if # ”𝑥1 , … , #”𝑥𝑙 fresh w.r.t. 𝑠+↝𝜀

≝ 𝜇 ∪ 𝜇 ∪ (⋃𝑗 𝜏𝑗−) ∪ (⋃𝑗 𝜏𝑗+)142

V. Polarized calculi with arbitrary constructors

Given a set of straightforwardly minimalistic type formers #”𝜏, the syntax of the Lm #”𝜏p cal-
culus is given in Figure V.2.2a, where 𝜀𝑗,𝑘 denotes the (input) polarity of the stack argu-
ment of ‘𝜏𝑗−𝑘 . Note that although it is not explicit in the BNF grammar, the restriction to
straightforwardly minimalistic types only allows strictly positive 𝑙+𝑗 . Instanciated with #”𝜏 =→⇓⇑⊗⊕&10⊤, this yields Figure V.2.3a.
Since the main difference between the syntax of 𝑠𝜀↝+ and 𝑠𝜀↝− is only whether it contains⋆𝜀 or not (with 𝑠+↝+ containing⋆+, 𝑠−↝− containing⋆−, and neither 𝑠+↝− nor 𝑠−↝+ containing

any⋆𝜀), we avoid duplications by having side conditions in the grammar, e.g.𝑠+↝𝜀 ⩴ ⋆+} 𝜀=+
means that 𝑠+↝+ can be⋆+ but 𝑠+↝− can not. For example,𝑠+↝𝜀 ⩴ ⋆+} 𝜀=+∣𝜇𝑥+.𝑐↝𝜀∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v𝜏1+𝑙+1 (# ”𝑥𝑙+1).𝑐𝑙+1↝𝜀]∣⋮∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝𝜀∣…∣v𝜏𝑛+𝑙+𝑛 (# ”𝑥𝑙+𝑛).𝑐𝑙+𝑛↝𝜀]
stands for 𝑠+↝+ ⩴⋆+∣𝜇𝑥+.𝑐↝+∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝+∣…∣v𝜏1+𝑙+1 (# ”𝑥𝑙+1).𝑐𝑙+1↝+]∣⋮∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝+∣…∣v𝜏𝑛+𝑙+𝑛 (# ”𝑥𝑙+𝑛).𝑐𝑙+𝑛↝+]
and 𝑠+↝− ⩴ 𝜇𝑥+.𝑐↝−∣𝜇[v𝜏1+1 (# ”𝑥1).𝑐1↝−∣…∣v𝜏1+𝑙+1 (# ”𝑥𝑙+1).𝑐𝑙+1↝−]∣⋮∣𝜇[v𝜏𝑛+1 (# ”𝑥1).𝑐1↝−∣…∣v𝜏𝑛+𝑙+𝑛 (# ”𝑥𝑙+𝑛).𝑐𝑙+𝑛↝−]

Fact V.2.16

The grammar given in Figure V.2.2a describes exactly all minimalistic terms.

Proof

By Proposition V.2.14 and induction on the term.

143

V. Polarized calculi with arbitrary constructors

Remark V.2.17

For Li
#”𝜏p, there are three additional kinds of judgements𝑐∶(® ⊢), ® ∣ 𝑒+∶+ ⊢, and ® ∣ 𝑒−∶ − ⊢

Applying the same method as for Lm
#”𝜏p, we could introduce extra non-terminal sym-

bols 𝑐↝∅, 𝑒+↝∅, and 𝑒−↝∅ for the judgements above. This would yield a grammar that
tracks the uses of right weakening rules, which makes it ambiguous: there are two
derivations𝑐↝𝜀 → 𝜇[v𝜏𝑗+1 (# ”𝑥1 ,⋆𝜀).𝑐1↝𝜀∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 ,⋆𝜀).𝑐𝑙↝𝜀] →∗ 𝜇[v𝜏𝑗+1 (# ”𝑥1 ,⋆𝜀).𝑐1↝∅∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 ,⋆𝜀).𝑐𝑙↝∅]
and 𝑐↝𝜀 → 𝑐↝∅ → 𝜇[v𝜏𝑗+1 (# ”𝑥1 ,⋆𝜀).𝑐1↝∅∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 ,⋆𝜀).𝑐𝑙↝∅]
that correspond to applying (⊢w𝑡) before and after (𝜏𝑗+⊢) respectively. This grammar
can be made non-ambiguous by explicitly tracking the free stack variables, but the
resulting grammar would be fairly tedious to work with.

V.2.3. Properties

Disubstitutions

In Lm
#”𝜏p, we are only interested in some disubstitutions:

Definition V.2.18

A disubstitution is said to beminimalistic if its image is contained in Lm
#”𝜏p, and it acts

non-trivially on at most one stack variable⋆𝜀.
The Lm

#”𝜏p calculus is closed under minimalistic disubstiutions:
Fact V.2.19

For any minimalistic term 𝓉 and minimalistic disubstitution 𝜑, 𝑜[𝜑] is minimalistic
(resp. intuitionistic).

Proof

By induction on 𝓉.
Since expressions have no free stacks variables, a minimalistic disubstitution can always

be written as the composition of a value substitution and a stack substitution:

144

V. Polarized calculi with arbitrary constructors

Fact V.2.20

For any minimalistic disubstitution 𝜑 = 𝜎,⋆𝜀1 ↦ 𝑠𝜀1↝𝜀2 and minimalistic term 𝓉, we
have 𝓉[𝜑] = 𝓉[𝜎][𝑠𝜀1↝𝜀2∕⋆𝜀1]
Proof

By induction on 𝓉. The base case 𝓉 =⋆𝜀 is immediate, the base case 𝓉 = 𝑥𝜀 boils down
to the fact that 𝑥𝜀[𝜎] is an expression and therefore has no stack variable, and in all
the remaining cases, the induction hypothesis immediately allows to conclude.

Reductions

Descriptions of the restriction of and to Lm
#”𝜏p are given inFiguresV.2.2b andV.2.2c. Note in

particular that these only involve minimalistic disubstitutions, and Lm
#”𝜏p is therefore closed

under the operational reduction , top-level 𝜂-expansion , and 𝜂-reduction , and their re-
spective contextual closures , , and :

Fact V.2.21: Closure of Lm
#”𝜏p under

If 𝓉 𝓉′ and 𝓉 is minimalistic then so is 𝓉′.
Proof

Closure under follows from closure underminimalistic disubstitution (Fact V.2.19).
Closure under and is immediate. Closure under their contextual closures , and
follows by induction on the derivation.

Thanks to this closure property, disubstitutivity, confluence, postponement and factoriza-
tion transfer from L

#”𝜏p to Lm #”𝜏p:
Fact V.2.22

In Lm
#”𝜏p, the reductions , , , are disubstitutive.

Proof

Suppose that 𝓉 is a minimalistic term such that that 𝓉 ⇝ 𝓉′ for some reduction⇝ ∈ { , , , }, and let 𝜑 be a minimalistic (resp. intuitionistic) disubstitution. By
disubstitutivity in L

#”𝜏p of⇝, we have 𝑐[𝜑] ⇝ 𝑐′[𝜑]. By Fact V.2.19, 𝑐[𝜑] is minimalistic,
and by Fact V.2.21 so is 𝑐′[𝜑].

145

V. Polarized calculi with arbitrary constructors

Proposition V.2.23: Confluence of in Lm
#”𝜏p

In Lm
#”𝜏p, is confluent .

Proof

By confluence in L
#”𝜏p (Proposition ??) and closure of Lm #”𝜏p under (Fact V.2.21).

Proposition V.2.24: Postponement of ¬o after in Lm
#”𝜏p

In Lm
#”𝜏p, ¬o postpones after : if 𝓉 ∗ 𝓉′ then 𝓉 ∗ ¬o ∗ 𝓉′.

Proof

By postponement in L
#”𝜏p (Proposition ??) and closure of Lm #”𝜏p under (Fact V.2.21).

Proposition V.2.25: Factorization of ∗ as ∗ ¬o ∗ in Lm #”𝜏p
In Lm

#”𝜏p, ∗ factorizes as ∗ = ∗ ¬o ∗.
Proof

By factorization in L
#”𝜏p (Proposition ??) and closure of Lm #”𝜏p under (Fact V.2.21).

146

V. Polarized calculi with arbitrary constructors

V.3. A polarized 𝜆-calculus with focus equivalent to Lm
#”𝜏p: 𝜆 #”𝜏p

147

V. Polarized calculi with arbitrary constructors

V.4. Equivalence between 𝜆 #”𝜏p and Lm
#”𝜏p

148

V. Polarized calculi with arbitrary constructors

V.5. A polarized 𝜆-calculus: 𝛌 #”𝜏P

149

VI. Dynamically typed polarized calculi

150

VI. Dynamically typed polarized calculi

VI.1. Clashes and dynamically typed calculi

151

VI. Dynamically typed polarized calculi

VI.2. A dynamically typed polarized 𝜆-calculus: 𝛌𝒫𝒩P

152

VI. Dynamically typed polarized calculi

VI.3. A dynamically typed polarized 𝜆-calculus with focus:𝜆𝒫𝒩p

153

VI. Dynamically typed polarized calculi

VI.4. A dynamically typed polarized intuitionistic L calculus:
Li𝒫𝒩p

154

VI. Dynamically typed polarized calculi

VI.5. A dynamically typed polarized classical L calculus: L𝒫𝒩p

155

Part C.

Solvability in polarized calculi

156

Part C is about two well-known and very useful properties of 𝜆-terms: operational rele-
vance and solvability.
Most commondefinitions of solvability are optimized tomake proofs easier, which has the

unfortunate consequence of making it look like a fairly arbitrary notion that just happens
to have some use cases. This is of course not the case, and in this introduction we aim at
explaining why solvability is a very natural and useful notion when looking at semantics
of programming languages. In the 𝜆-calculus, it is well known that solvable expressions
are exactly the operationally relevant one and, as will be explained in the next section, this
can be understood as saying (somewhat indirectly) that the output of programs can be used
internally, i.e. as an intermediate result in a larger program.

Content

Contribution

157

Introduction to solvability and operational completeness

Goal and content The goal of this section is to explain what solvability and operational
relevance are, and why they are relevant to the study of real-world programming languages.
The common definitions of these notions in the 𝜆-calculus are very specialized, and some
only describe meaningful notions because of non-trivial properties of the 𝜆-calculus. We
therefore give slightly more general definitions that are easier to motivate, and equivalent to
the standard definitions when instanciated in the 𝜆-calculus (see Section ??). We then use
various fragments of the OCaml programming language to illustrate these definitions, and
demonstrate how somedesirable properties can be broken and restored by slightlymodifying
the programming language.

Caveats Definitions in the general setting may be slightly naive. Indeed, while formally
studying the extensions of the common definitions of the 𝜆-calculus to a large class of pro-
gramming languages is a very interesting perspective (because having several models makes
identifying the “nice” definitionsmuch easier1), this is not our goal here: the goal of this sec-
tion is only to provide some intuition. Furthermore, in this section, only definitions should
be considered formal. In particular, even though vague proof sketches are sometimes pro-
vided, any claim made between here and the start of Chapter VII should be understood as
being an informal and vague idea, and not a precise formal claim2. Indeed, ensuring that the
claims about the fragments of OCaml hold might require further restricting the definition
of the main fragment OCamlℤ in Example C.23, and formally proving them would require
a huge amount of work; but neither of these would be beneficial to our goal of providing
intuition, so we keep things informal and approximative.

Summary

C.1. A meaning for programs

Programs as maps from inputs to outputs The definitions of programming languages
take various fairly different shapes (ranging from “whatever the compiler / interpreter can
handle” to full formal specifications), all of which describe both a set of programs𝓟rog and a

1For example, if we only consider the ring of integersℤ instead of all (commutative ordered) rings (just like we
tend consider only the 𝜆-calculus instead of many calculi), we have an equivalence between being a neutral
element for addition and being strictly between −1 and 1 (just like we have an equivalence between being
operationally relevant and being solvable):∀𝑚, 𝑛 + 𝑚 = 𝑚 ⇔ − 1 < 𝑛 < 1
Since both properties are equivalent in ℤ, one might reasonably prefer using the the simplest one, i.e. the
right hand one. Instanciating both properties in other rings makes it clear that the two properties are not
equivalent in general (e.g. the equivalence fails in the ring of rational numbers ℚ), and that the left hand
property is “nicer”.

2This is emphasized by all of these claims being made either in the main text, in an example, or in a remark;
but never in a fact, proposition, or theorem environment.

3For example, the complexity of type inferrence might break some definitions or properties, so one might have
to require explicit type annotations everywhere and forbid GADTs and phantom types in OCamlℤ.

158

way to interpret a program𝓅 ∈ 𝓟rog as a partial function from inputs to outputs⟬𝓅⟭ ∶ 𝓘nput ⇀ 𝓞utput

This partial function can often be defined as⟬𝓅⟭ ∶ 𝓘nput ⇀ 𝓞utput𝒾 ↦ {output(𝓆) if initial_state(𝓅, 𝒾) ∗ 𝓆
undefined otherwise

where𝓢tate is a set of states equipped with

• a deterministic reduction ⊆ 𝓢tate ×𝓢tate

that represents evaluation, sometimes called the operational reduction;

• a function initial_state ∶ 𝓟rog ×𝓘nput → 𝓢tate

that combines a program and the input we want to run it into something that can be
evaluated, i.e. a state; and

• a partial function output ∶ {𝓆 ∈ 𝓢tate ∶ 𝓆 } ⇀ 𝐎𝐮𝐭𝐩𝐮𝐭
recovers the output from the state at the end of the evaluation.

Example C.1

For real-world programming languages, one can think of 𝓢tate as being the set of all
possible states of the computer, of initial_state(𝓅, 𝒾) as compiling the program𝓅 and
placing the result of the compilation alongside the input 𝒾 at the correctmemory loca-
tions to make the computer execute the program𝓅with input 𝒾, of as representing
the progress made during one tick of the processor, and of the output function as
reading the part of memory that contains the output of the program.

Example C.2

WedefineOCamlℤ as the programming languagewhose programs areOCaml expres-
sionsa of type Z.t → Z.t with no free variables, where Z.t is the type of unbounded
integers provided by the Zarith libraryb. An OCamlℤ program 𝓅 is evaluated on an
input 𝒾 ∈ ℤ by wrapping it in the boilerplate code described in Figure C.1c, storing
the result in a file program.ml, and then running the Bash command

ocamlbuild −use−ocamlfind −package zarith program.byte −− 𝒾
We leave implicit some coercions Z.of_int (even though the OCaml compiler does
not like that), e.g. writing

fun n → n + 1 for fun n → n + Z.of_int 1

159

To make reasoning about the programs easier, we slightly restrict how the programs𝓅 of OCamlℤ can be written:
• Variable shadowing is disallowed for every name used in the Pervasives and Z
modules. This for example ensures that the symbols +, −, ∗ and / always refer
to the corresponding arithmetic operations on Z.t.

• Using non-OCaml code through bindings is forbidden, except Sys.argv and
those provided by the Zmodule. This ensures that the behavior of the program
is not affected by its environment (i.e. the OS, the file system, etc.), and that
abstractions can not be brokend.

Each program𝓅 represents a partial function ⟬𝓅⟭ ∶ ℤ ⇀ ℤ. For example,⟬fun n → n⟭ = ⟬fun n → n + 2 − 2⟭ = ⟬fun n → n ∗ 2 / 2⟭ = Idℤ
but ⟬fun n → n ∗ n / n⟭ = Idℤ⧵{0}
i.e. ⟬fun n → n ∗ n / n⟭(𝒾) = {𝒾 if 𝒾 ≠ 0

undefinedif 𝒾 = 0
because the program fun n → n ∗ n / n raises a Division_by_zero exception on input
0. Recall that inOCaml, those exceptions can be caught by using a try-with statement,
e.g. ⟬fun n → try n ∗ n / n with Division_by_zero→9⟭(0) = 9
We write OCaml¬tryℤ for the fragment of OCamlℤ with no try-with statements.
aThe syntax of OCaml expressions is given at https://ocaml.org/manual/expr.html
bWe use the type of unbounded integers Z.t from the Zarith library instead of the type int to avoid
any subtleties due to overflows.

cThe boilerplate checks that the program was given a single argument input_str, converts it to an
unbounded integer input, computes the output by running the main function on the input, and
finally prints the output.

dFor example, using Obj.magic, one can observe values of unknown type in polymorphic functions,
hence breaking parametricity.

There aremanyways to instanciate the notions in 𝜆-calculi, but for nowwe only use a call-
by-name one and a call-by-value one (see and formore instanciations, and a discussion
of their relationship):

Example C.3

In the call-by-name 𝜆-calculus 𝛌→N, we define programs as being closed terms, inputs
as being closed stacks (i.e. stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁 = ◽𝑈1N…𝑈𝑞N with each 𝑈𝑘N closed), the opera-
tional reduction is the weak head reduction 𝑁 , and the set of outputs is trivial (i.e.

160

https://ocaml.org/manual/expr.html

Figure C.1: An OCamlℤ program𝓅 with its implicit boilerplate

let main : Z . t → Z . t =
let open Z in𝓅

in
let input =

match Sys . argv with
| [| _ ; input_str |] → Z . of_string_base 10 input_str
| _ → failwith "Unexpected␣usage!"

in
let output = main input in
Z . print output

it is a singleton𝓞utput = {∙}), so that:⟬𝑇N⟭N ∶ 𝐒N ⇀ {∙}
◽ # ”𝑈𝑁 ↦ ⎧⎨⎩∙ if 𝑇N # ”𝑈𝑁 ⊛𝑁

undefined if 𝑇N # ”𝑈𝑁 𝜔𝑁
This corresponds to the so-called lazy 𝜆-calculus [Abr90].
In the call-by-value 𝜆-calculus 𝛌→V , we again define programs as being closed terms,

inputs as being closed simple stacks (i.e. simple stacks 𝑆̊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑉 = ◽𝑉1V …𝑉𝑞V with each 𝑉𝑘V
closed), and outputs as being trivial, but the reduction is now the call-by-value
operational reduction 𝑉 :⟬𝑇V⟭V ∶ 𝐒̊𝑉 ⇀ {∙}

◽ # ”𝑉𝑉 ↦ ⎧⎨⎩∙ if 𝑇V # ”𝑉𝑉 ⊛𝑉
undefined if 𝑇V # ”𝑉𝑉 𝜔𝑉

Comparing programs The semantics ⟬ ⋅ ⟭ induces a preorder≾defined by𝓅1 ≾ 𝓅2mean-
ing that ⟬𝓅1⟭ is a restriction of ⟬𝓅2⟭, i.e. that whenever ⟬𝓅1⟭(𝐼) is defined, so is ⟬𝓅2⟭(𝐼) and
they are equal:

Definition C.4

The preorder ≾ is defined on programs by𝓅1 ≾ 𝓅2 ≝ ⟬𝓅1⟭ ⊆ ⟬𝓅2⟭
Having 𝓅1 ≾ 𝓅2 means that we can replace 𝓅1 by 𝓅2 without breaking anything: if 𝓅1

161

computes what we want, then so does 𝓅2. The preorder in turn induces an equivalence
relation ∼ and a strict preorder ≺:

• 𝓅1 ∼ 𝓅1 means that𝓅1 and𝓅2 are interchangeable;
• 𝓅1 ≺ 𝓅2 means that𝓅1 can be safely replaced by𝓅2 while the reverse replacement is
not safe.

More formally:

Definition C.5

The equivalence relation ∼ and the strict preorder ≺ are defined by:𝓅1 ∼ 𝓅2 ≝ ⟬𝓅1⟭ = ⟬𝓅2⟭ and 𝓅1 ≺ 𝓅2 ≝ ⟬𝓅1⟭ ⊊ ⟬𝓅2⟭
Example C.6

In OCamlℤ, we have
fun n → n ∗ n / n ≺ fun n → n ∼ fun n → n + n − n

Indeed, since there are no overflows, for inputs 𝒾 ≠ 0, we have⟬fun n → n ∗ n / n⟭(𝒾) = ⟬fun n → n⟭(𝒾) = ⟬fun n → n + n − n⟭(𝒾) = 𝒾
On input 0, we also have⟬fun n → n⟭(0) = ⟬fun n → n + n − n⟭(0) = 0
but ⟬fun n → n ∗ n / n⟭(0) = undefined
because a Division_by_zero exception is raised.

C.2. A compositional meaning for fragments

Fragments and plugging In order to study ⟬𝓅⟭ in a compositional way, we want to look
at how it is affected when some fragment of 𝓅 changes. We therefore assume that the syn-
tax of the programming language is given by a (non-ambiguous) formal grammar (e.g. a
BNF / context-free grammar), so that a program 𝓅 can be represented by a syntax tree, and
fragments of 𝓅 can be represented by (not necessarily downward closed4) subtrees of that
tree.
More precisely:

4

162

Definition C.7

Given a non-ambiguous formal grammar𝓖, and a non-terminal symbol 𝔄 of𝓖, we
write𝓣erm(𝔄) for the set of syntax tree generated by 𝔄. We call term, and denote by𝓉, any element of the set 𝓣erm ≝ ⋃𝔄 𝓣erm(𝔄)
Given𝑛 non-terminal symbols𝔄1, … ,𝔄𝑛 of𝓖, wewrite𝓖(𝔄1, … ,𝔄𝑛) for the gram-

mar 𝓖 extended by the terminal symbols ◽1𝔄1 , … , ◽𝑛𝔄𝑛 , which we call holes, and the
production rules 𝔄𝑘 → ◽𝑘𝔄𝑘 . Given 𝑛 + 1 non-terminal symbols 𝔄1, … ,𝔄𝑛, and 𝔅
of 𝓖, we write 𝓕rag(𝔄1 ⊗⋯⊗𝔄𝑛, 𝔅) for the set of syntax trees generated by 𝔅 in𝓖(𝔄1, … ,𝔄𝑛) in which each hole ◽1𝔄1 , … , ◽𝑛𝔄𝑛 occurs exactly oncea. We call fragment,
and denote by 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻, any element of the set𝓕rag ≝ ⋃𝑛 ⋃𝔄1,…,𝔄𝑛

⋃𝔅 𝓕rag(𝔄1 ⊗⋯⊗𝔄𝑛, 𝔅)
We call the number 𝑛 of holes in a fragment its arity.
Given two non-terminal symbols𝔄 and𝔅, we define𝓒ontext(𝔄,𝔅) ≝ 𝓕rag(𝔄,𝔅)

We call context, and denote by 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, any element of the set𝓒ontext ≝ ⋃𝔄 ⋃𝔅 𝓒ontext(𝔄,𝔅)
aIt would also be reasonable to require the holes ◽1𝔄1 , … , ◽𝑛𝔄𝑛 to appear in this exact order (from left to
right). While this would make fragments slightly simpler, it would a priori make some definitions
more tedious. For example, “∃𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 𝓉, ◽ ≂ ◽” (i.e. uniform solvability of an term 𝓉, see) might
need to be replaced by “∃𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 𝓉, ◽ ≂ ◽ or ∃𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 ◽, 𝓉 ≂ ◽”.

Since all programs are part of the syntax, we have𝓟rog ⊆ 𝓣erm, and this inclusion is often
strict:

Example C.8

In OCamlℤ, terms are those described by the OCaml syntax, and we have𝓅 = fun m → m + 2 ∈ 𝓟rog ⊆ 𝓣erm(expr) ⊆ 𝓣erm

(because programs are closed OCaml expressions of type Z.t → Z.t), but𝓉1 = fun m → n + 3 ∈ 𝓣erm ⧵𝓟rog

and 𝓉2 = 4 ∈ 𝓣erm ⧵𝓟rog

because 𝓉1 is not closed and 𝓉2 is not of type Z.t → Z.t. We also have𝓉3 = Z.t ∈ 𝓣erm(typexpr) ⊆ 𝓣erm ⧵𝓟rog

163

https://ocaml.org/manual/expr.html

Definition C.9

We call plugging the operation𝓕rag(𝑛⨂𝑘=1 𝔅𝑘, ℭ) ×𝓕rag(𝑚1⨂𝑗=1 𝔄1,𝑗, 𝔅1) ×⋯ ×𝓕rag(𝑚𝑛⨂𝑗=1 𝔄𝑛,𝑗, 𝔅𝑛) → 𝓕rag(𝑛⨂𝑘=1 𝑚𝑘⨂𝑗=1 𝔄𝑘,𝑗, ℭ)(𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0, 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … , 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛) ↦ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … , 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛
where 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … ,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛 denotes the result of simultaneously replacing each hole◽𝑘𝔅𝑘 of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0
by 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑘 (with its holes shifteda). When (𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … ,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛) is in the domain of this function,
we say that 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … ,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛 are pluggable in 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0.
aGiven fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … , 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛 of respective arities 𝑚1, … ,𝑚𝑛, we want want 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, … , 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛 to have arity𝑚1 + ⋯ + 𝑚𝑛, with its first 𝑚1 holes corresponding to the holes of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, ..., and its last 𝑚𝑛 holes
corresponding to the holes of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛. We therefore replace each hole ◽𝑗𝔄𝑘,𝑗 by ◽𝑚1+⋯+𝑚𝑘−1+𝑗𝔄𝑘,𝑗 .

Example C.10

In OCamlℤ,
• 𝓅 = fun m → m + 2 ∈ 𝓟rog ⊆ 𝓣erm(expr),
• 𝓉 = n + 3 ∈ 𝓣erm(expr) ⧵𝓟rog, and

• 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 = fun n → ◽1 (n ∗ ◽2) ∈ 𝓕rag(expr⊗ expr, expr)
can be combined to form the program𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 𝓅, 𝓉 = fun n → (fun m → m + 2) (n ∗ (n + 3)) ∈ 𝓟rog ⊆ 𝓣erm(expr)
However, 𝓉 is not pluggable in𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun (m : ◽)→ m + 2 ∈ 𝓒ontext(typexpr, expr)
because 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 expects a type expression (i.e. an element of𝓣erm(typexpr)) while 𝓉 is an
expression (i.e. an element of𝓣erm(expr)).
Plugging is associative, so that fragments (resp. contexts) form amulticategory5 (resp. cat-

egory) with plugging as the composition operation. In particular, given a non-terminal sym-
bol 𝔄, plugging induces a monoid structure on 𝓒ontext(𝔄,𝔄) and an action of that monoid
on𝓣erm(𝔄).

5Objects are the non-terminal symbols of the grammar, the sets of morphism are sets of fragments𝓕rag(𝐴1 ⊗⋯⊗𝐴𝑛, 𝐵), and composition is the plugging operation.
164

Notation C.11

We sometimes abbreviate the names as follows:𝓟 ntn= 𝓟rog, 𝓣 ntn= 𝓣erm, 𝓚 ntn= 𝓒ontext, and 𝓕 ntn= 𝓕rag

Program-preserving observational preorder and equivalence Wenowwant to extend≾
to a relation ⊑ on fragments that allows us to study ≾ it in a compositional way. Intuitively,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 should mean that we can always replace 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 by 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 without breaking the surrounding
program, i.e that replacing 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 by 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 in a program 𝓅1 = 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 yields a program 𝓅2 =𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 such that𝓅1 ≾ 𝓅2.
For both 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 to both make sense, the two fragments must of course be

compatible:

Definition C.12

We say that two fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 are compatible, and write 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⎶ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2, when they
are in the same set𝓕rag(𝔄1 ⊗⋯⊗𝔄𝑛, 𝔅):𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⎶ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ ∃𝑛, ∃𝔄1, … , ∃𝔄𝑛, ∃𝔅,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ∈ 𝓕rag(𝔄1 ⊗⋯⊗𝔄𝑛, 𝔅) ∋ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2
We can then define a relation ⊑ the formalizes the intuition given above as follows:

Definition C.13

The program-preserving observational preorder ⊑ is defined on pairs of compatible
fragments (𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2) ∈ 𝓕rag(#”𝔄,𝔅)2 by
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ ∀ℭ, ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈𝓚(𝔅,ℭ), ∀ #”𝓉 ∈ 𝓣(#”𝔄),𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟 ⇒ ⎧⎨⎩𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟, and𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ≾ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
(where 𝓣erm(𝔄1, … ,𝔄𝑛) ntn= 𝓣erm(𝔄1) × ⋯ × 𝓣erm(𝔄𝑛)), and in particular, on terms(𝓉1, 𝓉2) ∈ 𝓣erm(𝔅)2,𝓉1 ⊑ 𝓉2 ≝ ∀ℭ, ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext(𝔅,ℭ), 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟rog ⇒ {𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟rog, and𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ≾ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2
The program-preserving observational equivalence ≂ is the equivalence relation in-
duced by ⊑: 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ≂ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊒ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2
The strict program-preserving observational preorder ⊏ is the strict preorder induced
by ⊑: 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊏ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 but 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⋣ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2

165

Remark C.14

It is immediate that𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ⇔ ∀ #”𝓉 ∈ 𝓣erm(#”𝔄),𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
so that one may wonder why ⊑ is defined on all fragments and not just on terms.
The answer is that it makes the definition more resilient to changes of syntax. For
example, if we restricted ⊑ to terms, it would be defined on stacks 𝑠n = 𝑡1n ∙ … ∙ 𝑡𝑞n ∙⋆𝑛
of Li𝑛→ (which are terms 𝓉), but not on stacks 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛 = ◽𝑇1N…𝑇𝑞N of 𝜆→n (which are contexts𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀), even though Li𝑛→ and 𝜆→n are basically the same calculus.
The program-preserving observational preorder ⊑ (resp. equivalence ≂) can equivalently

be expressed as the intersection ⊑ = P ∩ ⊑▪ (resp. ≂ = B ∩ ≂▪) of two simpler relations:
Definition C.15

The program-preserving preorder P is defined onpairs of compatible fragments (𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2) ∈𝓕rag(#”𝔄,𝔅)2 by𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 P 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ ∀ℭ, ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext(𝔅,ℭ), ∀ #”𝓉 ∈ 𝓣erm(#”𝔄),𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog

The program-preserving equivalence B is the equivalence relation induced by P :𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 B 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 P 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 P 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2⇔ ∀ℭ, ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext(𝔅,ℭ), ∀ #”𝓉 ∈ 𝓣erm(#”𝔄),𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog ⇔ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog

Definition C.16

The ≾-testing observational relation ⊑▪ is defined on pairs of compatible fragments(𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2) ∈ 𝓕rag(#”𝔄,𝔅)2 by
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑▪ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ ∀ℭ, ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext(𝔅,ℭ), ∀ #”𝓉 ∈ 𝓣erm(#”𝔄), 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog

⎫⎬⎭ ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ≾ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
The ∼-testing observational relation ≂▪ is the symmetric interior of ⊑▪ :𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ≂▪ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑▪ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊒▪ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2⇔ ∀ℭ, ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext(𝔅,ℭ), ∀ #”𝓉 ∈ 𝓣erm(#”𝔄), 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog

⎫⎬⎭ ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∼ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
While ⊑ and P (resp. ≂ and B) are always preorders (resp. equivalences), ⊑▪ (resp. ≂▪) may

not be because it may not be transitive (as will be explained in), which is why we use the
word “relation” in place of “preorder” (resp. “equivalence”), and say “symmetric interior”

166

instead of “induced equivalence”.

Remark C.17

The equivalence 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ≂ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ⇔ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 B 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ≂▪ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2
means that invariants preserved by ≂ are exactly those that are preserved by eitherB or ≂▪ , which can be though of as being syntactic and semantic respectively (see the
next paragraphs). Similarly, P and ⊑▪ can be though of as being the syntactic and
semantic parts of ⊑ respectively.

Example C.18

In OCaml¬tryℤ , we have
n ∗ n / n ⊏ n : Z.t ≂ n + n − n

where the inequality being strict is due to n ∗ n / n raising an exception when n is 0,
e.g. under 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun n → ◽ on input 𝒾 = 0.
We assert that n is of type Z.t (i.e. use n : Z.t and not n) to account for the fact that

it is implicitly asserted in the other two terms by the use of the arithmetic operations.
With n, we would instead have

n ∗ n / n ⊏ n ⊐ n + n − n

because
n : Z.t ⊏ n

Indeed, we have:

• n : Z.t ≂▪ n because types are erased before evaluation, so if both𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n : Z.t and𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n are programs, they behave the same way; and

• n : Z.t P n because the type checker can always infer that n has type Z.t when
needed; but

• n : Z.t ̸ P n because 𝑛may have a type which is incompatible with Z.t, e.g. the
context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun m → let n : string = "a"in let _ = ◽ in 0
is such that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n is a program while 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n : Z.t is ill-typed and therefore not a
program.

167

Example C.19

In OCamlℤ, we still have
n : Z.t ≂ n ∗ n / n

but n ∗ n / n and n : Z.t are no longer ⊑-comparable:
n ∗ n / n ⋢ n : Z.t and n ∗ n / n ⋣ n : Z.t

This follows from the possibility of catching the Division_by_zero exception and re-
turning a non-zero integers, which allows the two induced programs to return differ-
ent outputs on input 0. For example, with𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun n → try ◽ with Division_by_zero→1
we have⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n ∗ n / n⟭(0) = ⟬fun n → try n ∗ n / n with Division_by_zero→1⟭(0) = 1
and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n : Z.t⟭(0) = ⟬fun n → try n : Z.t with Division_by_zero→1⟭(0) = 0
so that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n ∗ n / n ̸≾ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n : Z.t and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n ∗ n / n ̸≿ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n : Z.t
Since 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n ∗ n / n and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 n : Z.t are programs, this allows to conclude that

n ∗ n / n ⋢▪ n : Z.t and n ∗ n / n ⋣▪ n : Z.t

The observational preorder ⊑ is a preorder which is:

• compositional, i.e. for pairwise compatible fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0
�
⎶ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0

�
, … ,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛

�
⎶ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛

�
such

that 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1
�
, … ,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛

�
are pluggable in 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0

�
and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1

�
, … ,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛

�
are pluggable in 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0

�
, we have(∀𝑘 ∈ {0, … , 𝑛}, 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑘

�
⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑘

�) ⇒ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0
�
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1
�
, … , 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛

�
⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻0

�
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1
�
, … , 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝑛

�

In particular, for any contexts (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀�, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀�) ∈ 𝓒ontext(𝔄,𝔅)2 and terms (𝓉�, 𝓉�) ∈ 𝓣erm(𝔄)2,
we have 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� ⊑ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� and 𝓉� ⊑ 𝓉� ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉� ⊑ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉�

• sound with respect to ≾ on programs, i.e. for any programs𝓅1 and𝓅2,𝓅1 ⊑ 𝓅2 ⇒ 𝓅1 ≾ 𝓅2
• program-preserving, i.e. for any terms 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ⇒ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ∈ 𝓟rog ⇒ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ∈ 𝓟rog

Similarly, the program-preserving observational equivalence≂ is compositional, soundwith
respect to ∼ on programs, and program-preserving. However, in general, ⊑ (resp. ≂) is not
complete with respect to ≾ (resp. ∼):

168

Example C.20

Let OCamldebugℤ be a variant of OCamlℤ obtained by replacing the implicit boilerplate
code by the code given in Figure C.2 to allow for a −−debug option whose presence
can be checked by a program via the !debug booleana. We make the debug boolean
mutable so that debugging can be enabled manually in specific parts of the code if
necessary. In this context, the programs𝓅1 = fun n → debug := true; n and 𝓅2 = fun n → debug := false; n
represent the same partial functions, i.e. 𝓅1 ∼ 𝓅2. However, the program-preserving
observational equivalence does not equate them, i.e. 𝓅1 ≂̸ 𝓅2. Indeed, the context𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun n → let _ = ◽ in if !debug then 1 else 2
yields programs 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅1 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅2 such that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅1 ≁ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅2 : for any input 𝑛,⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅1 ⟭(𝑛) = 1 ≠ 2 = ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅2 ⟭(𝑛)
aWhere ! is the dereference operator of OCaml (and not negation).

Figure C.2: The OCamldebugℤ boilerplate code

let main : Z . t → Z . t =
let open Z in𝓅

in
let debug = ref false in
let input =

match Sys . argv with
| [| _ ; input_str |] → Z . of_string_base 10 input_str
| [| _ ; input_str ; "--debug" |]
| [| _ ; "--debug" ; input_str |] →

debug := true ; Z . of_string_base 10 input_str
| _ → failwith "Unexpected␣usage!"

in
let output = main input in
Z . print output

Example C.21

In OCamlℤ, this also happens for programs that raise distinct exceptions (that can be
caught). For example, the programs𝓅1 = fun _ → 1/0 and 𝓅2 = let rec g m = m :: (g (m+1)) in g 0

169

or equivalently𝓅1 = fun _ → raise Division_by_zero and 𝓅2 = fun _ → raise Stack_overflow

both raise an exception on all inputs, and are hence equivalent as programs, i.e. 𝓅1 ∼𝓅2, because they induce the nowhere-defined function:⟬𝓅1⟭ = ∅ = ⟬𝓅2⟭
However, since they raise distinct exceptions, they are not equated by the program-
preserving observational equivalence, i.e. 𝓅1 ̸≂ 𝓅2. Indeed, the context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 defined
as

try ◽ with
| Division_by_zero → 1
| Stack_overflow → 2

distinguishes the two kinds of exceptions: for any input 𝑛, we have:⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅1 ⟭(𝑛) = 1 ≠ 2 = ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅2 ⟭(𝑛)
Program preservation: a displeasingly strong syntactic invariant Theprogram-preserving
preorder is very syntactic in nature:

Example C.22

In OCamlℤ, for simple-enough terms (say those that only use arithmetic operations,
functions, if-then-else statements and loops) 𝓉1 and 𝓉2, we have𝓉1 P 𝓉2 ⇔ (∀Γ, ∀𝐵, Γ ⊢ 𝓉1∶𝐵 ⇒ Γ ⊢ 𝓉2∶𝐵)
where Γ is a typing context and 𝐵 is a type. Indeed, given Γ = x1 : 𝐴1, ..., xq : 𝐴𝑞,
we can define 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun (x1 : 𝐴1) ... (xq : 𝐴𝑞)→(◽ : B)
and we have Γ ⊢ 𝓉𝑖∶B ⇔ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉𝑖 ∈ 𝓟rog

For more complex terms, a similar characterization most likely exists, but Γ and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀
may also need to account for declared modules, exceptions etc.

Example C.23

Similarly, in the weak untyped call-by-name / call-by-value 𝜆-calculus, for two 𝜆-
terms 𝓉1 and 𝓉2, we have 𝓉1 P 𝓉2 ⇔ FV(𝓉1) ⊇ FV(𝓉2)
Indeed, given a set of variables {𝑥1, … , 𝑥𝑞}, we can define𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = 𝜆𝑥1.… 𝜆𝑥𝑞.◽

170

and we have
FV(𝓉𝑖) ⊆ {𝑥1, … , 𝑥𝑞} ⇔ FV(𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉𝑖) = ∅ ⇔ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉𝑖 ∈ 𝓟rog

This makes ⊑ and ≂ fairly tedious to work with directly because one has to repeatedly
bring up these syntactic invariants:

Example C.24

In OCamlℤ, we have
0 ∗ n ⊏ 0

because
0 ∗ n ≂▪ 0 and 0 ∗ n

P 0 but 0 ∗ n ̸ P 0
Indeed, the only difference between the two terms is that Γ ⊢ 0 ∗ n∶Z.t only holds
when (n : Z.t) ∈ Γ while Γ ⊢ 0∶Z.t holds for any Γ.
Example C.25

Similarly, in the weak untyped call-by-name / call-by-value 𝜆-calculus,(𝜆𝑥.𝐼)𝑦 ⊑ 𝐼
because (𝜆𝑥.𝐼)𝑦 ≂▪ 𝐼 and (𝜆𝑥.𝐼)𝑦 P 𝐼 but (𝜆𝑥.𝐼)𝑦 ̸ P 𝐼
Indeed, 𝛽-conversion ≈𝛽 is sound with respect to ≂▪ (i.e. ≈𝛽 ⊆ ≂▪), and

FV((𝜆𝑥.𝐼)𝑦) = {𝑦} ⊋ ∅ = FV(𝐼)
Note that this means that 𝛽-conversion ≈𝛽 is not sound with respect to ̸≂ (though≈𝛽 ∩ B is).

Weakening syntactic invariants Since we have very simple syntactic characterizations ofP , to understand the notion of “can be safely replaced” ⊑ = P ∩ ⊑▪ , it suffices to understand⊑▪ . More generally, for any relation⊑ℛ such that⊑ ⊆ ⊑ℛ ⊆ ⊑▪ , we have⊑ = P ∩⊑ℛ and it suffices
to understand ⊑ℛ . Such relations are exactly those of the shape ⊑ℛ = ℛ ∩ ⊑▪ for some ℛ ⊇ P ,
i.e. variants of ⊑ with P weakened to some relation ℛ ⊇ P :

171

Definition C.26

Given a binary relation ℛ on fragments, we write ⊑ℛ for the intersection ℛ ∩ ⊑▪ , i.e.
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ℛ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝ ⎧⎪⎨⎪⎩

𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1ℛ𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2, and∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext, ∀ #”𝓉 ∈ 𝓣erm
∗, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog

⎫⎬⎭ ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ≾ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
We write ≂ℛ for the symmetric interior ℛ ∩ ℛ−1 ∩ ≂▪ of ⊑ℛ , i.e.
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ≂ℛ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 ≝

⎧⎪⎪⎨⎪⎪⎩
𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1ℛ𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2,𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2ℛ𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, and∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈ 𝓒ontext, ∀ #”𝓉 ∈ 𝓣erm

∗, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog

⎫⎬⎭ ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∼ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
Note that whenℛ = P , we get ⊑ℛ = ⊑, and whenℛ is the trivial relationℛ = 𝓕rag

2, we get⊑ℛ = ⊑▪ . The question is then: for which relation ℛ ⊇ P is ⊑ℛ the easiest to study? Using a
larger relationℛ allows⊑ℛ to relate more fragments, possibly freeing us from some irrelevant
syntactic considerations, but may unfortunately also break transitivity by vacuously relating
mismatched fragments (see). In each calculus, we call our prefered transitive instance of⊑ℛ (resp. ≂ℛ) the observational preorder (resp. equivalence), and denote it by ⊑ (resp. ≂).

Example C.27

In the weak untyped call-by-name / call-by-value 𝜆-calculus, we choose ℛ = ⎶, so
that ⊑ = ⊑⎶ = ⎶ ∩ ⊑▪ and ≂ = ≂⎶ = ⎶ ∩ ≂▪
These are transitive because there are context 𝜆𝑥1.… 𝜆𝑥𝑞.◽ that can close the terms,
while preserving and reflecting ⊑▪ (and hence ≂▪). Indeed:

• ⊑▪ is transitive on closed terms because all terms are B -equivalent thanks to the
fact that ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, ∀𝑇 closed,FV(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑇) = FV(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)

• this transitivity propagates to all terms because contexts 𝜆𝑥1.… 𝜆𝑥𝑞.◽ preserve
and reflect ⊑▪ , i.e.𝑇1 ⊑▪ 𝑇2 ⇔ 𝜆𝑥1.… 𝜆𝑥𝑞.𝑇1 ⊑▪ 𝜆𝑥1.… 𝜆𝑥𝑞.𝑇2
Given three terms 𝑇1, 𝑇2, and 𝑇3, and #”𝑥 an enumeration of their free variables
FV(𝑇1) ∪ FV(𝑇2) ∪ FV(𝑇3), we therefore have𝑇1 ⊑▪ 𝑇2 ⊑▪ 𝑇3 ⇒ 𝜆 #”𝑥 .𝑇1 ⊑▪ 𝜆 #”𝑥 .𝑇2 ⊑▪ 𝜆 #”𝑥 .𝑇3 ⇒ 𝜆 #”𝑥 .𝑇1 ⊑▪ 𝜆 #”𝑥 .𝑇3 ⇒ 𝑇1 ⊑▪ 𝑇3

172

C.3. Distinguishability, separability and binary operational completeness

There are several fairly different ways in which the semantics ⟬𝓅1⟭ and ⟬𝓅2⟭ of two given
programs𝓅1 and𝓅2 can differ from one another:

Example C.28

In OCamlℤ, we have ⟬fun n → n⟭ = Idℤ⟬fun n → 0⟭ = 0ℤ⟬fun n → 1/0⟭ = ∅⟬fun n → while true do () done; 0⟭ = ∅⟬fun n → if n >= 0 then n else 1/0⟭ = Idℕ⟬fun n → if n <= 0 then n else 1/0⟭ = Id−ℕ
where ∅ denotes the nowhere-defined function, Id𝐗 denotes the identity function onℤ restricted to 𝐗, and 0ℤ denotes the constant function defined on ℤ that always
returns 0.
Among the restrictions of Idℤ (i.e. all the examples above except 0ℤ), some are

strictly “better” than others because there is a strict inclusion of their domain of
definition, e.g. Idℕ ⊊ Idℤ, while for others the domains are incomparable (e.g.
Idℕ ⊈ Id−ℕ and Idℕ ⊉ Id−ℕ) but since they are both restrictions of the same func-
tion, they can be combined into a function defined on the union of their domain (e.g.
Idℕ ∪ Id−ℕ = Idℕ∪(−ℕ) = Idℤ). Merging functions in such a way is not possible when
they are not restrictions of a same function, i.e. when they return different values on
a given input (e.g. Idℕ(1) = 1 ≠ 0 = 0ℤ(1) so Idℕ ∪ 0ℤ is not a function).
We therefore define several notions of being different for programs:

Definition C.29

Given two programs𝓅1 and𝓅2, we say that they are:
• not equivalent as programs when they are not ∼-equivalent, i.e. when𝓅1 ̸≾ 𝓅2 or 𝓅1 ̸≿ 𝓅2
or equivalently when their interpretations under ⟬⋅⟭ are not equal, i.e. when⟬𝓅1⟭ ≠ ⟬𝓅2⟭

• not comparable as programs when they are not ≾-comparable, i.e. when𝓅1 ̸≾ 𝓅2 and 𝓅1 ̸≿ 𝓅2
or equivalently when their interpretations under ⟬⋅⟭ are not ⊆-comparable, i.e.

173

when ⟬𝓅1⟭ ⊈ ⟬𝓅2⟭ and ⟬𝓅1⟭ ⊉ ⟬𝓅2⟭
• separable as programs when∃ℴ1, ∃ℴ2, ∃𝒾, ⟬𝓅1⟭(𝒾) = ℴ1 ≠ ℴ2 = ⟬𝓅2⟭(𝒾)
or equivalently when their interpretations under ⟬⋅⟭ are not ⊆-joinablea, i.e.
when ⟬𝓅1⟭ ⊆⊇ ⟬𝓅2⟭

aNote that the interpretations of two programs not being⊆-joinable (i.e. ⟬𝓅1⟭ ⊆⊇ ⟬𝓅2⟭) is not equiva-
lent to the programs not being≾-joinable (i.e. 𝓅1 ≾≿ 𝓅2): the former asserts that ⟬𝓅1⟭∪⟬𝓅2⟭ is not
a function, while the latter merely asserts that there is no program𝓅3 such that ⟬𝓅1⟭∪⟬𝓅2⟭ = ⟬𝓅3⟭,
which may be strictly weaker for some weird programming languages.

There are clear implications
separable as programs ⇒ not comparable as programs ⇒ not equivalent as programs

and both implications are often strict.

Example C.30

In OCamlℤ (or OCaml¬tryℤ):

• fun n → 1/0 and fun n → while true do () done; 0 are equivalent as programs;

• fun n → 1/0 and fun n → n are not equivalent as programs but are comparable
as programs;

• fun n → if n >= 0 then n else 1/0 and fun n → if n <= 0 then n else 1/0 are nei-
ther comparable as programs nor separable as programs;

• fun n → n and fun n → 0 are separable as programs.

The first two definitions are lifted to fragments in the expected way: by replacing ≾ by ⊑.
The third definition, separability, is split into two notions: external separability and internal
separability. External separability is more or less separability of programs with⟬𝓅⟭ ∶ 𝓘nput ⇀ 𝓞utput

replaced by ⟦𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻⟧fun ∶ 𝓕rag1 ×𝓕rag
𝑛0 ×𝓘nput ⇀ 𝓞utput(𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉 , 𝒾) ↦ {⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 #”𝓉 ⟭(𝒾) if 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 #”𝓉 ∈ 𝓟rog

undefined
i.e. just like two programs𝓅1 and𝓅2 being separable as programs meant that their induced
functions ⟬𝓅1⟭ and ⟬𝓅2⟭ gave different outputs on some input 𝒾, two fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2

174

being externally separable means that their induced functions ⟦𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1⟧fun and ⟦𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2⟧fun give dif-
ferents outputs on some “input” (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉 , 𝒾). Internal separability is a slightly stronger version
of external separability, and the distinction between the two will be explained later (see Ex-
ample C.34).

Definition C.31

Given two fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2, we say that they are:
• not observationally equivalent when they are not ≂-equivalent, i.e. when𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⋢ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 or 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⋣ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2
• not observationally comparable when they are not ⊑-comparable, i.e. when𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⋢ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⋣ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2
• externally separable when∃𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, ∃ #”𝓉 such that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 are separable programs
i.e. when

∃𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, ∃ #”𝓉 , ∃𝒾, ∃ℴ1, ∃ℴ2, ⎧⎪⎨⎪⎩
𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog,𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog, and⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ⟭(𝒾) = ℴ1 ≠ ℴ2 = ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ⟭(𝒾)

• (internally) separable when∀𝓅1, ∀𝓅2, ∃𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, ∃ #”𝓉 ,𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∼ 𝓅1 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∼ 𝓅2
There are again clear implications6

(internally) separable ⇒ externally separable ⇒ not obs. comparable ⇒ not obs. equivalent
The last two implications are often strict for the same reason as for programs:

6The implication
(internally) separable ⇒ externally separable

may not always hold under the current assumptions, but this is only because we have made virtually no
assumptions on what the programming language can compute. If we were to try and axiomatize a class of
programming languages, one of the first axioms we would add is the existence of programs that compute
constant functions: ∀ℴ, ∃𝓅, ∀𝒾, ⟬𝓅⟭(𝒾) = ℴ
The implication at hand is an immediate consequence of this axiom: we can just take 𝓅1 and 𝓅2 to be the
constant programs that always return ℴ1 and ℴ2 respectively.

175

Example C.32

In OCaml¬tryℤ a, the previous examples still have the same relationship as fragments:

• fun n → 1/0 and fun n → while true do () done; 0 are observationally equivalent;

• fun n → 1/0 and fun n → n are not observationally equivalent, but are observa-
tionally comparable;

• fun n → if n >= 0 then n else 1/0 and fun n → if n <= 0 then n else 1/0 are nei-
ther observationally comparable nor externally separable (and hence not inter-
nally separable either);

• fun n → n and fun n → 0 are (internally) separable.
aWe use OCaml¬tryℤ here because in OCamlℤ, we can use a context to catch the
Division_by_zero exception, and hence extract information from 1/0. For example,
the context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = try ◽ with Division_by_zero→0 shows that fun n → 1/0 and
fun n → while true do () done; 0 are externally separable as fragments, even though
they are comparable as programs:⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓅1 ⟭(1) = 1 ≠ 0 = ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝓅2 ⟭(1)
To get examples in OCamlℤ, one can replace 1/0 by fun n → while true do () done; 1 which
can not be observed, even with try-with statements.

The first implication
(internally) separable ⇒ externally separable

is the most interesting one in that its non-strictness reflects a sort of internal completeness
of the calculus, which we call binary operational completeness:

Definition C.33

A programming language is said to have binary operational completeness when any
two fragments that are externally separable are (internally) separable, i.e. when ex-
ternal and internal separability coincide.

OCamlℤ has binary operational completeness thanks to the possibility of observing inte-
gers:

Example C.34

OCamlℤ has binary operational completeness. Indeed, if we have an input 𝑛0 and
outputs𝑚1 ≠ 𝑚2 such that⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ⟭(𝑛0) = 𝑚1 and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ⟭(𝑛0) = 𝑚2
then for any programs𝓅1 and𝓅2, we can define𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 = fun n → if 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝑛0 =𝑚1 then𝓅1 n else𝓅2 n

176

and we have ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ⟭ = ⟬𝓅1⟭ and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉2 ⟭ = ⟬𝓅2⟭
Binary operational completeness can therefore be understood as being more or less about

the possibility of observing the ouputs internally, i.e. of using them as intermediate results
in a larger program. One way to break binary operational completeness is to add a new kind
of output which is hidden from the program:

Example C.35

Binary operational completeness can be broken in OCamlℤ by making ⟬ ⋅ ⟭ record
printed strings (on the error output stderr since we already use the standard output
for the output integer). More precisely, define OCamlprintℤ as the variant of OCamlℤ
where𝓞utput is replaced by𝓞utput×Σ∗ (where Σ is the set of printable characters and Σ∗
is the set of strings over these characters), where the first component of the product is
used as previously, and the second component stores everything that has been printed
so far (and is hence initialized to the empty string by initial_state). In OCamlprintℤ , we
for example have⟬fun n → prerr_string "hello"; n+1⟭print(0) = (1, "hello")
The printed string can be observed externally but not from within the OCamlprintℤ
program, so that

(internally) separable⇍ externally separable
For example, the terms𝓉1 = prerr_string "a"; 0 and 𝓉2 = prerr_string "b"; 0
are externally separable because⟬𝓉1⟭print(𝒾) = (0, "a") ≠ (0, "b") = ⟬𝓉2⟭print(𝒾)
but are not (internally) separablea. Indeed, for any 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, if⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ⟭print(𝑛) = (𝑚1, 𝑠1) and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ⟭print(𝑛) = (𝑚2, 𝑠2)
then we necessarily have𝑚1 = 𝑚2, and we can therefore not have⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ⟭print = ⟬fun _ → 1⟭print and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ⟭print = ⟬fun _ → 2⟭print
aNote that this relies on shadowing being disallowed, because otherwise the context could redefine
prerr_string.

The lack of binary operational completeness can sometimes be fixed by adding something
that was “missing” to the language:

177

Example C.36

In OCamlprintℤ , we can try adding a function
current_output : unit→string

that returns everything that has been printed so fara. This does allow distinguishing
the two terms above thanks to the context𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun n → ◽ ; if current_output () = "a"then P1 n else P2 n

for which we have𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∼print prerr_string "a"; P1 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∼print prerr_string "b"; P2
This falls short of showing that the two terms are (internally) separable because the
prerr_string can not be undoneb (and need to be executed to distinguish the two
programs), so that there is no hope of getting𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉1 ∼ fun _ → 1 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉2 ∼ fun _ → 2
To restore binary operational completeness, we can add yet another function

clear_output : unit→string

that removes any previously-printed outputc. Its addition makes the two programs
(internally) separable thanks to the context
fun n → ◽ ; let o = current_output () in clear_output (); if o = "a"then𝓅1 n else𝓅2 n
aThis does not really make sense for stderr, but if one were to print to a file instead, this would just
amount to reading the file.

bThis could be understood as revealing a defect of the definition of (internal) separability: it requires
a sort of invertibility of the operations. We believe that this interpretation is slightly misguided for
several reasons. First, the natural alternative of defining separability of𝓅1 and𝓅2 as meaning that∀𝓅1, ∀𝓅2, ∃𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∼ 𝓅1 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∼ 𝓅2
(whichuses∼ in place of∼print) unjustifiably treats stdout as beingmore important than stderr (while
both play similar roles in ⟬ ⋅ ⟭print), so that this interpretationmay be a consequence of a preference of⟬ ⋅ ⟭ over ⟬ ⋅ ⟭print. Secondly, any formof non-invertibility is the consequence of a somewhat arbitrary
restriction imposed by the language, the shell, the operating system or something else, so that it
suffices to relax this constraint to recover invertibility. For example, while we disallowed variable
shadowing, if it were allowed, the contexts𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 could redefine prerr_string in a way that makes
it invertible (e.g. by appending the string to a variable instead of printing it).

cThis again does not really make sense for printing to stderr, but if we were to write to a file, this would
simply amount to emptying the file.

C.4. Operational relevance, solvability and unary operational completeness

Internal and external separability are fairly complex notions and it is therefore common to
first study the corresponding unary notions first. The naive definition of “unary (internal)
separability” of an term 𝓉 is ∀𝓅, ∃𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀,𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉 ∼ 𝓅

178

This is a trivial notion in many programming languages. For example, in OCamlℤ, we can
always take 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = fun n → let _ = (fun n1 ... nq => 𝓉) in𝓅 n
with n1 , … , nq the free variables of 𝓉, and we get𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉 ∼ 𝓅
(though we may need to slightly restrict OCamlℤ for this to hold). The intuition is that the
term 𝓉 is simply discarded by 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, so that this is not a real “use” of 𝓉: ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭ is idependent of𝓉. This leads to the notion of non-trivial use:

Definition C.37

A use of a fragment 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 is a pair (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) such that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 #”𝓉 ∈ 𝓟rog. A use (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) is said to
be non-trivial when there exists two fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 and 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 such that𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∈ 𝓟rog, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ∈ 𝓟rog, and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ≁ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
In particular, a use of a term 𝓉 is a context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 such that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉 ∈ 𝓟rog, and it is non-

trivial when there exists two terms 𝓉1 and 𝓉2 such that𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟rog, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟rog, and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ≁ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2
We can now define the unary versions of external and internal separability, which are

called operational relevance and solvability respectively:

Definition C.38

A fragment 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 is said to be:
• operationally relevant when∃(𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) non-trivial use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻, ∃𝒾, ∃ℴ, ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 #”𝓉 ⟭(𝒾) = ℴ
i.e. when ∃(𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) non-trivial use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻, ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 #”𝓉 ⟭ ≠ ∅
and operationally irrelevant otherwise.

• solvable when ∀𝓅, ∃(𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) non-trivial use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻,𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻 #”𝓉 ∼ 𝓅
and unsolvable otherwise.

We have an implication
solvable ⇒ operationally relevant

because we can just choose any𝓅 such that ⟬𝓅⟭ ≠ ∅7.
7If no such𝓅 exists, the implication still holds: non-trivial uses do not exist, so there are no solvable fragments
and the implication is vacuously true.

179

Example C.39

• fun n → n and fun n → 0 are solvable (andhence operationally relevant) inOCamlℤ
/ OCaml¬tryℤ .

• fun n → while true do () done; 0 is not operationally relevant (and hence un-
solvable) in OCamlℤ / OCaml¬tryℤ .

• fun n → 1/0 is solvable (and hence operationally relevant) in OCaml¬tryℤ , but
operationally irrelevant (and hence unsolvable) in OCamlℤ.

Remark C.40

Note that when they exist, operationally irrelevant fragments 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 are least elements of⊑ (among fragments that have the same arity), i.e. those such that for any 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 (of the
same arity), we have 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2. Indeed, if 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 are both programs, i.e.
if (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) is a use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 and of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2, then either it is a trivial use and we have𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ∼ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
or it is a non-trivial use, and by operational irrelevance of 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹1, we get⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ⟭ = ∅ ⊆ ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ⟭
and hence 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ≾ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
Remark C.41

In most programming languages, we also have the converse: least elements of ⊑ are
operationally irrelevant.
To show that a least element 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 of ⊑ is operationally irrelevant, we need to show

that for any non-trivial use (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1, we have ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ⟭ = ∅. At first sight, this
looks immediate: we can take any operationally irrelevant fragment 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 (of the same
arity), and since 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 is a least element, we have 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 ⊑ 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2, and hence⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 #”𝓉 ⟭ ⊆ ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉 ⟭ = ∅
Unfortunately, this does not work because we have no way of ensuring that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 #”𝓉
is a program, i.e. that (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, #”𝓉) is also a use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 (e.g. 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 could have free variables that𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 does not bind).
We therefore want to build 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 in such a way that any use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 is also a use of 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2,

which may not be possible in some programming languages. In most programming

180

languages, this can be done by using a context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀0 such that∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, ∀𝓉,𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉 ∈ 𝓟rog ⇒ {𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀0 𝓉 ∈ 𝓟rog, and𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀0 𝓉 is operationally irrelevant
e.g. in OCamlℤ where we can take𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀0 = while true do (); ◽
Whenever such a context exists, least element of ⊑ are operationally irrelevant be-
cause taking 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻2 = 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀0 𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻𝒻1 works.
Just like the equivalence between non-joinability and separability, the equivalence be-

tween operational relevance and solvability can be though of as saying that external results
can be used internally, which is why we call it unary operational completeness:

Definition C.42

A programming language is said to have unary operational completenesswhen its op-
erationally relevant fragments are exactly its solvable fragments.

Example C.43

OCamlℤ a priori has unary operational completeness. For terms, this means that
any operationally relevant term is solvable. Indeed, let 𝓉 be an operationally relevant
term, we have a non-trivial use 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 such that⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭ ≠ ∅
Given an arbitrary program𝓅, we want to find a non-trivial use 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 such that⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉⟭ = ⟬𝓅⟭
Finding 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 such that ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉⟭ = ⟬𝓅⟭ is fairly easy, but finding one that is provably
a non-trivial use of 𝓉 is a bit harder. Many cases can be handled simply by using
the fact that 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 is a non-trivial use, i.e. on the existence of another term 𝓊 such that⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭ ≠ ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭. Indeed, by looking at an input 𝑛0 on which the programs 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉 and𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊 disagree (either because they return different outputs, or because one is defined
while the other is not), we get three cases:

• If ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭(𝑛0) = 𝑚1 ≠ 𝑚2 = ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭(𝑛0) then taking𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 = fun n → if 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝑛0 =𝑚1 then𝓅 n else 1 +𝓅 n

works: ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉⟭ = ⟬𝓅⟭ and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓊⟭ ≠ ⟬𝓅⟭ because ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓊⟭(𝑛0) = 1+⟬𝓅⟭(𝑛0) ≠⟬𝓅⟭(𝑛0)
• If ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭(𝑛0) is undefined, ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭(𝑛0) = 𝑚0, and ⟬𝓅⟭ is not total, we can find

181

𝑛3 such that ⟬𝓅⟭(𝑛3) is undefined and the context𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 = fun n → if n = 𝑛3 then𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝑛0 else𝓅 n

works: ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓉⟭ = ⟬𝓅⟭ and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓊⟭ ≠ ⟬𝓅⟭ because ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓊⟭(𝑛3) = ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 𝓊⟭(𝑛0) =𝑚0 while ⟬𝓅⟭(𝑛3) is undefined.
• If ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭(𝑛0) = 𝑚0, ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭(𝑛0) is undefined, and ⟬𝓅⟭ ≠ ∅, then we can find 𝑛3
and𝑚3 such that ⟬𝓅⟭(𝑛3) = 𝑚3 and the context𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀2 = fun n → if n = 𝑛3 then𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝑛0 − m0 +𝑚3 else𝓅 n

works: ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭ = ⟬𝓅⟭ and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭ ≠ ⟬𝓅⟭ because ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭(𝑛3) = ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭(𝑛0) is
undefined while ⟬𝓅⟭(𝑛3) = 𝑚3.

The remaining cases (⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭ ⊊ ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭ with ⟬𝓅⟭ ≠ ∅; and ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉⟭ ⊋ ⟬𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓊⟭ with⟬𝓅⟭
total) can a priori not be handled in such a simple way, and require looking more
closely at how 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 “uses” the terms plugged to replace the context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 and the term 𝓊
by ones whose shape is known.

Just like binary operational completness, unary operational completeness can be broken
by adding results that can not be observed from within the programming language:

Example C.44

We can extend the notion of output of OCaml¬tryℤ by considering exceptions as be-
ing outputs, i.e. by defining the set of outputs 𝓞utput as being the union of the set of
integers ℤ and of the set of (global) exception constructors, with e.g.⟬fun n → 1/0⟭(0) = ⟬fun n → raise Division_by_zero⟭(0) = Division_by_zero

This breaks unary operational completeness because fun n → 1/0 is operationally rel-
evant (because it returns the output Division_by_zero under the trivial context ◽ on
input 0) but not solvable because without try-catch statements, we can never observe
exceptions internally.

182

VII. Call-by-name solvability

VII.1.Reductions and induced notions of evaluation 188
VII.2.Usefulness of the trivial interpretation of programs 202
VII.3.Instanciating the general definitions . 203
VII.4.Equivalences between definitions . 215

183

VII. Call-by-name solvability

Overview

Three notions of observational equivalence induced by three notions of evaluation
By varying the programming language structure that we place on the 𝜆-calculus (e.g. the no-
tion of program, of input, of output, of evaluation, ...), one gets many non-equivalent inter-
pretations of programs ⟬⋅⟭. Somewhat surprisingly, those only induce three non-equivalent
notions of observational equivalence ≂ (resp. preorder ⊑) on program fragments, the only
relevant parameter being the reduction (or more precisely the induced notion of evalua-
tion ⊛).
Given a reduction ⇝ ∈ { , h , }1, we write ≂⇝ for the notion of observational equiv-

alence induced by taking = ⇝. The⇝-observational equivalence ≂⇝ is often defined as
testing for⇝-convergence, for 𝛽-reducibility to an⇝-normal form, or for 𝛽-convertibility to
an⇝-normal form, all of which yields equivalent definitions:𝑇1N ≂⇝ 𝑇2N ⇔ ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇1N ⇝⊛ ⇔ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇2N ⇝⊛)⇔ ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇1N ⊛⇝⇔ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇2N ⊛⇝)⇔ ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇1N ≈𝛽⇝⇔ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇2N ≈𝛽⇝)
This definition is often simplified by replacing the quantification on arbitrary contexts by
a quantification on contexts 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹N of the shape 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹N = (𝜆𝑥N1 .… 𝜆𝑥N𝑞 .◽)𝑇1N…𝑇𝑟N. This is (when𝑞 ≤ 𝑟) equivalent (up to reductions) to a substitution 𝜎 = 𝑥N1 ↦ 𝑇1N, … , 𝑥N𝑞 ↦ 𝑇𝑞N and a stack𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ◽𝑇𝑞+1N …𝑇𝑟N, which we like to package into a disubstitution 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N):𝑇1N ≂⇝ 𝑇2N ≝ ∀𝜑, (𝑇1N[𝜑] ⇝⊛ ⇔ 𝑇2N[𝜑] ⇝⊛)⇔ ∀𝜎, ∀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇1N[𝜎] ⇝⊛ ⇔ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇2N[𝜎] ⇝⊛)⇔ ∀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹N, (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹N 𝑇1N ⇝⊛ ⇔ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹N 𝑇2N ⇝⊛)
The observational equivalence ≂ induced by the weak head reduction is Abramsky’s

one [Abr90] (in the so-called lazy 𝜆-calculus); the observational equivalence≂ h induced by
the head reduction h is Wadsworth’ one [Wad76], and the observational equivalence ≂
induced by the strong reduction is Morris’ one [Mor69]2. It is well-known that there are
strict inclusions [DezGio01] ≂ ⊊ ≂ ⊊ ≂ h

(and the strictness of the inclusions can be understood as stemming from a differences of

1Nearly everything works for many reductions (and sometimes even all reductions), but to avoid discussing
extra hypotheses in this summary, we only consider those three reductions.

2Those are sometimes studied via their induced theories, i.e. their restrictions to closed expressions:𝒯⇝ ≝ ≂⇝ ∩ (𝐓N × 𝐓N)
[Abr90] “The lazy lambda calculus”, Abramsky, 1990
[Wad76] “The Relation Between Computational and Denotational Properties for Scott’s Dinfty-Models of the
Lambda-Calculus”, Wadsworth, 1976
[Mor69] “Lambda Calculus Models of Programming Languages”, Morris, 1969
[DezGio01] “From Böhm’s Theorem to Observational Equivalences: an Informal Account”, Dezani-
Ciancaglini and Giovannetti, 2001

184

VII. Call-by-name solvability

strength between their respective versions of 𝜂-conversion on Böhm trees [IntManPol17]).
Relevant references include [Bar84; DezGio01; IntManPol17].

Two notions of operational relevance and one notion of solvability The⇝-operationally
irrelevant (resp. ⇝-solvable) expressions are defined by:𝑇N ⇝-operationally relevant ≝ ∃𝑇′N, ∃𝜑, 𝑇N[𝜑] ⇝∗ 𝑇′N ⇝ (i.e. ∃𝜑, 𝑇N[𝜑] ⇝⊛)𝑇N ⇝-solvable ≝ ∀𝑇′N, ∃𝜑, 𝑇N[𝜑] ⇝∗ 𝑇′N
These are instances of the general definition, i.e. we can define an interpretation of programs⟬⋅⟭⇝ such that those are exactly the expressions that can be used in a program with a non-
trivial (resp. an arbitrary) interpretation:𝑇N ⇝-operationally relevant ⇔ ∃𝑃 ∈ 𝓟rog

¬∅⇝ , ∃𝜑, ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ⟭⇝ = ⟬𝑃⟭⇝𝑇N ⇝-solvable ⇔ ∀𝑃 ∈ 𝓟rog , ∃𝜑, ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ⟭⇝ = ⟬𝑃⟭⇝
where 𝓟rog

¬∅⇝ = {𝑃 ∈ 𝓟rog∣⟬𝑃⟭⇝ ≠ ∅}
The observational preorder is defined by𝑇1N ⊑⇝ 𝑇2N ≝ ∀𝜑, (𝑇1N[𝜑] ⇝⊛ ⇒ 𝑇2N[𝜑] ⇝⊛)
and has the⇝-operationall irrelevant expressions as least elements:𝑇N ⇝-operationally irrelevant ⇔ ∀𝑈N, 𝑇N ⊑⇝ 𝑈N
Both notions can be characterized in terms of the action of disubstitutions on the set𝐓N∕≂⇝ expressionsmodulo≂⇝: an expression is⇝-operationally relevant (resp. ⇝-solvable)

exactly when its orbit is non-trivial3 (resp. is all of 𝐓N∕≂⇝). This interpretation in terms of
orbits ensures that the strict implications𝑇1N ≂ 𝑇2N ⇒ 𝑇1N ≂ 𝑇2N ⇒ 𝑇1N ≂ h 𝑇2N
induce implications (in the opposite direction) between the different notions of⇝-operational
relevance and ⇝-solvability. However, some of these induced implications are no longer
strict: we only have two non-equivalent notions of operational relevance𝑇N is -op. rel. ⇐ 𝑇N is -op. rel. ⇔ 𝑇N is h -op. rel.
(a counterexample to the⇒ implication being 𝜆𝑥N.ΩN) and one notion of solvability𝑇N is -solvable ⇔ 𝑇N is -solvable ⇔ 𝑇N is h -solvable
All six of these notions are equivalent to either -convergence or h -convergence (and

hence have operational characterizations). A summary of the implications between the dif-
3Given an equivalence class 𝑇N ∈ 𝐓N∕≂⇝, its orbit {𝑇N[𝜑]∣𝜑 is a disubstitution} always contains 𝑇N (because
we can take 𝜑 to be the identity substitution), so by non-trivial orbit, we mean an orbit that contains at least
two distinct elements of 𝐓N∕≂⇝.
[IntManPol17] “Refutation of Sallé’s Longstanding Conjecture”, Intrigila, Manzonetto, and Polonsky, 2017
[Bar84] The lambda calculus: its syntax and semantics, Barendregt, 1984
[DezGio01] “From Böhm’s Theorem to Observational Equivalences: an Informal Account”, Dezani-
Ciancaglini and Giovannetti, 2001

185

VII. Call-by-name solvability

ferent notions can be found in Figure VII.0.1.

Figure VII.0.1: Implications between notions of⇝-solvability and⇝-operational rele-
vance 𝑇N is -solvable𝑇N is h -solvable𝑇N is -solvable𝑇N is h -operationally relevant𝑇N is -operationally relevant𝑇N h ⊛

𝑇N is -operationally relevant𝑇N ⊛
Notions in the same node are equivalent, and depicted implications are strict.

Convergence testing as a means to boostrap meaningful definitions The choice of
only testing for convergence is, a priori, unjustified. Indeed, it is natural to first interpret
programs 𝑃 as partial functions ⟬𝑃⟭ ∶ 𝓘nput ⇀ 𝓞utput

and to then define observational equivalence on expressions by𝑇N ≂ 𝑈N ≝ ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ∈ 𝓟rog𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑈N ∈ 𝓟rog
} ⟹ ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ⟭ = ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑈N ⟭

In the 𝜆-calculus this does not work because there is no natural notion of output. To cir-
cumvent this shortfall, the observational equivalence ≂ is defined independently of the in-
terpretation of programs ⟬⋅⟭ by only testing for convergence4:𝑇N ≂⇝ 𝑈N ≝ ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ∈ 𝓟rog𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑈N ∈ 𝓟rog

} ⟹ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ⇝⊛ ⇔ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑈N ⇝⊛
One can then get ameaningful interpretation of programs ⟬⋅⟭⇝ by using expressionsmodulo≂ as outputs5: ⟬𝑇N⟭⇝ ∶ {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N∣𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N closed} ⇀ {𝑇N∣𝑇N closed and⇝-normal}∕≂⇝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ↦ {𝑈N if 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⇝⊛ 𝑈N

undefined otherwise

(where 𝑈N is the equivalence class of 𝑈N modulo ≂⇝). This turns out to induce the same
notion of observational equivalence:

4This corresponds to using a meaningless interpretation of programs ⟬⋅⟭∙,⇝,∙ that uses trivial notions of inputs
and ouputs. See page ??.

5Using non-quotiented expressions as outputs would allow distinguishing more expressions, including some
that we a priori do not want to distinguish. See .

186

VII. Call-by-name solvability

𝑇N ≂⇝ 𝑈N ⇔ ∀𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N, 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ∈ 𝓟rog𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑈N ∈ 𝓟rog
} ⟹ ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑇N ⟭⇝ = ⟬𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾N 𝑈N ⟭⇝

We therefore end-up having a meaningfull interpretation of programs ⟬⋅⟭⇝ that induces a
meaningful notion of observational equivalence≂⇝, even though we had to boostrap it with
some fairlymeaningless notions. For⇝ = , it is possibly to avoid these boostraping issues
(i.e. it is possible to define ⟬⋅⟭⇝ before ≂⇝) [Mor69] by using the fact that on normal forms,
the observational equivalences is exactly 𝛽𝜂-conversion:{𝑇N∣𝑇N closed and -normal}∕≂ = {𝑇N∣𝑇N closed and -normal}∕≃𝛽𝜂
The usefulness of L-calculi Everything above took place in the call-by-name 𝜆-calculus𝛌→N, and is easily transfered to the intuitionistic call-by-name fragment Li→n of the𝜆𝜇𝜇-calculus
(or its 𝜆-like syntax 𝜆→n), and to its classical call-by-name fragment L→n . All the notions we
study are preserved through the inclusion Li→n ⊆ L→n , i.e. adding classical expressions to the
calculus has no effect on solvability, operational relevance or the observational preorder6.
While the possibility of using disubstitutions in place of contexts is fairly pleasant, using

an L-calculus in place of a 𝜆-calculus does not lead to any substantial technical improve-
ments in call-by-name (but will in call-by-value). However, the call-by-name and call-by-
value variants of the L-calculi also reveals a few symmetries and asymmetries that were
hidden in the corresponding 𝜆-calculi. These will be discussed in Chapter VIII .

6The intuition is that for these notions, having classical expressions 𝜇𝛼n.𝑐n could only be useful to discard
stacks, but since all stacks are of the shape 𝑣1n ∙ … ∙ 𝑣𝑞n ∙⋆n, we can already discard them with expressions of
the shape 𝜇(_N ∙⋆n).… 𝜇(_n ∙⋆n).𝑐n.
[Mor69] “Lambda Calculus Models of Programming Languages”, Morris, 1969

187

VII. Call-by-name solvability

VII.1. Reductions and induced notions of evaluation

Five reductions The five reductions we consider in the call-by-name 𝜆-calculus 𝛌→N are de-
fined in Figure VII.1.1, and the corresponding reductions in L→n are defined in Figure VII.1.2.
The reductions on L→n induce reductions on Li→n via restriction, which in true induce reduc-
tions on 𝜆→n through⇌. In the 𝜆-calculus litterature, three of these reductions are commonly
used to model evaluation: the operational (a.k.a. weak head) reduction , the head reduc-
tion h and the strong reduction . The leftmost-outermost reduction lo is also fairly
well-known, but is rarely used as the main notion of evaluation. The ahead reduction a is
rarely (if ever) used in call-by-name.
As will be shown in Fact VII.1.14, h and a (resp. lo and) induce the same notion

of evaluation h ⊛ = a ⊛ (resp. lo ⊛ = ⊛). The difference between the two reductions
is therefore only that, as depicted in Table VII.1, the former is deterministic but not disub-
stitutive7, while the latter is disubstitutive but not deterministic.

Table VII.1.: Tension between disubstitutivity and determinism in 𝛌→N, 𝜆→n , Li→n , and L→n
Reduction h a lo

Evaluation ⊛ h ⊛ = a ⊛ lo ⊛ = ⊛
Substitutive ✓ ✓ ✓ ✗ ✓
Disubstitutive ✓ ✗ ✓ ✗ ✓
Deterministic ✓ ✓ ✗ ✓ ✗

(See Facts VII.1.4, VII.1.6, VII.1.7, VII.1.8 and VII.1.9)

In most of the call-by-name litterature, this tension between determinism and disubstitu-
tivity is resolved in opposite ways for the two notions of evaluation: the deterministic h is
used to represent h ⊛ = a ⊛, while the disubstitutive is used to represent lo ⊛ = ⊛.
These choices can be justified by disubstitivity being amuchmore important than determin-
ism for the proofs to work, and the lack of disubstitutivity of h being easy to work around
thanks to its substitutivity and the simple structure of stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ◽𝑈1N…𝑈𝑞N . Here, we
nevertheless use all five reductions (, h , a , lo , and), for two reasons. First, doing
so allows for more uniform proofs that work for both and the other reductions: for each
proposition, we can choose to require either determinism (i.e. to use , h , or lo), or dis-
ubstitutivity (i.e. to use , a , or). Secondly, while using a is somewhat superfluous in
call-by-name, it will become important in call-by-value because the call-by-value variant of
h will no longer be substitutive.

7Recall that in 𝛌→N , we call disubstitutions 𝜑 pairs (𝜎,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) where 𝜎 is a substitution and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N is a stack, that we
write 𝑇N[𝜑] for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝜎] ; and that a reduction⇝ is said to be disubstitutive when𝑇N ⇝ 𝑇′N ⇒ ∀𝜑, 𝑇N[𝜑] ⇝ 𝑇′N[𝜑] (i.e. ∀𝜎, ∀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N[𝜎] ⇝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N[𝜎])

188

VII. Call-by-name solvability

Figure VII.1.1: Reductions in 𝛌→N
Figure VII.1.1.a: Top-level reduction

let𝑥N ∶= 𝑇N in𝑈N 𝑈N[𝑇N∕𝑥N] rtlet (𝜆𝑥N.𝑇N)𝑈N 𝑇N[𝑈N∕𝑥N] rt→
Figure VII.1.1.b: Operational reduction (a.k.a. weak head reduction)𝑇N 𝑇′N𝑇N 𝑇′N ro

𝑇N 𝑇′N𝑇N𝑈N 𝑇′N𝑈N ro@𝑙
Figure VII.1.1.c: Leftmost outermost ahead reduction (a.k.a head reduction)𝑇N 𝑇′N𝑇N h 𝑇′N rh

𝑇N h 𝑇′N𝜆𝑥N.𝑇N h 𝜆𝑥N.𝑇′N rh𝜆
Figure VII.1.1.d: Ahead reduction𝑇N 𝑇′N𝑇N a 𝑇′N ra

𝑇N a 𝑇′N𝜆𝑥N.𝑇N a 𝜆𝑥N.𝑇′N ra𝜆
𝑇N a 𝑇′N𝑇N𝑈N a 𝑇′N𝑈N ra@𝑙

𝑈N a 𝑈′N
let𝑥N ∶= 𝑇N in𝑈N a let𝑥N ∶= 𝑇N in𝑈′N raletr

Figure VII.1.1.e: Leftmost outermost reduction𝑇N 𝑇′N𝑇N lo 𝑇′N rlo
𝑇N lo 𝑇′N𝜆𝑥N.𝑇N lo 𝜆𝑥N.𝑇′N rlo𝜆

𝑈N lo 𝑈′N𝑥N𝑇NF,1N …𝑇NF,𝑟−1N 𝑈N𝑇𝑟+1N …𝑇𝑞N lo 𝑥N𝑇NF,1N …𝑇NF,𝑟−1N 𝑈′N𝑇𝑟+1N …𝑇𝑞N rlo@
(where each 𝑇NF,𝑘N ranges over the normal forms described in Figure VII.1.3)

189

VII. Call-by-name solvability

Figure VII.1.1.f: Strong reduction𝑇N 𝑇′N𝑇N 𝑇′N rs
𝑇N 𝑇′N𝜆𝑥N.𝑇N 𝜆𝑥N.𝑇′N rs𝜆

𝑇N 𝑇′N𝑇N𝑈N 𝑇′N𝑈N rs@𝑙
𝑈N 𝑈′N

let𝑥N ∶= 𝑇N in𝑈N let𝑥N ∶= 𝑇N in𝑈′N rsletr𝑈N 𝑈′N𝑇N𝑈N 𝑇N𝑈′N rs@𝑟 𝑇N 𝑇′N
let𝑥N ∶= 𝑇N in𝑈N let𝑥N ∶= 𝑇′N in𝑈N rsletl

Figure VII.1.2: Reductions in L→n
Figure VII.1.2.a: Operational reduction / top-level reduction

⟨𝜇𝛼n.𝑐n∣𝑠n⟩ 𝑠n[𝑠n∕𝛼n] ro𝜇 ⟨𝑡n∣𝜇𝑥n.𝑐n⟩ 𝑐n[𝑡n∕𝑥n] ro𝜇⟨𝜇(𝑥n ∙ 𝛼n).𝑐n∣𝑣n ∙ 𝑠n⟩ 𝑐n[𝑣n∕𝑥n, 𝑠n∕𝛼n] ro→
Figure VII.1.2.b: Leftmost outermost ahead reduction (a.k.a head reduction)𝑐n 𝑐′n𝑐n h 𝑐′n rh 𝜇(𝑥n ∙ 𝛽n).𝑐n h 𝜇(𝑥n ∙ 𝛽n).𝑐′n⟨𝜇(𝑥n ∙ 𝛽n).𝑐n∣𝛼n⟩ h ⟨𝜇(𝑥n ∙ 𝛽n).𝑐n∣𝛼n⟩ rh⟨⋅∣𝛼⟩𝑐n h 𝑐′n𝜇𝛼n.𝑐n h 𝜇𝛼n.𝑐′n rh𝜇𝛼 𝑐n h 𝑐′n𝜇𝑥n.𝑐 h 𝜇𝑥n.𝑐′ rh𝜇𝑥𝑐n h 𝑐′n𝜇(𝑥n ∙ 𝛼n).𝑐n h 𝜇(𝑥n ∙ 𝛼n).𝑐′n rh𝜇→

190

VII. Call-by-name solvability

Figure VII.1.2.c: Ahead reduction𝑐n 𝑐′n𝑐n a 𝑐′n ra 𝑡n a 𝑡′n⟨𝑡n∣𝑠n⟩ a ⟨𝑡′n∣𝑠n⟩ ra⟨⋅∣𝑠⟩ 𝑒n a 𝑒′n⟨𝑡n∣𝑒n⟩ a ⟨𝑡n∣𝑒′n⟩ ra⟨𝑡∣⋅⟩𝑐n a 𝑐′n𝜇𝛼n.𝑐n a 𝜇𝛼n.𝑐′n ra𝜇𝛼 𝑐n a 𝑐′n𝜇𝑥n.𝑐 a 𝜇𝑥n.𝑐′ ra𝜇𝑥𝑐n a 𝑐′n𝜇(𝑥n ∙ 𝛼n).𝑐n a 𝜇(𝑥n ∙ 𝛼n).𝑐′n ra𝜇→
Figure VII.1.2.d: Leftmost outermost reduction𝑐n 𝑐′n𝑐n lo 𝑐′n rlo 𝜇(𝑥n ∙ 𝛽n).𝑐n lo 𝜇(𝑥n ∙ 𝛽n).𝑐′n⟨𝜇(𝑥n ∙ 𝛽n).𝑐n∣𝛼n⟩ lo ⟨𝜇(𝑥n ∙ 𝛽n).𝑐′n∣𝛼n⟩ rlo⟨⋅∣𝛼⟩𝑠n lo 𝑠′n⟨𝑥n∣𝑠n⟩ lo ⟨𝑥n∣𝑠′n⟩ rlo⟨𝑥∣⋅⟩ 𝑐n lo 𝑐′n𝜇𝛼n.𝑐n lo 𝜇𝛼n.𝑐′n rlo𝜇𝛼 𝑐n lo 𝑐′n𝜇𝑥n.𝑐 lo 𝜇𝑥n.𝑐′ rlo𝜇𝑥𝑐n lo 𝑐′n𝜇(𝑥n ∙ 𝛼n).𝑐n lo 𝜇(𝑥n ∙ 𝛼n).𝑐′n rlo𝜇→ 𝑣n lo 𝑣′n𝑣n ∙ 𝑠n lo 𝑣′n ∙ 𝑠n rlo→,v

𝑠n lo 𝑠′n𝑣NFn ∙ 𝑠n lo 𝑣NFn ∙ 𝑠′n rlo→, s
(where each 𝑣NFn ranges over the normal forms described in Figure VII.1.3)

Figure VII.1.2.e: Strong reduction𝑐n 𝑐′n𝑐n 𝑐′n rs 𝑡n 𝑡′n⟨𝑡n∣𝑒n⟩ ⟨𝑡′n∣𝑒n⟩ rs⟨⋅∣𝑒⟩ 𝑒n 𝑒′n⟨𝑡n∣𝑒n⟩ ⟨𝑡n∣𝑒′n⟩ rs⟨𝑡∣⋅⟩𝑐n 𝑐′n𝜇𝛼n.𝑐n 𝜇𝛼n.𝑐′n rs𝜇𝛼 𝑐n 𝑐′n𝜇𝑥n.𝑐 𝜇𝑥n.𝑐′ rs𝜇𝑥 𝑣n 𝑣′n𝑣n ∙ 𝑠n 𝑣′n ∙ 𝑠n rs→,v
𝑠n 𝑠′n𝑣n ∙ 𝑠n 𝑣n ∙ 𝑠′n rs→, s 𝑐n 𝑐′n𝜇(𝑥n ∙ 𝛼n).𝑐n 𝜇(𝑥n ∙ 𝛼n).𝑐′n rs𝜇→

191

VII. Call-by-name solvability

These reductions form a lattice under inclusion:

Fact VII.1.1

In 𝛌→N, 𝜆→n , Li→n , and L→n , the following inclusions hold:
h lo

a

⊆ ⊆⊆ ⊆⊆
Proof

By induction on the derivations.

Normal forms The different kind of normal forms are described in Figure VII.1.38. The
normal forms in Li→n are described with the same grammar are those of L→n with every stack
variable replaced by⋆n, i.e. the sets of normal forms of Li→n are exactly the intersection of
Li→n with the corresponding set of normal forms in L→n .

Fact VII.1.2: Shape of normal forms

In 𝛌→N, 𝜆→n , Li→n , and L→n , the operational (resp. ahead, strong) normal formsdescribed
in Figure VII.1.3 are exactly the -normal (resp. a -normal, -normal) forms, the
h -normal forms are exactly the a -normal forms, and the lo -normal forms are ex-
actly the -normal forms:

Operational normal form ⇔ -normal
Ahead normal form ⇔ a -normal ⇔ h -normal

(Strong) normal form ⇔ -normal ⇔ lo -normal

Proof

Each implication is proven by induction on the syntax, by induction on the derivation,
or by the inclusions of Fact VII.1.1.

This implies that h (resp. lo) is a (deterministic) strategy for a (resp.):

Fact VII.1.3

In 𝛌→N, 𝜆→n , Li→n , and L→n , the reduction h (resp. lo) is a strategy for a (resp.):
h ⊆ a and NF h = NF a (resp. lo ⊆ and NF lo = NF)

8We denote the a -normal (or equivalently h -normal) expressions by 𝑇AHNFN because we think of h as be-
ing just a deterministic strategy for a (and we do not denote them by 𝑇ANFN because ANF is often used to
abbreviate A-normal form, an a priori unrelated notion).

192

VII. Call-by-name solvability

Proof

Immediate by Facts VII.1.1 and VII.1.2.

Substitutivity and disubstitutivity Four of the reductions are substitutive, and three of
those are also closed under stacks (and hence disubstitutive):

Fact VII.1.4: Substitutivity of , h , a and in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , each reduction⇝ ∈ { , h , a , } is substitutive: for any
terms 𝓉 and 𝓉′ and any substitution 𝜎,𝓉 ⇝ 𝓉′ ⇒ 𝓉[𝜎] ⇝ 𝓉′[𝜎]
Proof

By induction on the derivation, and substitutivity of or .

Fact VII.1.5: Non substitutivity of lo in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , the leftmost-outermost reduction lo is not substitutive.

Proof

Immediate:

• In 𝛌→N, we have 𝑥N(𝐼N𝑦N) lo 𝑥N𝑦N
but this reduction is not preserved through the substitution 𝑥N ↦ 𝜆_N.𝐼N:(𝜆_N.𝐼N)(𝐼N𝑦N) lo 𝐼N ≠ (𝜆_N.𝐼N)𝑦N

• In L→n , we have⟨𝑥n∣(𝜇𝛽n.⟨𝐼n∣𝑦n ∙ 𝛽n⟩) ∙ 𝛼n⟩ lo ⟨𝑥n∣(𝜇𝛽n.⟨𝑦n∣𝛽n⟩) ∙ 𝛼n⟩
but this reduction is not preserved through the substitution𝑥N ↦ 𝜇(_n ∙ 𝛾n).⟨𝐼n∣𝛾n⟩:⟨𝜇(_n ∙ 𝛾n).⟨𝐼n∣𝛾n⟩∣(𝜇𝛽n.⟨𝐼n∣𝑦n ∙ 𝛽n⟩) ∙ 𝛼n⟩ lo ⟨𝐼n∣𝛾n⟩ ≠ ⟨𝜇(_n ∙ 𝛾n).⟨𝐼n∣𝛾n⟩∣(𝜇𝛽n.⟨𝑦n∣𝛽n⟩) ∙ 𝛼n⟩

193

VII. Call-by-name solvability

Fact VII.1.6: Disubstitutivity of , a and in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , each reduction ⇝ ∈ { , a , } is disubstitutive: for any
terms 𝓉 and 𝓉′ and any disubstitution 𝜑,𝓉 ⇝ 𝓉′ ⇒ 𝓉[𝜑] ⇝ 𝓉′[𝜑]
In particular:

• In 𝛌→N, they are closed under stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N:𝑇N ⇝ 𝑇′N ⇒ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N ⇝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇′N
• In 𝜆→n , they are closed under defer:𝑜 ⇝ 𝑜′ ⇒ defer(𝑜, 𝑠n) ⇝ defer(𝑜′, 𝑠n)
• In Li→n , they are closed under substitution of the stack variable⋆n by a stack 𝑠n:𝑜 ⇝ 𝑜′ ⇒ 𝑜[𝑠n∕⋆n] ⇝ 𝑜′[𝑠n∕⋆n]

Proof

Closure under stacks in 𝛌→N is by induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N. Disubstitutivity in 𝛌→N follows from
closure under stacks and substitutivity (Fact VII.1.4). Disubstitutivity in L→n (and
hence in Li→n) is by induction on the derivation and disubstitutivity of (Fact ??).

Fact VII.1.7: Non-disubstitutivity of h and lo in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , the reductions h and lo are not disubstitutive. Further-
more:

• In 𝛌→N, they are not closed under stacks;
• In 𝜆→n , they are not closed under defer;

• In Li→n (resp. L→n), they are not closed under disubstitution of the shape⋆n ↦ 𝑠n
(resp. 𝛼n ↦ 𝑠n).

Proof

• In 𝛌→N, the reductions⇝ ∈ { h , lo } are not closed under the stack ◽𝑦N. Indeed,
we have 𝜆_N.𝐼N𝑥N ⇝ 𝜆_N.𝑥N
but 𝐼N𝑥N ⇜ (𝜆_N.𝐼N𝑥N)𝑦N ⇝ (𝜆_N.𝑥N)𝑦N

194

VII. Call-by-name solvability

• In Li→n , the reductions ⇝ ∈ { h , lo } are not closed under the disubstitution⋆n ↦ 𝑦n ∙⋆n. Indeed, we have⟨𝜇(_n ∙⋆n).⟨𝐼n∣𝑥n ∙⋆n⟩∣⋆n⟩ ⇝ ⟨𝜇(_n ∙⋆n).⟨𝑥n∣⋆n⟩∣⋆n⟩
but ⟨𝐼n∣𝑥n ∙⋆n⟩ ⇜ ⟨𝜇(_n ∙⋆n).⟨𝐼n∣𝑥n ∙⋆n⟩∣𝑦n ∙⋆n⟩ ⇝ ⟨𝜇(_n ∙⋆n).⟨𝑥n∣⋆n⟩∣⋆n⟩

Determinism, confluence, and uniqueness of termination behavior All five reductions
have some form of determinism, ranging from actual determinism to confluence:

Fact VII.1.8: Determinism of , h and lo in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , each reduction ⇝ ∈ { , h , lo } is deterministic: for any
terms 𝓉, 𝓉�, and 𝓉�, 𝓉� ⇜ 𝓉 ⇝ 𝓉� ⇒ 𝓉� = 𝓉�

Proof

By induction on the derivation.

Fact VII.1.9: Non-determinism of a and in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , the reductions a and are non-deterministic.

Proof

Since a ⊆ , it suffices to show that a is not deterministic.

• In 𝛌→N, the reduction a is not deterministic because𝐼N𝐼N a (𝜆_N.𝐼N𝐼N)𝑥N a (𝜆_N.𝐼N)𝑥N
(and 𝐼N𝐼N ≠ (𝜆_N.𝐼N)𝑥N).

• In Li→n , the reduction a is not deterministic because⟨𝐼n∣𝐼n ∙⋆n⟩ a ⟨𝜇(_n ∙⋆n).⟨𝐼n∣𝐼n ∙⋆n⟩∣𝑥n ∙⋆⟩ a ⟨𝜇(_n ∙⋆n).⟨𝐼n∣⋆⟩∣𝑥n ∙⋆⟩
(and ⟨𝐼n∣𝐼n ∙⋆n⟩ ≠ ⟨𝜇(_n ∙⋆n).⟨𝐼n∣⋆⟩∣𝑥n ∙⋆⟩).

195

VII. Call-by-name solvability

Fact VII.1.10: Uniform confluence of a in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , each reduction⇝ ∈ { , h , a , lo } is uniformly confluent:
for any terms 𝓉, 𝓉�, and 𝓉�,𝓉� ⇜ 𝓉 ⇝ 𝓉� ⇒ 𝓉� = 𝓉� or 𝓉� ⇝⇜ 𝓉�

Proof

For⇝ ∈ { , h , lo }, this immediately follows from⇝ being deterministic. For⇝ =
a , this is proven by induction on the derivations.

Fact VII.1.11: Confluence of in 𝛌→N, 𝜆→n , Li→n , and L→n
In 𝛌→N, 𝜆→n , Li→n , and L→n , each reduction⇝ ∈ { , h , a , lo , } is confluent: for any
terms 𝓉, 𝓉�, and 𝓉�, 𝓉� ⇜∗ 𝓉 ⇝∗ 𝓉� ⇒ 𝓉� ⇝∗⇜∗ 𝓉�

Proof

For⇝ ∈ { , h , a , lo }, this follows from⇝ being uniformly confluent (see). For⇝ = , this is easily proven using the parallel reduction: for 𝛌→N, see Definition 3.2.3
and Lemma 3.2.4 page 60 of [Bar84], and for L→n , see Proposition ??.
Fact VII.1.12

In 𝛌→N, 𝜆→n , Li→n , and L→n , each reduction⇝ ∈ { , h , lo , a } has uniqueness of ter-
mination behavior: for any term 𝓉,𝓉 ⇝⊛ ⇔ ¬(𝓉 ⇝𝜔)
Proof

This follows from these reductions being uniformly confluent (see).

Three notions of evaluation Given a reduction⇝, the induced notion of evaluation⇝⊛
is defined by 𝓉 ⇝⊛ 𝓉′ ≝ 𝓉 ⇝∗ 𝓉′ ⇝ (i.e. 𝓉 ⇝∗ 𝓉′ and ¬∃𝓉′′, 𝓉′ ⇝ 𝓉′′)
Note that having ⇝1 ⊆ ⇝2 implies that ⇝∗1 ⊆ ⇝∗2 (i.e. ⇝ ↦ ⇝∗ is positively monotone)
and ⇝1 ⊇ ⇝2 (i.e. ⇝ ↦ ⇝ is negatively monotone), but implies neither ⇝⊛1 ⊆ ⇝⊛2 nor⇝⊛1 ⊇ ⇝⊛2 (i.e. ⇝↦⇝⊛ is not monotone). There are therefore 5, a priori distinct, notions

196

VII. Call-by-name solvability

of evaluation: ⊛, h ⊛, a ⊛, lo ⊛ and ⊛. By using the fact that h (resp. lo) is a strategy
for a (resp.), we nevertheless get inclusions:

Fact VII.1.13

If⇝⟡ is a strategy of⇝, then⇝⊛⟡ ⊆ ⇝⊛:⇝⟡ ⊆ ⇝∀𝓉, 𝓉 ⇝⟡ ⇔ 𝓉 ⇝} ⇒ ⇝⊛⟡ ⊆ ⇝⊛
In particular, we have

h ⊛ ⊆ a ⊛ and lo ⊛ ⊆ ⊛
Proof

Immediate.

By using factorization properties, we can then conclude that there are only three notions
of evaluation:

Fact VII.1.14

In 𝛌→N, 𝜆→n , Li→n , and L→n , we have
h ⊛ = a ⊛ and lo ⊛ = ⊛

Proof sketch (See page 233 for details)

Both ⊆ inclusions follow from the previous fact. The inclusion h ⊛ ⊇ a ⊛ follows
from a having uniqueness of termination behavior, and the inclusion lo ⊛ ⊇ ⊛
follows from the standardization theorem .

The three notions of evaluation are related as follows:

Fact VII.1.15

In 𝛌→N, 𝜆→n , Li→n , and L→n , we have𝓉 ⊛ 𝓉 h ⊛𝓉 a ⊛ 𝓉 lo ⊛𝓉 ⊛
where propositions in the same nodes are equivalent, and both implications are strict.

Proof

• 𝓉 h ⊛ ⇔ 𝓉 a ⊛ and 𝓉 lo ⊛ ⇔ 𝓉 ⊛ By the previous fact.

197

VII. Call-by-name solvability

• 𝓉 ⊛ ⇐strict 𝓉 h ⊛ ⇐strict 𝓉 lo ⊛ Since all three reductions are deterministic, the con-
trapositive is equivalent to 𝓉 𝜔 ⇒ 𝓉 h 𝜔 ⇒ 𝓉 lo 𝜔, which immediately follows
from ⊆ h ⊆ lo .

• 𝓉 ⊛ ⇏ 𝓉 h ⊛ The expression 𝜆𝑥N.ΩN (resp. command ⟨𝜇(𝑥n ∙⋆n).Ωn∣⋆n⟩) it
a counter-example in 𝛌→N (resp. Li→n).

• 𝓉 h ⊛ ⇏ 𝓉 lo ⊛ The expression𝑥NΩN (resp. command ⟨𝑥n∣Ωn ∙⋆n⟩) it a counter-
example in 𝛌→N (resp. Li→n).

Existence of normal forms and evaluation Evaluation under ⊛ (resp. h ⊛) can be
studied indirectly via the existence of an -normal (resp. h -normal) form:

Fact VII.1.16

In 𝛌→N, 𝜆→n , Li→n , and L→n , for each reduction⇝ ∈ { , h , a , lo , }, we havedom (⇝⊛) = dom (∗⇝) = dom(≈𝛽⇝)
i.e. for any object 𝓉, we have(∃𝑂′, 𝓉 ⇝∗ 𝓉′ ⇝) ⇔ (∃𝑂′, 𝓉 ∗ 𝓉′ ⇝) ⇔ (∃𝑂′, 𝓉 ≈𝛽 𝓉′ ⇝)
In particular, in 𝛌→N, we have(∃𝑇′N ∈ 𝐓ONFN , 𝑇N ∗ 𝑇′N) ⇔ (∃𝑇′N ∈ 𝐓ONFN , 𝑇N ∗ 𝑇′N) ⇔ (∃𝑇′N ∈ 𝐓ONFN , 𝑇N ≈𝛽 𝑇′N)
and(∃𝑇′N ∈ 𝐓AHNFN , 𝑇N ∗ 𝑇′N) ⇔ (∃𝑇′N ∈ 𝐓AHNFN , 𝑇N ∗ 𝑇′N) ⇔ (∃𝑇′N ∈ 𝐓AHNFN , 𝑇N ≈𝛽 𝑇′N)
Proof

• dom (⇝⊛) = dom (∗⇝) The ⊆ inclusion is trivial by⇝ ⊆ . Since h ⊛ =
a ⊛ and lo ⊛ = ⊛, it suffices to show the ⊇ inclusion for⇝ ∈ { , h , }.
For ⇝ = , this inclusion is trivial. Now, suppose that 𝓉 ∗ 𝓉′′ ⇝. By
(resp.), we have 𝓉 ∗ 𝓉′ ¬o ∗ 𝓉′′ (resp. 𝓉 h ∗ 𝓉′ ¬h ∗ 𝓉′′) for some 𝓉′.
Since -reducibility (resp. h -reducibility) is preserved by ¬o (resp. h), 𝓉′
is necessarily -normal (resp. h -normal), and we can therefore conclude that𝓉 ⊛ 𝓉′ (resp. 𝓉 h ⊛ 𝓉′).

• dom (∗⇝) = dom(≈𝛽⇝)
The ⊆ inclusion is trivial by ∗ ⊆ ≈𝛽 . Now sup-

pose that 𝓉� ≈𝛽 𝓉� ⇝. By confluence of , we have 𝓉�
∗ 𝓉′ ∗ 𝓉� for

some 𝓉′. Since⇝-normal forms are preserved by a, 𝓉′ is⇝-normal, and we
are done.

aFor ⇝ = , this holds vacuously: given an ⇝-normal normal expression, all expressions it -

198

VII. Call-by-name solvability

reduces to (of which there are none) are⇝-normal.

199

VII. Call-by-name solvability

Figure VII.1.3: Normal forms in 𝛌→N, 𝜆→n , Li→n , and L→n
Figure VII.1.3.a: Normal forms in 𝛌→N

Operational normal forms in 𝛌→N:𝐓ONFN ∋ 𝑇ONFN ⩴ 𝜆𝑥N.𝑇N∣𝑥N𝑇1N…𝑇𝑟N
Ahead normal forms in 𝛌→N:𝐓AHNFN ∋ 𝑇AHNFN ⩴ 𝜆𝑥N.𝑇AHNFN∣𝑥N𝑇1N…𝑇𝑟N
(Strong) normal forms in 𝛌→N:𝐓NFN ∋ 𝑇NFN ⩴ 𝜆𝑥N.𝑇NFN∣𝑥N𝑇NF,1N …𝑇NF,𝑟N

Figure VII.1.3.b: Normal forms in (inside-out) 𝜆→n
Operational normal forms in 𝜆→n :𝐜ONFn ∋ 𝑐ONFn ⩴ 𝜆𝑥n.𝑐n∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑥n𝐭ONFn ∋ 𝑡ONFn ⩴ 𝑡n𝐬ONFn ∋ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ONFn ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝐞ONFn ∋ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ONFn ⩴ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n
Ahead normal forms in 𝜆→n :𝐜AHNFn ∋ 𝑐AHNFn ⩴ 𝜆𝑥n.𝑐AHNFn ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑥n𝐭AHNFn ∋ 𝑡AHNFn ⩴ 𝑥n∣𝜆𝑥n.𝑐AHNFn ∣ctot(𝑐AHNFn)𝐬AHNFn ∋ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠AHNFn ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n𝐞AHNFn ∋ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒AHNFn ⩴ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒n
(Strong) normal forms in 𝜆→n :𝐜NFn ∋ 𝑐NFn ⩴ 𝜆𝑥n.𝑐NFn ∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠NFn 𝑥n𝐭NFn ∋ 𝑡NFn ⩴ 𝑥n∣𝜆𝑥n.𝑐NFn ∣ctot(𝑐NFn)𝐬NFn ∋ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠NFn ⩴ ◽∣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠NFn ◽𝑡NFn𝐞NFn ∋ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒NFn ⩴ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠NFn ∣ let𝑥n ∶= ◽ in 𝑐NFn

Figure VII.1.3.c: Normal forms in Li→n
Same grammar as for L→n , with every stack variable 𝛼n replaced by⋆n

200

VII. Call-by-name solvability

Figure VII.1.3.d: Normal forms in L→n
Operational normal forms in L→n :𝐜ONFn ∋ 𝑐ONFn ⩴ ⟨𝜇(𝑥n ∙ 𝛼n).𝑐∣𝛽n⟩∣⟨𝑥n∣𝑠n⟩𝐭ONFn ∋ 𝑡ONFn ⩴ 𝑡n𝐬ONFn ∋ 𝑠ONFn ⩴ 𝑠n𝐞ONFn ∋ 𝑒ONFn ⩴ 𝑒n
Ahead normal forms in L→n :𝐜AHNFn ∋ 𝑐AHNFn ⩴ ⟨𝜇(𝑥n ∙ 𝛼n).𝑐AHNFn ∣𝛼n⟩∣⟨𝑥n∣𝑠n⟩𝐭AHNFn ∋ 𝑡AHNFn ⩴ 𝜇(𝑥n ∙ 𝛼n).𝑐AHNFn ∣𝜇𝛼n.𝑐AHNFn ∣𝑥n𝐬AHNFn ∋ 𝑠AHNFn ⩴ 𝑠n𝐞AHNFn ∋ 𝑒AHNFn ⩴ 𝑒n
(Strong) normal forms in L→n :𝐜NFn ∋ 𝑐NFn ⩴ ⟨𝜇(𝑥n ∙ 𝛼n).𝑐NFn ∣𝛽n⟩∣⟨𝑥n∣𝑠NFn ⟩𝐭NFn ∋ 𝑡NFn ⩴ 𝑥n∣𝜇𝛼n.𝑐NFn ∣𝜇(𝑥n ∙ 𝛼n).𝑐NFn𝐬NFn ∋ 𝑠NFn ⩴ 𝛼n∣𝑡NFn ∙ 𝑠NFn𝐞NFn ∋ 𝑒NFn ⩴ 𝑠NFn ∣𝜇𝑥n.𝑐NFn

201

VII. Call-by-name solvability

VII.2. Usefulness of the trivial interpretation of programs

202

VII. Call-by-name solvability

VII.3. Instanciating the general definitions

VII.3.1. Parameters

In 𝛌→N, (resp. 𝜆→n , Li→n , L→n), there are many reasonable ways of instanciating the general
definitions by choosing a reduction ⇝, and sets of programs𝓟, of contexts𝓚, of inputs𝓘, and of outputs𝓞. For the values of these parameters we consider, many notions end up
being equivalent, and the only relevant parameter is the reduction⇝. For each definition,
we therefore give our prefered definition that only depends on⇝, then generalize bymaking
it depend on the other parameters, and finally show that for many values of the parameters,
the instances of the general definitions are equivalent to our prefered definition.

Terms and states We define terms (i.e. program fragments without holes) and states (i.e.
things we want to reduce) in 𝛌→N, 𝜆→n , Li→n , and L→n as follows:

Definition VII.3.1: Terms and states

Terms are all objects of the syntax:𝓣erm = 𝐓N in 𝛌→N, and 𝓣erm = 𝐜n ∪ 𝐭n ∪ 𝐞n in 𝜆→n , Li→n , and L→n
States are expressions in 𝛌→N, and commands in the other calculi:𝓢tate = 𝐓N in 𝛌→N, and 𝓢tate = 𝐜n in 𝜆→n , Li→n , and L→n
These sets of𝓣erm and𝓢tatewill be used to define, claim and prove things in all four calculi𝛌→N, 𝜆→n , Li→n , and L→n at once so as to avoid unnecessary duplications.

Closedness In 𝛌→N, a natural choice for the set of programs𝓟 is the set of closed expres-
sions. In L-calculi, it makes no sense to consider closed commands, e.g. because there are
no closed commands in Li→n and L→n (because any command has a free stack variable). This
could be solved by extending the calculi with a stack constant ∧ (with no associated reduc-
tion rules) and substituting all free stack variables by ∧. Doing so explicitly is mostly useless
since for each reduction⇝ we consider, we would have𝑐n ⇝⊛ 𝑐′n ⇔ 𝑐n[∧∕𝛼n1, … , ∧∕𝛼n𝑞] ⇝⊛ 𝑐′n[∧∕𝛼n1, … , ∧∕𝛼n𝑞]
and we therefore leave this substitution implicit and call virtually closed the commands that
would be closed after such a substitution:

Definition VII.3.2

A state is said to be virtually closed when it has no free value variables. The set of
virtually closed states is denoted by𝓢tate ≝ {𝓆 ∈ 𝓢tate∣FV𝒱(𝓆) = ∅}

203

VII. Call-by-name solvability

Parameters While these are not the only reasonable choices, we restrict our attention the
the following values for the parameters:

• The set of programs𝓟 can be:
– the set of all states, i.e. of expressions in 𝛌→N; and of commands in the other cal-
culi: 𝓟 = 𝓢tate = 𝐓N in 𝛌→N, and 𝓟 = 𝓢tate = 𝐜n in 𝜆→n , Li→n , and L→n

– the set of virtually closed states, i.e. of closed expressions in𝛌→N; and of commands
with no free value variables 𝑥n in the other calculi:𝓟 = 𝓢tate = 𝐓V in 𝛌→V , and 𝓟 = 𝓢tate = 𝐜n in 𝜆→n , Li→n , and L→n

• The set of inputs𝓘nput can be:
– the trivial set of inputs𝓘 =𝓘nput∙, with𝓘nput∙ = {∙}, and initial_state∙(𝓅, ∙) = 𝓅
– the set of stacks𝓘 =𝓘nputS, with𝓘nputS = 𝐒N and initial_stateS(𝑇N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇N in 𝛌→N𝓘nputS = 𝐬n and initial_stateS(𝑡n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑡n in 𝜆→n𝓘nputS = 𝐬n and initial_stateS(𝑡n, 𝑠n) = ⟨𝑡n∣𝑠n⟩ in Li→n and L→n
– the set of virtually closed stacks:𝓘nputS¬x = 𝐒N in 𝛌→N and 𝓘nputS¬x = 𝐬n in 𝜆→n ,Li→n and L→n
with initial_stateS¬x ≝ initial_stateS

• The set of outputs𝓞 can be:
– trivial: 𝓞 = 𝓞utput∙ = {∙}, and output∙(𝓆) = ∙
– terms quotiented by an equivalence relation ℛ:𝓞 = 𝓞utputℛ = 𝓣erm∕ℛ, and outputℛ(𝓆) = {𝓉 ∈ 𝓣erm∣𝓆ℛ𝓉}

• The set of contexts𝓚 can be:
– the set of all contexts:𝓚= 𝐊N in 𝛌→N, and 𝓚= 𝐤n in 𝜆→n ,Li→n and L→n
– the set of all function contexts in 𝛌→V 9:𝓚= 𝐅N
where𝐅N ≝ {(𝜆𝑥N1 .… 𝜆𝑥N𝑞 .◽)𝑇1N…𝑇𝑟N∣(𝑥N1 , … , 𝑥N𝑞) ∈ 𝒱𝑞 and (𝑇1N, … , 𝑇𝑟N) ∈ 𝐓𝑟N}

9These could also be defined in the other calculi, but there is no point in doing so since disubstitutions are
more natural.

204

VII. Call-by-name solvability

– the set of all applied function contexts in 𝛌→V :𝓚= 𝐅aV
where𝐅aN = {(𝜆𝑥N1 .… 𝜆𝑥N𝑞 .◽)𝑇1N…𝑇𝑟N∣(𝑥N1 , … , 𝑥N𝑞) ∈ 𝒱𝑞 and (𝑇1N, … , 𝑇𝑟N) ∈ 𝐓𝑟N with 𝑞 ≤ 𝑟}

– the set of disubstitutions𝓚= 𝜑N = {(𝜎, ◽𝑇1N…𝑇𝑞N)∣𝜎 ∶ 𝒱 fin,,→ 𝐓N and (𝑇1N, … , 𝑇𝑞N) ∈ 𝐓𝑞N} in 𝛌→N𝓚= 𝜑n = {(𝜎, ◽𝑡1n … 𝑡𝑞n)∣𝜎 ∶ 𝒱 fin,,→ 𝐭n and (𝑡1n , … , 𝑡𝑞n) ∈ 𝐭𝑞n} in 𝜆→n𝓚= 𝜑n = {𝜎 ∪ (⋆v ↦ 𝑡1n ∙ … ∙ 𝑡𝑞n ∙⋆v)∣𝜎 ∶ 𝒱 fin,,→ 𝐭n and (𝑡1n , … , 𝑡𝑞n) ∈ 𝐭𝑞n} in Li→n𝓚= 𝜑n = {𝜎 ∪ 𝜓∣𝜎 ∶ 𝒱 fin,,→ 𝐭n and 𝜓 ∶ 𝒮 fin,,→ 𝐬v} in L→n
The main definitions correspond to the choices𝓟 = 𝓢tate, 𝓚 = 𝜑, and 𝓘 = 𝓞 = {∙}
VII.3.2. A meaning for programs

Main definition Themain definition only tests for convergencewith respect to a reduction⇝:

Definition VII.3.3: Halting preorder and equivalence

Given a reduction⇝, the halting preorder ≾⇝ is defined on states (i.e. expressions in𝛌→N, and commands in the other calculi) by:𝓆1 ≾⇝ 𝓆2 ≝ 𝓆1 ⇝⊛ ⇒ 𝓆2 ⇝⊛
The halting equivalence ∼⇝, and the strict halting preorder ≺⇝ are respectively the
equivalence relation and the strict preorder induced by the halting preorder ≾⇝:𝓆1 ∼⇝ 𝓆2 ≝ 𝓆1 ≾⇝ 𝓆2 and𝓆1 ≿⇝ 𝓆2 (i.e. 𝓆1 ⇝⊛ ⇔ 𝓆2 ⇝⊛)𝓆1 ≺⇝ 𝓆2 ≝ 𝓆1 ≾⇝ 𝓆2 and𝓆1 ̸≿⇝ 𝓆2 (i.e. 𝓆1 ⇝⊛ and𝓆2 ⇝⊛)

Alternative definitions Alternative definitions allow for other sets of inputs𝓘 or𝓞:
Definition VII.3.4

Given a set of inputs𝓘, a reduction⇝, and a set of outputs𝓞, we define⟬𝓅⟭𝓘,⇝,𝓞 ∶ 𝓘 ⇀ 𝓞𝒾 ↦ {output(𝓆) if initial_state(𝓅, 𝒾) ⇝∗ 𝓆
undefined otherwise

205

VII. Call-by-name solvability

We write 𝓅1 ≾𝓘,⇝,𝓞 𝓅2 for ⟬𝓅1⟭𝓘,⇝,𝓞 ⊆ ⟬𝓅2⟭𝓘,⇝,𝓞. The induced equivalence (resp.
strict preorder) is denoted by ∼𝓘,⇝,𝓞 (resp. ≺𝓘,⇝,𝓞):𝓆1 ∼𝓘,⇝,𝓞 𝓆2 ≝ 𝓆1 ≾𝓘,⇝,𝓞 𝓆2 and𝓆1 ≿𝓘,⇝,𝓞 𝓆2 (i.e. ⟬𝓅1⟭𝓘,⇝,𝓞 = ⟬𝓅2⟭𝓘,⇝,𝓞)𝓆1 ≺𝓘,⇝,𝓞 𝓆2 ≝ 𝓆1 ≾𝓘,⇝,𝓞 𝓆2 and𝓆1 ̸≿𝓘,⇝,𝓞 𝓆2 (i.e. ⟬𝓅1⟭𝓘,⇝,𝓞 ⊊ ⟬𝓅2⟭𝓘,⇝,𝓞)
To keep the subscripts short, we sometimes simplify 𝓘nput∙ and 𝓞utput∙ to ∙, 𝓘nputS to S,𝓘nputS¬x to S¬x, and𝓞utputℛ to ℛ, so that e.g.≾∙,⇝,∙ ntn= ≾𝓘nput∙,⇝,𝓞utput∙
Fact VII.3.5

We have ≾⇝ = ≾∙,⇝,∙.
Proof

Immediate.

Properties The halting preorder ≾⇝ (resp. halting equivalence ∼⇝) is of course a preorder
(resp. equivalence):

Fact VII.3.6

For any𝓘,⇝, and𝓞, the relation ≾𝓘,⇝,𝓞 is a preorder, ∼𝓘,⇝,𝓞 is an equivalence rela-
tion, and ≺𝓘,⇝,𝓞 is a strict preorder. In particular, ≾⇝ is a preorder, ∼⇝ an equivalence
relation, and ≺⇝ a strict preorder.
Proof

Immediate.

Note that ≾𝓘,⇝,𝓞 only depends on ⇝ through ⇝⊛, so that any reductions inducing the
same notion of evaluation⇝⊛ also induce the same halting preorder:

Fact VII.3.7

For any𝓘,⇝, and𝓞, we have⇝⊛1 = ⇝⊛2 ⇒ ≾𝓘,⇝1,𝓞 = ≾𝓘,⇝2,𝓞 ⇒ ∼𝓘,⇝1,𝓞 = ∼𝓘,⇝2,𝓞
In particular, ≾ h = ≾ a and ≾ lo = ≾

206

VII. Call-by-name solvability

Proof

Both⇒ implications are by definition. The two particular equalities follow from the
equalities h ⊛ = a ⊛ and lo ⊛ = ⊛ (Fact VII.1.14).

For the reductions⇝we consider, the halting equivalence∼⇝ contains the 𝛽-equivalence≈𝛽:
Fact VII.3.8

We have: ≈𝛽 ⊆ ∼ , ≈𝛽 ⊆ ∼ h , and ≈𝛽 ⊆ ∼
Proof

This is an immediate consequence of the equivalence between⇝∗-reducing to an⇝-
normal form and having an ⇝-normal form modulo ≈𝛽 (Fact VII.1.16). Indeed, if𝓉1 ≈𝛽 𝓉2 then 𝓉1 ⇝⊛ ⇔ 𝓉1 ≈𝛽⇝ ⇔ 𝓉2 ≈𝛽⇝ ⇔ 𝓉2 ⇝⊛

VII.3.3. Observational preorder and equivalence

Main definitions

The main notions of observational preorder and equivalence are defined on states using
disubstitutions, and then extended to non-state expressions by embedding them into a states:

Definition VII.3.9: Observational preorder and equivalence

Given a reduction⇝, the⇝-observational preorder ⊑⇝ is defined on states by𝓆1 ⊑⇝ 𝓆2 ≝ ∀𝜑,𝓆1[𝜑] ≾⇝ 𝓆2[𝜑]
In 𝛌→N, a disubstitution 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N) is just a substitution 𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N so that this
simplifies to 𝑇1N ⊑⇝ 𝑇2N ≝ ∀𝜎, ∀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇1N[𝜎] ≾⇝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑇2N[𝜎]

207

VII. Call-by-name solvability

In 𝜆→n , Li→n and L→n , the operational preorder ⊑⇝ is extended to expressions and evalu-
ation contexts as follows:∙ In 𝜆→n : 𝑡1n ⊑⇝ 𝑡2n ≝ 𝑡1n ⊑⇝ 𝑡2n𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1n ⊑⇝ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2n ≝ ∀𝑥n, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1n 𝑥n ⊑⇝ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2n 𝑥n∙ In Li→n : 𝑡1n ⊑⇝ 𝑡2n ≝ ⟨𝑡1n ∣⋆n⟩ ⊑⇝ ⟨𝑡2n ∣⋆n⟩𝑒1n ⊑⇝ 𝑒2n ≝ ∀𝑥n,⟨𝑥n∣𝑒1n ⟩ ⊑⇝ ⟨𝑥n∣𝑒2n ⟩∙ In L→n : 𝑡1n ⊑⇝ 𝑡2n ≝ ∀𝛼n,⟨𝑡1n ∣𝛼n⟩ ⊑⇝ ⟨𝑡2n ∣𝛼n⟩𝑒1n ⊑⇝ 𝑒2n ≝ ∀𝑥n,⟨𝑥n∣𝑒1n ⟩ ⊑⇝ ⟨𝑥n∣𝑒2n ⟩
The⇝-observational equivalence ≂⇝, and the strict⇝-observational preorder ⊏⇝ are
respectively the equivalence relation and the strict preorder induced by the observa-
tional preorder ⊑⇝:𝓉1 ≂⇝ 𝓉2 ≝ 𝓉1 ⊑⇝ 𝓉2 and 𝓉1⊒⇝𝓉2 (i.e. ∀𝜑,𝓆1[𝜑] ∼⇝ 𝓆2[𝜑])𝓉1 ⊏⇝ 𝓉2 ≝ 𝓉1 ⊑⇝ 𝓉2 and 𝓉1⋣⇝𝓉2
We sometimes add a “c” (resp. “i”) subscript to emphasize that the ambiant calculus
is L→n (resp. is 𝛌→N, 𝜆→n , or Li→n), e.g. writing ⊑c,⇝ for the observational preorder of L→n
(resp. ⊑i,⇝ for the observational preorder of 𝛌→N, 𝜆→n , or Li→n).
Since it only tests for convergence via≾⇝, the observational equivalence≂⇝ could a priori

be too loose but it is not; it is able to distinguish between many expressions that we could
have wanted to use as outputs:

Example VII.3.10

In 𝛌→N, for any reduction⇝ such that ⊆ ⇝ ⊆ , we have:

• 𝑥N ⇝ 𝑦N Two distinct variables 𝑥N and 𝑦N are never⇝-observationally equiv-
alent. Indeed, we have𝑥N[𝐼N∕𝑥N, ΩN∕𝑦N] = 𝐼N ≻⇝ ΩN = 𝑦N[𝐼N∕𝑥N, ΩN∕𝑦N]

• 𝜆𝑥N.𝜆𝑦N.𝑥N ⇝ 𝜆𝑥N.𝜆𝑦N.𝑦N The Church encoding of booleans 𝜆𝑥N.𝜆𝑦N.𝑥N and𝜆𝑥N.𝜆𝑦N.𝑦N are not⇝-observationally equivalent. Indeed, for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ◽𝐼NΩN, we
have 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝜆𝑥N.𝜆𝑦N.𝑥N ⇝∗ 𝐼N ≻⇝ ΩN ⇜∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝜆𝑥N.𝜆𝑦N.𝑦N

• ⌜𝑛⌝ ⇝ ⌜𝑚⌝ The Church encodings of two distinct natural numbers are not⇝-observationally equivalent. Indeed, WLOG 𝑛 < 𝑚 and for𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = ◽𝐾N𝐼N𝑇1N…𝑇𝑛NΩN𝐼N… 𝐼N
208

VII. Call-by-name solvability

with 𝑇1N, … , 𝑇𝑛N arbitrary, and𝑚 − 𝑛 copies of 𝐼N after ΩN, we get𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⌜𝑚⌝ ⇝∗ 𝐼N ≻⇝ ΩN𝐼N… 𝐼N ⇜∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⌜𝑛⌝
In 𝜆→n , Li→n and L→n , the extension to expressions and evaluation contexts could also be

define by using a quantification on values (i.e. expressions) and stacks in place of value and
stack variables:

Fact VII.3.11

We have: ∙ In 𝜆→n : 𝑡1n ⊑⇝ 𝑡2n ⇔ ∀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑡1n ⊑⇝ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠n 𝑡2n𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1n ⊑⇝ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2n ⇔ ∀𝑣n, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1n 𝑣n ⊑⇝ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2n 𝑣n∙ In Li→n and L→n :𝑡1n ⊑⇝ 𝑡2n ⇔ ∀𝑠n, ⟨𝑡1n ∣𝑠n⟩ ⊑⇝ ⟨𝑡2n ∣𝑠n⟩𝑒1n ⊑⇝ 𝑒2n ⇔ ∀𝑣n,⟨𝑣n∣𝑒1n ⟩ ⊑⇝ ⟨𝑣n∣𝑒2n ⟩
(where the quantifications ∀𝑣n could also be written ∀𝑡n since values are exactly ex-
pressions in call-by-name).

Proof

The⇐ implication follows fromvalue (resp. stack) variables being values (resp. stacks).
The⇒ implication follows from the possibility of choosing a fresh value (resp. stack)
variable, and of freely extending the disubstitution to it.

We prefer the definitionwith variables because it does not need to be adapted if we restrict
the quantification ∀𝜑 in Definition VII.3.9 to some subset of disubstitutions (e.g. in call-by-
value where we someones want to restrict the quantification to simple disubstitutions).

Alternative definitions

In order to keep the definitions of the observational preorder short, we defined it directly on
terms 𝓉, but since we only want it to relate expressions to expressions, stacks to stacks, etc.,
we define the notion of compatible terms:

Definition VII.3.12

Two terms 𝓉1 and 𝓉2 are said to be compatible, written 𝓉1 ⎶ 𝓉2, when they are both
expressions, both evaluation contexts, or both commands.

We now give alternative definitions of the observational preorder that use the more gen-
eral ≾𝓘,⇝,𝓞 in place of ≾⇝, and also allow varying the set of contexts𝓚 and the set of pro-
grams𝓟:

209

VII. Call-by-name solvability

Definition VII.3.13

Given a set of contexts𝓚, a set of programs𝓟, a set of inputs𝓘, a reduction⇝, and
a set of outputs𝓞, the observational preorder ⊑𝓚,𝓟𝓘,⇝,𝓞 is defined by𝓉1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉2 ≝ 𝓉1 ⎶ 𝓉2 and ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈𝓚, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟} ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ≾𝓘,⇝,𝓞 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2
When𝓚 is instead of a set of disubstitutions, we use the same definition on statesa𝓆1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓆2 ≝ ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈𝓚, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓆1 ∈ 𝓟𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓆2 ∈ 𝓟} ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓆1 ≾𝓘,⇝,𝓞 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓆2

i.e.∀𝜑 ∈ 𝓚, 𝓆1[𝜑] ∈ 𝓟𝓆2[𝜑] ∈ 𝓟} ⇒ 𝓆1[𝜑] ≾𝓘,⇝,𝓞 𝓆2[𝜑]
and extend it to non-state expressions by:∙ In 𝜆→n : 𝑡1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑡2n ≝ 𝑡1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑡2n𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2n ≝ ∀𝑥n, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒1n 𝑥n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2n 𝑥n∙ In Li→n : 𝑡1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑡2n ≝ ⟨𝑡1n ∣⋆n⟩ ⊑𝓚,𝓟𝓘,⇝,𝓞 ⟨𝑡2n ∣⋆n⟩𝑒1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑒2n ≝ ∀𝑥n,⟨𝑥n∣𝑒1n ⟩ ⊑𝓚,𝓟𝓘,⇝,𝓞 ⟨𝑥n∣𝑒2n ⟩∙ In L→n : 𝑡1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑡2n ≝ ∀𝛼n,⟨𝑡1n ∣𝛼n⟩ ⊑𝓚,𝓟𝓘,⇝,𝓞 ⟨𝑡2n ∣𝛼n⟩𝑒1n ⊑𝓚,𝓟𝓘,⇝,𝓞 𝑒2n ≝ ∀𝑥n,⟨𝑥n∣𝑒1n ⟩ ⊑𝓚,𝓟𝓘,⇝,𝓞 ⟨𝑥n∣𝑒2n ⟩
The observational equivalence ≂𝓚,𝓟𝓘,⇝,𝓞, and the strict observational preorder ⊏𝓚,𝓟𝓘,⇝,𝓞
are respectively the equivalence relation and the strict preorder induced by the ob-
servational preorder ⊑𝓚,𝓟𝓘,⇝,𝓞:𝓉1 ≂𝓚,𝓟𝓘,⇝,𝓞 𝓉2 ≝ 𝓉1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉2 and 𝓉1 ⊒𝓚,𝓟𝓘,⇝,𝓞𝓉2𝓉1 ⊏𝓚,𝓟𝓘,⇝,𝓞 𝓉2 ≝ 𝓉1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉2 and 𝓉1 ⋣𝓚,𝓟𝓘,⇝,𝓞𝓉2
To keep the subscripts short, we use the same notations as for≾𝓘,⇝,𝓞, and in 𝛌→N (resp.𝜆→n , Li→n or L→n), we write 𝐊 for 𝐊N (resp. 𝐤n), and 𝜑 for 𝜑N (resp. 𝜑n). When both𝓘
and𝓞 are trivial, we sometimes leave them implicit: ⊑𝓚,𝓟⇝ ntn= ⊑𝓚,𝓟∙,⇝,∙.
aSince𝓆1 ⎶ 𝓆2 always holds, we remove it from the definition.

210

VII. Call-by-name solvability

Fact VII.3.14

We have ⊑⇝ = ⊑𝜑,𝓠⇝ = ⊑𝜑,𝓠∙,⇝,∙
Proof

By definition.

As will be shown in , all definitions that use the same reduction⇝ are actually equiva-
lent.

Properties

As one might expect, ⊑𝓚,𝓟𝓘,⇝,𝓞 is a precongruence and ≂𝓚,𝓟𝓘,⇝,𝓞 and is congruence. For some
choices of parameters, this follows trivially from the definitions, as shown below, but for
others it does not. Fortunately, since all instances of ⊑𝓚,𝓟𝓘,⇝,𝓞 we consider are equivalent
(), it suffices to show each property for one instance, and it carries over to all the others.

Transitivity While reflexivity and symmetry always holds trivially, transitivity only holds
trivially for𝓟 = 𝓠 (but not for𝓟 = 𝓠⃜, see):

Fact VII.3.15

For𝓟 = 𝓠, the observational preorder ⊑𝓚,𝓟𝓘,⇝,𝓞 is a preorder and the observational
equivalence ≂𝓚,𝓟𝓘,⇝,𝓞 is an equivalence.
Proof

By definition of ≂𝓚,𝓟𝓘,⇝,𝓞, it suffices to show that ⊑𝓚,𝓟𝓘,⇝,𝓞 is a preorder. Reflexivity
trivially follows from reflexivity of ≾𝓘,⇝,𝓞 (even for𝓟 ≠ 𝓠), so that we only need to
show transitivity. Let 𝓉1, 𝓉2, and 𝓉3 be three terms such that𝓉1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉2 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉3
and let 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 be a context such that𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉3 ∈ 𝓟
We in particular have 𝓉1 ⎶ 𝓉2 ⎶ 𝓉3

which implies that 𝓉1 ⎶ 𝓉3, and also that𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓠 ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓠 ⇐ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉3 ∈ 𝓠

211

VII. Call-by-name solvability

Now since 𝓟 = 𝓠, we therefore have 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟, which allows us to use the two⊑𝓚,𝓟𝓘,⇝,𝓞 hypotheses to get 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ≾𝓘,⇝,𝓞 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ≾𝓘,⇝,𝓞 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉3
We can therefore conclude that 𝓉1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉3
Remark VII.3.16

As explained in , it is not always immediate that ⊑𝓚,𝓟𝓘,⇝,𝓞, ≂𝓚,𝓟𝓘,⇝,𝓞, and ⊏𝓚,𝓟𝓘,⇝,𝓞 are
transitive. More precisely, transitivity is trivial when𝓟 = 𝓠, but not when𝓟 = 𝓠⃜
because there is not immediate way of proving𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟 and 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉3 ∈ 𝓟 ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟
which is required to go from𝓉1 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉2 ⊑𝓚,𝓟𝓘,⇝,𝓞 𝓉3 to 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ≾𝓘,⇝,𝓞 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ≾𝓘,⇝,𝓞 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉3
(but of course the implication holds whenever FV𝒱(𝓉2) ⊆ FV𝒱(𝓉1) ∪ FV𝒱(𝓉3) so
that transitivity holds when we restrict these relations to terms with the same value
variables).

Monotonicity Monotonicity is a very important property that states that contexts are ⊑𝓚,𝓟⇝-
monotone. Monotonicity for ⊑𝐊,𝓟⇝ is trivial:

Fact VII.3.17: Monotonicity with respect to ⊑𝐊,𝓟⇝
For any context 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 and terms 𝓉1 and 𝓉2 pluggable in 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, we have𝓉1 ⊑𝐊N,𝓟⇝ 𝓉2 ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ⊑𝐊N,𝓟⇝ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2
Proof

Let𝓚= 𝐊N or 𝐤n. We have𝓉1 ⊑𝓚,𝓟⇝ 𝓉2 ⇔ ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 ∈𝓚, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟} ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ≾⇝ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2
⇔ ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� ∈𝓚,∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ ∈𝓚, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉1 ∈ 𝓟𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉2 ∈ 𝓟⎫⎬⎭ ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉1 ≾⇝ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉2
⇔ ∀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� ∈𝓚,𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉1 ⊑𝓚,𝓟⇝ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉2

212

VII. Call-by-name solvability

where in the second equivalence follows from the fact that (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀�) ↦ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� is
surjective and that𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 = 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� ⇒ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉𝑖 = (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀�) 𝓉𝑖 = 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀� 𝓉𝑖
Both immediately follow from from (𝓚,◽, (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀�) ↦ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀▴ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀�) being amonoid (resp.
non-symmetric colored operad) that acts on𝓣erm via (𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀, 𝓉) ↦ 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉 .

Soundness of 𝛽-conversion When comparing expressions with respect to ⊑𝐊,𝓟⇝, it is sound
to reason module 𝛽-equivalence:

Lemma VII.3.18

For any terms 𝓉1 and 𝓉2, we have𝓉1 ⊑𝓚,𝓟⇝ 𝓉2 ⇔ 𝓉1 ≈𝛽 ⊑𝓚,𝓟⇝≈𝛽 𝓉2
Proof

The ⇒ implication is trivial by reflexivity of ≈𝛽 . We now prove the ⇐ implication.
Suppose that 𝓉1 ≈𝛽 𝓉′1 ⊑𝓚,𝓟⇝ 𝓉′2 ≈𝛽 𝓉2, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉1 ∈ 𝓟, 𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀𝓀 𝓉2 ∈ 𝓟
It is immediate that 𝓉1 ⎶ 𝓉2 (because ≈𝛽 ⊆ ⎶ by induction on the derivation).

In particular, ≈𝛽 is sound with respect to ⊑𝐊,𝓟⇝:
Lemma VII.3.19

For any terms 𝓉1 and 𝓉2, we have𝓉1 ≈𝛽 𝓉2 ⇒ 𝓉1 ⊑𝓚,𝓟⇝ 𝓉2
Proof

By transitivity of ≈𝛽, reflexivity of ⊑𝓚,𝓟⇝, and the previous lemma, we have𝓉1 ≈𝛽 𝓉2 ⇒ 𝓉1 ≈𝛽≈𝛽 𝓉2 ⇒ 𝓉1 ≈𝛽 ⊑𝓚,𝓟⇝≈𝛽 𝓉2 ⇒ 𝓉1 ⊑𝓚,𝓟⇝ 𝓉2

213

VII. Call-by-name solvability

Remark VII.3.20

Note that when ⊑𝓚,𝓟⇝ is transitive, we also have𝓉1 ≈𝛽 ⊑𝓚,𝓟⇝≈𝛽 𝓉2 ⇒ 𝓉1 ⊑𝓚,𝓟⇝ ⊑𝓚,𝓟⇝ ⊑𝓚,𝓟⇝ 𝓉2 ⇒ 𝓉1 ⊑𝓚,𝓟⇝ 𝓉2
so that the last two lemmas are actually equivalent.

VII.3.4. Operational relevance and solvability

214

VII. Call-by-name solvability

VII.4. Equivalences between definitions

215

VIII. Call-by-value solvability

216

IX. Polarized solvability

217

Bibliography

[Abr90] S. Abramsky, “The lazy lambda calculus,” 1990 (cit. on pp. 5, 9, 161,
184).

[AbrOng93] S. Abramsky and C.-H. L. Ong, “Full abstraction in the lazy lambda cal-
culus,” Inf. Comput., vol. 105, no. 2, pp. 159–267, Aug. 1993, issn: 0890-
5401. doi: 10.1006/inco.1993.1044. [Online]. Available: https:
//doi.org/10.1006/inco.1993.1044 (cit. on p. 8).

[AccGue16] B. Accattoli and G. Guerrieri, “Open call-by-value,” in Programming
Languages and Systems, A. Igarashi, Ed., Cham: Springer International
Publishing, 2016, pp. 206–226, isbn: 978-3-319-47958-3 (cit. on pp. 5,
23, 76).

[AccPao12] B.Accattoli andL. Paolini, “Call-by-value solvability, revisited,” inFunc-
tional and Logic Programming, T. Schrijvers and P. Thiemann, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 4–16, isbn:
978-3-642-29822-6 (cit. on pp. 5, 7, 23).

[Bar84] H. Barendregt,The lambda calculus: its syntax and semantics (Studies in
logic and the foundations of mathematics). North-Holland, 1984, isbn:
9780444867483. [Online]. Available: https://books.google.fr/
books?id=eMtTAAAAYAAJ (cit. on pp. 3, 5, 9, 18, 20, 76, 117, 185, 196,
233).

[BucKesRíoVis20] A. Bucciarelli, D. Kesner, A. Ríos, and A. Viso, “The bang calculus re-
visited,” in Functional and Logic Programming, K. Nakano and K. Sag-
onas, Eds., Cham: Springer International Publishing, 2020, pp. 13–32,
isbn: 978-3-030-59025-3 (cit. on pp. 5, 76).

[Chu85] A. Church,TheCalculi of LambdaConversion. (AM-6) (Annals ofMath-
ematics Studies). USA: PrincetonUniversity Press, 1985, isbn: 0691083940
(cit. on p. 8).

[CurFioMun16] P.-L. Curien, M. Fiore, and G. Munch-Maccagnoni, “A Theory of Ef-
fects andResources: AdjunctionModels and PolarisedCalculi,” inProc.
POPL, 2016. doi: 10.1145/2837614.2837652 (cit. on pp. 6, 76, 81, 84,
91, 123).

218

https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1006/inco.1993.1044
https://books.google.fr/books?id=eMtTAAAAYAAJ
https://books.google.fr/books?id=eMtTAAAAYAAJ
https://doi.org/10.1145/2837614.2837652

Bibliography

[CurHer00] P.-L. Curien andH.Herbelin, “The duality of computation,” in Proceed-
ings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00),Montreal, Canada, September 18-21, 2000, ser. SIG-
PLANNotices 35(9), ACM, 2000, pp. 233–243, isbn: 1-58113-202-6. doi:
http://doi.acm.org/10.1145/351240.351262 (cit. on pp. 4–6, 16,
18, 62).

[CurMun10] P.-L. Curien and G. Munch-Maccagnoni, “The duality of computation
under focus,” in IFIP TCS, C. S. Calude and V. Sassone, Eds., ser. IFIP
Advances in Information and Communication Technology, vol. 323,
Springer, 2010, pp. 165–181 (cit. on p. 6).

[DanNie04] O.Danvy andL.R.Nielsen, “Refocusing in reduction semantics,”BRICS
Report Series, vol. 11, no. 26, Nov. 2004. doi: 10.7146/brics.v11i26.
21851. [Online]. Available: https://tidsskrift.dk/brics/article/
view/21851 (cit. on pp. 18, 29, 49).

[dVri16] F.-J. de Vries, “On Undefined and Meaningless in Lambda Definabil-
ity,” in 1st International Conference on Formal Structures for Computa-
tionandDeduction (FSCD2016), D.Kesner andB. Pientka, Eds., ser. Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 52,Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016,
18:1–18:15, isbn: 978-3-95977-010-1. doi: 10.4230/LIPIcs.FSCD.
2016.18. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2016/5978 (cit. on p. 7).

[DezGio01] M. Dezani-Ciancaglini and E. Giovannetti, “From Böhm’s Theorem to
Observational Equivalences: an InformalAccount,” inBOTH’01, ser. Elec-
tronicNotes inTheoretical Computer Science (http://www.elsevier.nl/locate/entcs/volume50.html),
vol. 50, Elsevier, 2001, pp. 83–116. [Online]. Available: http://www.
di.unito.it/~dezani/papers/both01.ps (cit. on pp. 9, 184, 185).

[Dij68] E. W. Dijkstra, “Letters to the editor: Go to statement considered harm-
ful,” Commun. ACM, vol. 11, no. 3, pp. 147–148, Mar. 1968, issn: 0001-
0782. doi: 10.1145/362929.362947. [Online]. Available: https://
doi.org/10.1145/362929.362947 (cit. on p. 3).

[DowAri18] P. Downen and Z. M. Ariola, “A tutorial on computational classical
logic and the sequent calculus,” Journal of Functional Programming,
vol. 28, e3, 2018. doi: 10.1017/S0956796818000023 (cit. on p. 6).

[Ehr16] T. Ehrhard, “Call-by-push-value from a linear logic point of view,” in
Proceedings of the 25thEuropeanSymposiumonProgrammingLanguages
and Systems - Volume 9632, Berlin, Heidelberg: Springer-Verlag, 2016,
pp. 202–228, isbn: 9783662494974 (cit. on p. 76).

219

https://doi.org/http://doi.acm.org/10.1145/351240.351262
https://doi.org/10.7146/brics.v11i26.21851
https://doi.org/10.7146/brics.v11i26.21851
https://tidsskrift.dk/brics/article/view/21851
https://tidsskrift.dk/brics/article/view/21851
https://doi.org/10.4230/LIPIcs.FSCD.2016.18
https://doi.org/10.4230/LIPIcs.FSCD.2016.18
http://drops.dagstuhl.de/opus/volltexte/2016/5978
http://drops.dagstuhl.de/opus/volltexte/2016/5978
http://www.di.unito.it/~dezani/papers/both01.ps
http://www.di.unito.it/~dezani/papers/both01.ps
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
https://doi.org/10.1017/S0956796818000023

Bibliography

[EhrGue16] T. Ehrhard and G. Guerrieri, “The bang calculus: An untyped lambda-
calculus generalizing call-by-name and call-by-value,” in Proceedings of
the 18th International Symposium on Principles and Practice of Declara-
tive Programming, ser. PPDP ’16, Edinburgh,UnitedKingdom:Associa-
tion forComputingMachinery, 2016, pp. 174–187, isbn: 9781450341486.
doi: 10.1145/2967973.2968608. [Online]. Available: https://doi.
org/10.1145/2967973.2968608 (cit. on pp. 5, 76).

[ErwRen04] M. Erwig and D. Ren, “Monadification of functional programs,” Sci.
Comput. Program., vol. 52, no. 1–3, pp. 101–129, Aug. 2004, issn: 0167-
6423. doi: 10.1016/j.scico.2004.03.004. [Online]. Available:
https://doi.org/10.1016/j.scico.2004.03.004 (cit. on p. 84).

[GarNog16] Á. García-Pérez and P. Nogueira, “No solvable lambda-value term left
behind,” Logical Methods in Computer Science, vol. Volume 12, Issue 2,
Jun. 2016. doi: 10.2168/LMCS-12(2:12)2016. [Online]. Available:
https://lmcs.episciences.org/1644 (cit. on p. 5).

[Gir11] J.-Y. Girard, “The blind spot: Lectures on logic,” 2011 (cit. on p. 134).
[Hue97] G. P. Huet, “The zipper,” J. Funct. Program., vol. 7, no. 5, pp. 549–554,

1997. doi: 10.1017/s0956796897002864. [Online]. Available: https:
//doi.org/10.1017/s0956796897002864 (cit. on p. 30).

[IntManPol17] B. Intrigila, G.Manzonetto, andA. Polonsky, “Refutation of sallé’s long-
standing conjecture,” in 2nd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2017, September 3-9, 2017,
Oxford,UK, D.Miller, Ed., ser. LIPIcs, vol. 84, SchlossDagstuhl - Leibniz-
Zentrum für Informatik, 2017, 20:1–20:18. doi: 10 . 4230 / LIPIcs .
FSCD.2017.20. [Online]. Available: https://doi.org/10.4230/
LIPIcs.FSCD.2017.20 (cit. on pp. 9, 185).

[Kri07] J.-L. Krivine, “A call-by-name lambda-calculusmachine,”HigherOrder
Symbolic Computation, vol. 20, pp. 199–207, 2007. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00154508 (cit. on pp. 6,
16, 18, 30).

[Lev01] P. B. Levy, “Call-by-push-value,” Ph.D. dissertation, Queen Mary Uni-
versity of London, UK, 2001. [Online]. Available: http://ethos.bl.
uk/OrderDetails.do?uin=uk.bl.ethos.369233 (cit. on p. 91).

[Lev04] P. B. Levy, Call-By-Push-Value: A Functional/Imperative Synthesis (Se-
mantics Structures in Computation). Springer, 2004, vol. 2, isbn: 1-
4020-1730-8 (cit. on pp. 4, 5, 76, 91).

[Lev06] P. B. Levy, “Call-by-push-value:Decomposing call-by-value and call-by-
name,” High. Order Symb. Comput., vol. 19, no. 4, pp. 377–414, 2006.
doi: 10 . 1007 / s10990 - 006 - 0480 - 6. [Online]. Available: https :
//doi.org/10.1007/s10990- 006- 0480- 6 (cit. on pp. 4, 5, 76,
91).

220

https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1016/j.scico.2004.03.004
https://doi.org/10.1016/j.scico.2004.03.004
https://doi.org/10.2168/LMCS-12(2:12)2016
https://lmcs.episciences.org/1644
https://doi.org/10.1017/s0956796897002864
https://doi.org/10.1017/s0956796897002864
https://doi.org/10.1017/s0956796897002864
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://doi.org/10.4230/LIPIcs.FSCD.2017.20
https://hal.archives-ouvertes.fr/hal-00154508
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6
https://doi.org/10.1007/s10990-006-0480-6

Bibliography

[Mog89] E. Moggi, “Computational lambda-calculus and monads,” in Proceed-
ings of theFourthAnnual SymposiumonLogic inComputer Science (LICS
’89), Pacific Grove, California, USA, June 5-8, 1989, IEEE Computer So-
ciety, 1989, pp. 14–23. doi: 10.1109/LICS.1989.39155. [Online].
Available: https://doi.org/10.1109/LICS.1989.39155 (cit. on
pp. 5, 91).

[Mog91] E. Moggi, “Notions of computation and monads,” Inf. Comput., vol. 93,
no. 1, pp. 55–92, 1991. doi: 10.1016/0890-5401(91)90052-4. [On-
line]. Available: https://doi.org/10.1016/0890-5401(91)90052-
4 (cit. on p. 5).

[Mor69] J. H. Morris, “Lambda calculus models of programming languages,”
Ph.D. dissertation, Massachusets Institute of Technology, 1969 (cit. on
pp. 9, 184, 187).

[Mun13] G.Munch-Maccagnoni, “Syntax andModels of a non-Associative Com-
position of Programs andProofs,” Ph.D. dissertation,Univ. ParisDiderot,
2013 (cit. on p. 84).

[Mun14] G. Munch-Maccagnoni, “Models of a Non-Associative Composition,”
in Proceedings of the 17th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCs), A. Muscholl,
Ed., ser. Lecture Notes in Computer Science, vol. 8412, Springer Hei-
delberg, 2014, pp. 397–412 (cit. on p. 84).

[MunSch15] G. Munch-Maccagnoni and G. Scherer, “Polarised Intermediate Repre-
sentation of Lambda Calculus with Sums,” in Proceedings of the Thirti-
eth Annual ACM/IEEE Symposium on Logic In Computer Science (LICS
2015), 2015. doi: 10.1109/LICS.2015.22 (cit. on pp. 6, 76).

[Ong88] C. L. Ong, “Fully abstract models of the lazy lambda calculus,” in 29th
Annual Symposium on Foundations of Computer Science, White Plains,
NewYork,USA, 24-26October 1988, IEEEComputer Society, 1988, pp. 368–
376. doi: 10.1109/SFCS.1988.21953. [Online]. Available: https:
//doi.org/10.1109/SFCS.1988.21953 (cit. on p. 5).

[PaoRon99] L. Paolini and S. RonchiDella Rocca, “Call-by-value solvability,”RAIRO
Theor. Informatics Appl., vol. 33, no. 6, pp. 507–534, 1999. doi: 10 .
1051 / ita : 1999130. [Online]. Available: https : / / doi . org / 10 .
1051/ita:1999130 (cit. on pp. 5, 23).

[Par92] M. Parigot, “𝜆𝜇-calculus: An algorithmic interpretation of classical nat-
ural deduction,” in Logic Programming and Automated Reasoning, A.
Voronkov, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
pp. 190–201, isbn: 978-3-540-47279-7 (cit. on p. 5).

221

https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1109/LICS.2015.22
https://doi.org/10.1109/SFCS.1988.21953
https://doi.org/10.1109/SFCS.1988.21953
https://doi.org/10.1109/SFCS.1988.21953
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130
https://doi.org/10.1051/ita:1999130

Bibliography

[Reg94] L. Regnier, “Une équivalence sur les lambda-termes,” Theor. Comput.
Sci., vol. 126, no. 2, pp. 281–292, 1994. doi: 10.1016/0304-3975(94)
90012-4. [Online]. Available: https://doi.org/10.1016/0304-
3975(94)90012-4 (cit. on pp. 16, 18, 23).

[Tak95] M.Takahashi, “Parallel reductions in𝜆-calculus,” Inf. Comput., vol. 118,
no. 1, pp. 120–127, Apr. 1995, issn: 0890-5401. doi: 10.1006/inco.
1995.1057. [Online]. Available: https://doi.org/10.1006/inco.
1995.1057 (cit. on pp. 117, 233).

[Wad76] C. P. Wadsworth, “The relation between computational and denota-
tional properties for scott’s dinfty-models of the lambda-calculus,”SIAM
J.Comput., vol. 5, no. 3, pp. 488–521, 1976. doi: 10.1137/0205036. [On-
line]. Available: https://doi.org/10.1137/0205036 (cit. on pp. 7, 9,
184).

222

https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1016/0304-3975(94)90012-4
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036

Appendix

223

224

.1. Properties of disubstitutions

Recall the definitions of disubstitutions in the different calculi:

Summary .1.1

• In 𝜆-calculi, a disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) that consists of a substitution𝜎 and a stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , with 𝑇[𝜑] = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇[𝜎]
• In 𝜆-calculi with focus, a disubstitution 𝜑 is a pair 𝜑 = (𝜎, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) that consists of a
substitution 𝜎 and a stack 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, with𝑡[𝜑] ≝ 𝑡[𝜎]𝑐[𝜑] ≝ defer(𝑐[𝜎], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝜑] ≝ defer(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝜎], 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

• In L-calculi, a disubstitution 𝜑 is a substitution whose domain may contain
stack variables 𝛼 in addition to the usual value variable 𝑥 .

We now define:

Definition .1.2

In each calculus, we define𝜑2 ⚪ 𝜑1 ≝ 𝜑1[𝜑2] and 𝜑 ⚫ 𝓉 ≝ 𝓉[𝜑]
We also define 1⚪ ≝ (Id𝒱 , ◽) (resp. 1⚪ ≝ Id𝒱∪𝒮)
Fact .1.3

In each calculus, the set of disubstitutions 𝜑 has a monoid structure (𝜑,⚪, 1⚪) and
this monoid acts on commands, expressions, and evaluation contexts via ⚫.
Proof

While substitutions that act on both value variables 𝑥n and the stack variable⋆n really are
substitutions, we call them disubstitutions to avoid any confusion:

225

Definition .1.4

We call disubstitutions, and denote by 𝜑, that act on both value variables and stack
variables.
Since we only have one stack variable in Li→n , those are of the shape 𝜎,⋆n ↦ 𝑠n. The

action of disubstitutions on terms, and their compositions are defined in the expected
way. A full description of their action can be found in the right column of Figure ??.

Since terms are either variable 𝑥n, or bind⋆n, only having one stack variable⋆n enforces
the following property:

Fact .1.5

Term 𝑡n have no free stack variables, i.e.
FV𝒮(𝑡n) = ∅

Command 𝑐n and evaluation contexts 𝑒n have exactly one free stack variable⋆n, i.e.
FV𝒮(𝑐n) = FV𝒮(𝑒n) = {⋆n}

Proof

By induction.

Terms having no free stack variables implies disubstitutions can be decomposed as a sub-
stitution and a disubstitution of the shape⋆n ↦ 𝑠n:

Fact .1.6

Given a disubstitution 𝜑 = 𝜎,⋆n ↦ 𝑠n:
• for any expression, evaluation context or command 𝓉,𝓉[𝜎, 𝑠n∕⋆n] = 𝓉[𝜎][𝑠n∕⋆n]

– for any expression 𝑡n, 𝑡n[𝜎, 𝑠n∕⋆n] = 𝑡n[𝜎]
Proof

• 𝑡n[𝜎, 𝑠n∕⋆n] = 𝑡n[𝜎] By induction on 𝑡n.
• 𝓉[𝜎, 𝑠n∕⋆n] = 𝓉[𝜎][𝑠n∕⋆n] By induction on 𝓉, using the fact that 𝜎[𝑠n∕⋆n] = 𝜎
by the previous bullet.

This also allows simplifying the composition of two disubstitutions:

226

Fact .1.7

For any disubstitutions 𝜑1 = 𝜎1,⋆n ↦ 𝑠1n and 𝜑2 = 𝜎2,⋆n ↦ 𝑠2n , we have𝜑1[𝜑2] = 𝜎1[𝜎2],⋆n ↦ 𝑠1n [𝑠2n [𝜎1]∕⋆n]
Proof

By the previous fact,𝜑1[𝜑2] = (𝜎1[𝜑2],⋆n ↦ 𝑠1n [𝜑2])𝜎1[𝜎2],⋆n ↦ 𝑠1n [𝑠2n [𝜎1]∕⋆n]

227

.2. Properties of reductions

228

.3. Detailed proofs

Fact A.1.8: Equivalence between ⊛ and ⊛
• The -normal expressions are exactly the -normal expressions:𝑇N ⇔ 𝑇N
• The steps can be postponed at the cost of strengthening let to let:𝑇N ∗ 𝑇′N ⇔ 𝑇N ∗ ∗ 𝑇′N
• Evaluating with or yields the same result:𝑇N ⊛ 𝑇′N ⇔ 𝑇N ⊛ 𝑇′N

Proof of Fact I.1.8 from page 25

Recall that = → ∪ let and = → ∪ let ∪
• 𝑇N ⇔ 𝑇N Take 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N maximal such that 𝑇N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝑈N . The result is immediate
by case analysis on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N and 𝑈N.

• 𝑇N ∗ 𝑇′N ⇐ 𝑇N ∗ ∗ 𝑇′N Since we have ∪ → ⊆ by definition, it suffices to
show that let ⊆ ∗. This is immediate: any reduction(let𝑥N ∶= 𝑇N in𝑈N)𝑉1N…𝑉𝑞N let (𝑈N[𝑇N∕𝑥N])𝑉1N…𝑉𝑞N
can be simulated by(let𝑥N ∶= 𝑇N in𝑈N)𝑉1N…𝑉𝑞N (let𝑥N ∶= 𝑇N in𝑈N𝑉1N)𝑉2N…𝑉𝑞N∗ let𝑥N ∶= 𝑇N in𝑈N𝑉1N…𝑉𝑞N

let (𝑈N[𝑇N∕𝑥N])𝑉1N…𝑉𝑞N
• 𝑇N ∗ 𝑇′N ⇒ 𝑇N 𝑇′N By induction on the number of steps and case analysis
on 𝑇N.

• 𝑇N ∗ 𝑇′N ⇒ 𝑇N ∗ ∗ 𝑇′N Suppose that 𝑇N ∗ 𝑇′N. By definition of (and mono-
tonicity of the reflexive transitive closure), we have 𝑇N (∪)∗ 𝑇′N. By the pre-
vious bullet, this simplifies to 𝑇N ∗ ∗ 𝑇′N.

• 𝑇N ⊛ 𝑇′N ⇔ 𝑇N ⊛ 𝑇′N The ⇐ implication follows from the previous bullets.
Now suppose that 𝑇N ⊛ 𝑇′N. By the previous bullets, we have 𝑇N ∗ 𝑙 𝑇′N for
some 𝑙. Since any -reduct is -reducible, we necessarily have 𝑙 = 0, and we are
done.

229

Fact A.4.3

In 𝜆→N (resp. M→N), the set of stacks 𝐒N has a monoid structure(𝐒N, ⚪◽, ◽) (resp. (𝐒N, ⚪⋆,⋆N))
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N ⚪◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N ⚪⋆ 𝑆2N ≝ 𝑆1N[𝑆2N∕⋆N])
and this monoid acts on configurations on the left (resp. on the right) via𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ⚫◽ 𝐶N ≝ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N 𝐶N (resp. 𝐶N ⚫⋆ 𝑆N ≝ 𝐶N[𝑆N∕⋆N])
In other words:

• (mon-unit) for any stack 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N (resp. 𝑆N), we have◽ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N ◽ (resp.⋆N[𝑆N∕⋆N] = 𝑆N = 𝑆N[⋆N∕⋆N])
• (mon-accoc) for any stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆1N, 𝑆2N, and 𝑆3N), we have𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1N (resp. 𝑆1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝑆1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])
• (act-unit) for any configuration 𝐶N, we have◽ 𝐶N = 𝐶N (resp. 𝐶N = 𝐶N[⋆N∕⋆N])
• (act-assoc) for any configuration 𝐶1N and stacks 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N (resp. 𝑆2N and 𝑆3N), we
have𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N 𝐶1N = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3N 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N) 𝐶1N (resp. 𝐶1N[𝑆2N∕⋆N][𝑆3N∕⋆N] = 𝐶1N[𝑆2N[𝑆3N∕⋆N]∕⋆N])

Proof of Fact I.4.3 from page 38

• (mon-unit) One equality is by definition and the other is by induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆N
(resp. 𝑆N).

• (mon-accoc) By induction on the size of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. 𝑆2N). The base case 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N =◽ (resp. 𝑆2N = ⋆N), follows from (i). The inductive case follows from several
applications of the induction hypothesis.

• (act-unit) By definition (resp. by induction on 𝐶N).
• (act-assoc) By induction on 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N (resp. 𝑆2N). The base case 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2N = ◽ (resp. 𝑆2N =⋆N)
follows from (i) and (iii). The inductive case follows from several applications
of the induction hypothesis.

230

Fact E.2.8

The following are equivalent:

• (i) there exists a derivation of well-polarization which is valid in Li
#”𝜏p but not in

Lm
#”𝜏p;

• (ii) there exists a derivation of well-polarization which is valid in Li
#”𝜏p but not in

Lm
#”𝜏p, and whose conclusion is of the shape𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢

i.e. has no succedent;

• (iii) there exists a stack 𝑠𝜀 in Li #”𝜏p such that 𝛤 ∣ 𝑠𝜀∶𝜀 ⊢ is derivable for some 𝛤;
• (iv) at least one of the following holds:

– (a) there exists a stack constructor ‘𝜏𝑗−𝑘 with zero stack arguments (e.g.¬−(𝑣+) or (̃)); or
– (b) there exists a postitive type former 𝜏𝑗+ whose value constructors v𝜏𝑗+𝑘 all
have exactly one stack arguments (e.g. ¬+ or 0).

• (v) there exists a stack 𝑠𝜀 in Li #”𝜏p of the shape𝑠𝜀 = ‘𝜏𝑗−𝑘 (#”𝑥) (e.g. ¬−(𝑥+) or (̃))
or 𝑠𝜀 = 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼𝜀11 , #”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀11 ⟩𝜀1⋮

v
𝜏𝑗+𝑙 (#”𝑥𝑙 , 𝛼𝜀𝑙𝑙 , #”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙𝑙 ⟩𝜀𝑙] (e.g. 𝜇¬+(𝛼−).𝛼⟨𝑥−∣𝛼−⟩− or 𝜇[])

Furthermore, if all positive type formers in #”𝜏 have at least one constructor (i.e. there
are no copies of 0), then these are also equivalent to:

• (vi) Lm
#”𝜏p ⊊ Li

#”𝜏p.
In particular, for #”𝜏 ⊆ {→⇓⇑¬−¬+⊗`⊕&1⊥⊤}a, we have

Lm
#”𝜏p ⊊ Li

#”𝜏p ⇔ #”𝜏 ∩ {¬−¬+⊥} ≠ ∅
aNote the absence of 0.

231

Proof of Fact V.2.8 from page 133

• (i) ⇒ (ii) This derivation necessarily uses a sequent of the shape𝑐∶(𝛤 ⊢) or 𝛤 ∣ 𝑒𝜀∶𝜀 ⊢
and there is therefore a subderivation whose conclusion is that sequent.

• (ii) ⇒ (iii) By induction on the derivation: if the derivation ends with𝛤1 ⊢ 𝑡𝜀∶𝐴𝜀 ∣ 𝛤2 ∣ 𝑒𝜀∶𝐴𝜀 ⊢⟨𝑡𝜀∣𝑒𝜀⟩𝜀∶(𝛤1, 𝛤2 ⊢) (cut) (resp. 𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢)𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝐴𝜀 ⊢ (𝜇⊢))
then we apply the induction hypothesis to the derivation of 𝛤2 ∣ 𝑒𝜀∶𝐴𝜀 ⊢ (resp.𝑐∶(𝛤, 𝑥𝜀∶𝐴𝜀 ⊢)).

• (iii) ⇒ (iv) By induction on the derivation. If the last rule of the derivation is𝛤1 ⊢ 𝑣1𝜀1∶𝐴1𝜀1 ∣ … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝐴𝑞𝜀𝑞 ∣𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝐴𝑞+1𝜀𝑞+1 ⊢ … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝐴𝑞+𝑟𝜀𝑞+𝑟 ⊢𝛤1, … , 𝛤𝑞+𝑟 ∣ ‘𝜏𝑗−𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 , … , 𝑠𝑟𝜀𝑞+𝑟)∶𝜏𝑗−(#”𝐵) ⊢ (‘𝜏𝑗−𝑘 ⊢)
then either 𝑟 > 0 and we apply the induction hypothesis to one of the deriva-
tions of 𝛤𝑞+𝑘 ∣ 𝑠𝑘𝜀𝑞+𝑘 ∶𝐴𝑞+𝑘𝜀𝑞+𝑘 ⊢, or 𝑟 = 0, and we can immediately conclude that
(iv). If the last rule is𝑐1∶(𝛤, # ”𝑥1∶ # ”𝐴1 ⊢ 𝛼𝜀𝑟1 ∶𝐵1𝜀𝑟) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ # ”𝐴𝑙 ⊢ 𝛼𝜀𝑟𝑙 ∶𝐵𝑙𝜀𝑟)𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 , 𝛼𝑙).𝑐𝑙]∶𝜏𝑗+(#”𝐶) ⊢ (𝜏𝑗+⊢)
we can immediately conclude that (iv).

• (iv) ⇒ (v) Immediate.

• (v) ⇒ (i) If 𝑠𝜀 ≠ 𝜇[], then we have 𝑠𝜀 ∉ Lm
#”𝜏p, and in particular, the derivation

that shows that 𝑠𝜀 ∈ Li
#”𝜏p works. For 𝑠𝜀 = 𝜇[], there are two possible shapes for

the derivation of 𝑠𝜀 ∈ Li
#”𝜏p𝛤 ∣ 𝜇[]∶0 ⊢ 𝛼𝜀∶𝐴𝜀 (0⊢) and 𝛤 ∣ 𝜇[]∶0 ⊢ (0⊢)

and while the former is also valid in Lm
#”𝜏p, the latter is not.

• (v) ⇒ (iv) We have 𝑠𝜀 ∈ Li
#”𝜏p ⧵ Lm #”𝜏p. This is immediate for the case 𝑠𝜀 = ‘𝜏𝑗−𝑘 (#”𝑥),

232

and since all positive type formers have at least one constructor, the case𝑠𝜀 = 𝜇[v𝜏𝑗+1 (# ”𝑥1 , 𝛼𝜀11 , #”𝑦1). ⟨𝑧𝜀11 ∣𝛼𝜀11 ⟩𝜀1⋮
v
𝜏𝑗+𝑙 (#”𝑥𝑙 , 𝛼𝜀𝑙𝑙 , #”𝑦𝑙). ⟨𝑧𝜀𝑙𝑙 ∣𝛼𝜀𝑙𝑙 ⟩𝜀𝑙]

is restricted to 𝑙 > 0, i.e. 𝑠𝜀 = 𝜇[] is ruled out, which ensures that 𝑠𝜀 ∉ Lm
#”𝜏p.

• (iv) ⇒ (i) Take any 𝓉 ∈ Li
#”𝜏p ⧵ Lm #”𝜏p. The derivation that 𝓉 ∈ Li

#”𝜏p works.
Fact G.1.14

In 𝛌→N, 𝜆→n , Li→n , and L→n , we have
h ⊛ = a ⊛ and lo ⊛ = ⊛

Proof of Fact VII.1.14 from page 197

• h ⊛ = a ⊛ The⊆ inclusion follows from h being a strategy for a (FactVII.1.13),
and the⊇ inclusion follows from a having uniqueness of termination behavior
(Fact VII.1.12).

• lo ⊛ = ⊛ By Fact VII.1.13, it suffices to show the ⊇ inclusion.
– For 𝛌→N, this is Theorem 13.2.2 page 326 of [Bar84], which is proven by
using the Standardization Theorem (Theorem 11.4.7 page 300 of [Bar84]),
which is in turn proven by iterating the factorization ∗ = h ∗ ¬h ∗ (The-
orem 11.4.6 of [Bar84], Corollary 4.6 of [Tak95]).

– For L→n , the same strategy works, though we prefer using the slightly sim-
pler factorization ∗ = ∗ ¬o ∗ (see Proposition ?? for the proof of this
factorization in L

#”𝜏p).

233

.4. Extra figures

234

Figure .4.1: Well polarized L
#”𝜏p

Figure .4.1.a: Core rules

𝑥𝜀∶𝜀 ⊢ 𝑥𝜀∶𝜀 ∣ (⊢ax) ∣ 𝛼𝜀∶𝜀 ⊢ 𝛼𝜀∶𝜀 (ax⊢)𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀, 𝛥)𝛤 ⊢ 𝜇𝛼𝜀.𝑐∶𝜀 ∣ 𝛥 (⊢𝜇) 𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛥)𝛤 ∣ 𝜇𝑥𝜀.𝑐∶𝜀 ⊢ 𝛥 (𝜇⊢)
𝛤1 ⊢ 𝑡𝜀∶𝜀 ∣ 𝛥1 𝛤2 ∣ 𝑒𝜀∶𝜀 ⊢ 𝛥2⟨𝑡𝜀∣𝑒𝜀⟩𝜀∶(𝛤1, 𝛤2 ⊢ 𝛥1, 𝛥2) (cut)

Figure .4.1.b: Structural rules (commands)𝑐∶(𝛤 ⊢ 𝛥)𝑐∶(𝛤 ⊢ 𝛼𝜀∶𝜀, 𝛥) (⊢w𝑐) 𝑐∶(𝛤 ⊢ 𝛼𝜀1∶𝜀, 𝛼𝜀2∶𝜀, 𝛥)𝑐[𝛽𝜀∕𝛼𝜀1, 𝛽𝜀∕𝛼𝜀2]∶(𝛤 ⊢ 𝛽𝜀∶𝜀, 𝛥) (⊢c𝑐)𝑐∶(𝛤 ⊢ 𝛥)𝑐∶(𝛤, 𝑥𝜀∶𝜀 ⊢ 𝛥) (w𝑐⊢) 𝑐∶(𝛤, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀 ⊢ 𝛥)𝑐[𝑦𝜀∕𝑥𝜀1, 𝑦𝜀∕𝑥𝜀2]∶(𝛤, 𝑦𝜀∶𝜀 ⊢ 𝛥) (c𝑐⊢)𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀1∶𝜀, 𝛼𝜀2∶𝜀, 𝛥2)𝑐∶(𝛤 ⊢ 𝛥1, 𝛼𝜀2∶𝜀, 𝛼𝜀1∶𝜀, 𝛥2) (⊢p𝑐) 𝑐∶(𝛤1, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀, 𝛤2 ⊢ 𝛥)𝑐∶(𝛤1, 𝑥𝜀2∶𝜀, 𝑥𝜀1∶𝜀, 𝛤2 ⊢ 𝛥) (p𝑐⊢)
Figure .4.1.c: Structural rules (expressions)𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛼𝜀∶𝜀, 𝛥 (⊢w𝑡) 𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛼𝜀1∶𝜀, 𝛼𝜀2∶𝜀, 𝛥𝛤 ⊢ 𝑡𝜀0[𝛽𝜀∕𝛼𝜀1, 𝛽𝜀∕𝛼𝜀2]∶𝜀0 ∣ 𝛽𝜀∶𝜀, 𝛥 (⊢c𝑡)

𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥 (w𝑡⊢) 𝛤, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥𝛤, 𝑥𝜀∶𝜀 ⊢ 𝑡𝜀0[𝑥𝜀∕𝑥𝜀1, 𝑥𝜀∕𝑥𝜀2]∶𝜀0 ∣ 𝛥 (c𝑡⊢)
𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥1, 𝛼𝜀1∶𝜀, 𝛼𝜀2∶𝜀, 𝛥2𝛤 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥1, 𝛼𝜀2∶𝜀, 𝛼𝜀1∶𝜀, 𝛥2 (⊢p𝑡) 𝛤1, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥𝛤1, 𝑥𝜀2∶𝜀, 𝑥𝜀1∶𝜀, 𝛤2 ⊢ 𝑡𝜀0∶𝜀0 ∣ 𝛥 (p𝑡⊢)

235

Figure .4.1.d: Structural rules (evaluation contexts)𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀∶𝜀, 𝛥 (⊢w𝑒) 𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛼𝜀1∶𝜀, 𝛼𝜀2∶𝜀, 𝛥𝛤 ∣ 𝑒𝜀0[𝛽𝜀∕𝛼𝜀1, 𝛽𝜀∕𝛼𝜀2]∶𝜀0 ⊢ 𝛽𝜀∶𝜀, 𝛥 (⊢c𝑒)
𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥 (w𝑒⊢) 𝛤, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥𝛤, 𝑥𝜀∶𝜀 ∣ 𝑒𝜀0[𝑥𝜀∕𝑥𝜀1, 𝑥𝜀∕𝑥𝜀2]∶𝜀0 ⊢ 𝛥 (c𝑒⊢)

𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥1, 𝛼𝜀1∶𝜀, 𝛼𝜀2∶𝜀, 𝛥2𝛤 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥1, 𝛼𝜀2∶𝜀, 𝛼𝜀1∶𝜀, 𝛥2 (⊢p𝑒) 𝛤1, 𝑥𝜀1∶𝜀, 𝑥𝜀2∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥𝛤1, 𝑥𝜀2∶𝜀, 𝑥𝜀1∶𝜀, 𝛤2 ∣ 𝑒𝜀0∶𝜀0 ⊢ 𝛥 (p𝑒⊢)
Figure .4.1.e: General shape of logic rules𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣ 𝛥𝑞𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟𝛤1, … , 𝛤𝑞+𝑟 ∣ ‘𝜏𝑗−𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 , … , 𝑠𝑟𝜀𝑞+𝑟)∶ − ⊢ 𝛥1, … , 𝛥𝑞+𝑟 (‘𝜏𝑗−𝑘 ⊢)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ # ”𝛼1∶ #”𝜀′1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ #”𝛼𝑙 ∶ #”𝜀′𝑙 , 𝛥)𝛤 ⊢ 𝜇<‘𝜏𝑗−1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣‘𝜏𝑗−𝑙 (#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙>∶ − ∣ 𝛥 (⊢𝜏𝑗−)
𝛤1 ⊢ 𝑣1𝜀1∶𝜀1 ∣ 𝛥1 … 𝛤𝑞 ⊢ 𝑣𝑞𝜀𝑞 ∶𝜀𝑞 ∣ 𝛥𝑞𝛤𝑞+1 ∣ 𝑠1𝜀𝑞+1∶𝜀𝑞+1 ⊢ 𝛥𝑞+1 … 𝛤𝑞+𝑟 ∣ 𝑠𝑟𝜀𝑞+𝑟∶𝜀𝑞+𝑟 ⊢ 𝛥𝑞+𝑟𝛤1, … , 𝛤𝑞 ⊢ v𝜏𝑗+𝑘 (𝑣1𝜀1 , … , 𝑣𝑞𝜀𝑞 , 𝑠1𝜀𝑞+1 , … , 𝑠𝑟𝜀𝑞+𝑟)∶+ ∣ 𝛥1, … , 𝛥𝑞 (⊢v𝜏𝑗+𝑘)

𝑐1∶(𝛤, # ”𝑥1∶ #”𝜀1 ⊢ # ”𝛼1∶ #”𝜀′1, 𝛥) … 𝑐𝑙∶(𝛤, #”𝑥𝑙 ∶ #”𝜀𝑙 ⊢ #”𝛼𝑙 ∶ #”𝜀′𝑙 , 𝛥)𝛤 ∣ 𝜇[v𝜏𝑗+1 (# ”𝑥1 , # ”𝛼1).𝑐1∣…∣v𝜏𝑗+𝑙 (#”𝑥𝑙 , #”𝛼𝑙).𝑐𝑙]∶+ ⊢ 𝛥 (𝜏𝑗+⊢)

236

Figure .4.1.f: Logic rules for multiplicative types𝑐∶(𝛤, 𝑥+∶+ ⊢ 𝛼−∶ − , 𝛥)𝛤 ⊢ 𝜇(𝑥+ ∙ 𝛼−).𝑐∶ − ∣ 𝛥 (⊢→) 𝛤1 ⊢ 𝑣+∶+ ∣ 𝛥1 𝛤2 ∣ 𝑠−∶ − ⊢ 𝛥2𝛤1, 𝛤2 ∣ 𝑣+ ∙ 𝑠−∶ − ⊢ 𝛥1, 𝛥2 (→⊢)
𝑐∶(𝛤 ⊢ 𝛼−∶ − , 𝛽−∶ − , 𝛥)𝛤 ⊢ 𝜇(𝛼−`𝛽−).𝑐∶ − ∣ 𝛥 (⊢`) 𝛤1 ∣ 𝑠1−∶ − ⊢ 𝛥1 𝛤2 ∣ 𝑠2−∶ − ⊢ 𝛥2𝛤1, 𝛤2 ∣ (𝑠1−`𝑠2−)∶ − ⊢ 𝛥1, 𝛥2 (`⊢)
𝛤1 ⊢ 𝑣1+∶+ ∣ 𝛥1 𝛤2 ⊢ 𝑣2+∶+ ∣ 𝛥2𝛤1, 𝛤2 ⊢ (𝑣1+⊗𝑣2+)∶+ ∣ 𝛥1, 𝛥2 (⊢⊗) 𝑐∶(𝛤, 𝑥+∶+, 𝑦+∶+ ⊢ 𝛥)𝛤 ∣ 𝜇(𝑥+⊗𝑦−).𝑐∶+ ⊢ 𝛥 (⊗⊢)

𝑐∶(𝛤 ⊢ 𝛥)𝛤 ⊢ 𝜇(̃).𝑐∶ − ∣ 𝛥 (⊢⊥) ∣ (̃)∶ − ⊢ (⊥⊢)
⊢ ()∶+ ∣ (1⊢) 𝑐∶(𝛤 ⊢ 𝛥)𝛤 ∣ 𝜇().𝑐∶+ ⊢ 𝛥 (⊢1)

Figure .4.1.g: Logic rules for additive types𝑐1∶(𝛤 ⊢ 𝛼−1 ∶ − , 𝛥) 𝑐2∶(𝛤 ⊢ 𝛼−2 ∶ − , 𝛥)𝛤 ⊢ 𝜇<(𝜋1 ∙ 𝛼−1).𝑐1∣(𝜋2 ∙ 𝛼−2).𝑐2>∶ − ∣ 𝛥 (⊢&) 𝛤 ∣ 𝑠−∶ − ⊢ 𝛥𝛤 ∣ 𝜋𝑖 ∙ 𝑠−∶ − ⊢ 𝛥 (&⊢)
𝛤 ⊢ 𝑣+∶+ ∣ 𝛥𝛤 ⊢ 𝜄𝑖(𝑣+)∶+ ∣ 𝛥 (⊢⊕) 𝑐1∶(𝛤, 𝑥+1 ∶+ ⊢ 𝛥) 𝑐2∶(𝛤, 𝑥+2 ∶+ ⊢ 𝛥)𝛤 ∣ 𝜇[𝜄1(𝑥+1).𝑐1∣𝜄2(𝑥+2).𝑐2]∶+ ⊢ 𝛥 (⊕⊢)

𝛤 ⊢ 𝜇<>∶ − ∣ 𝛥 (⊢⊤) (No (⊤⊢) rule)
(No (⊢0) rule) 𝛤 ∣ 𝜇[]∶+ ⊢ 𝛥 (0⊢)

237

Figure .4.1.h: Logic rules for shifts𝑐∶(𝛤 ⊢ 𝛼+∶+, 𝛥)𝛤 ⊢ 𝜇{𝛼+}.𝑐∶ − ∣ 𝛥 (⊢⇑) 𝛤 ∣ 𝑠+∶+ ⊢ 𝛥𝛤 ∣ {𝑠+}∶ − ⊢ 𝛥 (⇑⊢)
𝛤 ⊢ 𝑣−∶ − ∣ 𝛥𝛤 ⊢ {𝑣−}∶+ ∣ 𝛥 (⊢⇓) 𝑐∶(𝛤, 𝑥−∶ − ⊢ 𝛥)𝛤 ∣ 𝜇{𝑥−}.𝑐∶+ ⊢ 𝛥 (⇓⊢)

Figure .4.1.i: Logic rules for negations𝑐∶(𝛤, 𝑥+∶+ ⊢ 𝛥)𝛤 ⊢ 𝜇¬−(𝑥+).𝑥𝑐∶ − ∣ 𝛥 (⊢¬−) 𝛤 ⊢ 𝑣+∶+ ∣ 𝛥𝛤 ∣ ¬−(𝑣+)∶ − ⊢ 𝛥 (¬−⊢)
𝛤 ∣ 𝑠−∶ − ⊢ 𝛥𝛤 ⊢ ¬+(𝑠−)∶+ ∣ 𝛥 (⊢¬+) 𝑐∶(𝛤 ⊢ 𝛼−∶ − , 𝛥)𝛤 ∣ 𝜇¬+(𝛼−).𝛼𝑐∶+ ⊢ 𝛥 (¬+⊢)

238

Contents

0. Introduction 2
0.1. Motivation . 3
0.2. Background . 5

0.2.1. Calculi . 5𝜆-calculi and Call-by-push-value 5
The 𝜆𝜇𝜇-calculus . 5
Polarized sequent calculi . 6

0.2.2. Solvability in arbitrary programming languages 6
Observational equivalence and preorder 6
Operational relevance and solvability 6
The central role of unsolvability 7
Unary operational completeness 7
Operational characterization of solvability 8

0.2.3. Solvability in 𝜆-calculi . 8
Call-by-name solvability . 9
Call-by-value solvability . 10

0.3. Content . 11
0.4. Notations . 12

Reduction sequences . 12
Main reductions . 12
Closure of reductions under contexts 12

0.5. Table of contents . 14

A. Introduction to L calculi 15
Content . 16
Contribution . 16

I. Pure call-by-name calculi 18
Summary . 18
Table of contents . 19

I.1. A pure call-by-name 𝜆-calculus: 𝛌→N . 20
Syntax . 20
Contexts . 20
Substitutions and disubstitutions . 21𝛽-reduction . 22𝜎-reductions . 23

239

Contents

𝜂-expansion . 25
I.2. A pure call-by-name 𝜆-calculus with toplevel focus: 𝜆→N 27

Searching for the next redex . 27
Simulation . 28
Refocusing . 28
Properties of reductions . 29

I.3. A pure call-by-name abstract machine: M→N 30
The inside-out syntax . 30
Disubstitutions . 30
Ambiguity of the ambiant calculus . 33

I.4. Equivalence between 𝜆→N and M→N . 35
Inside-out and outside-out descriptions 35
Translations . 36
Substitutions . 40
Disubstitutions . 42
Reductions . 43

I.5. Translations between 𝛌→N and 𝜆→N . 46
Focus insertion and erasure . 46
Reductions through focus erasure . 47
Reductions through focus insertion 48

I.6. A pure call-by-name 𝜆-calculus with focus: 𝜆→n 51
I.6.1. The simple fragment of the naive 𝜆→n calculus 51

Decomposing the strong reduction . 51
Focus erasure in place of focus movement 53

I.6.2. The naive 𝜆→n calculus . 53
Stack deferrals . 53𝜇 as a generalization of m and . 54
Underlines as potential places of interaction 55
Reducing let-expressions . 56
Undesirable strong reductions . 56

I.6.3. The 𝜆→n calculus . 57
Explicit command boundaries . 57
Coercions . 59
Evaluation contexts . 59
Disubstitution . 59
Reductions . 60

I.7. Translations between 𝛌→N and 𝜆→n . 61
I.8. A pure call-by-name intuitionistic L calculus: Li→n 62

I.8.1. From the M→N abstract machine to the Li→n calculus 62
Decomposing the strong reduction . 62
Pattern matching stacks . 62
Stack variable names . 62
Binding the stack variable . 63

240

Contents

I.8.2. The Li→n calculus . 65
Let-expressions and 𝜇 . 65
Coercions . 65
Disubstitutions . 65
Reductions . 65

I.9. Equivalence between 𝜆→n and Li→n . 67
I.10. A pure call-by-name classical L calculus: L→n 68
I.11. Simply-typed L calculi . 69

II. Pure call-by-value calculi 70
II.1. A pure call-by-value 𝜆-calculus: 𝛌→V . 71
II.2. A pure call-by-value 𝜆-calculus with focus: 𝜆→v 72
II.3. A pure call-by-value intuitionistic L calculus: Li→v 73
II.4. A pure call-by-value classical L calculus: L→v 74

B. Untyped polarized calculi 75
Introduction . 76
Content . 77
Contribution . 77

III. Pure polarized calculi 78
III.1. Relative expresiveness of call-by-name and call-by-value 79

III.1.1. Embedding call-by-name in call-by-value 79
The 𝛌→⇑V -calculus . 79
Embedding 𝛌→⇑V in 𝛌→V . 79
Embedding 𝛌→N in 𝛌→⇑V . 81

III.1.2. Embedding call-by-value in call-by-name 82
The 𝛌→⇓N -calculus . 82

Embedding 𝛌→⇓N in 𝛌→⊗N . 82
Embedding 𝛌→V in 𝛌→⇓N . 84

III.2. A pure polarized 𝜆-calculus: 𝛌→⇑⇓P . 85
III.3. A pure polarized 𝜆-calculus with focus: 𝜆→⇑⇓p 86
III.4. A pure polarized intuitionistic L-calculus: Li→⇑⇓p 87
III.5. A pure polarized classical L-calculus: L→⇑⇓p 88

IV.Polarized calculi with pairs and sums 89
IV.1. A polarized 𝜆-calculus with pairs and sums: 𝛌→&⇑⊗⊕⇓P 90
IV.2. CBPV as a subcalculus of 𝛌→&⇑⊗⊕⇓P . 91

IV.2.1. CBPV . 91
Syntax . 91
Operational semantics . 91
Complex values . 91

241

Contents

IV.2.2. Embedding CBPV into 𝛌→&⇑⊗⊕⇓P . 95
Embedding values and computations 95
Differences between CBPV and 𝛌→&⇑⊗⊕⇓P 95
Complex values and positive expressions 97
Preservation of operational semantics 97

IV.3. A polarized 𝜆-calculus with focus: 𝜆→&⇑⊗⊕⇓p 99
IV.4. A polarized intuitionistic L calculus: Li→&⇑⊗⊕⇓p 100
IV.5. A polarized classical L calculus: L→&⇑⊗⊕⇓p . 101
IV.6. The CBPV abstract machine as a subcalculus of 𝜆→&⇑⊗⊕⇓p 102

V. Polarized calculi with arbitrary constructors 103
V.1. A (classical) polarized L-calculus: L

#”𝜏p . 104
V.1.1. Syntax . 104

Type formers . 104
Value and stack constructors . 104
Syntax . 107

V.1.2. Reductions . 107
Definitions . 107
Normal forms, clashes and waiting commands 113
Properties . 116

V.1.3. Well-typed and well-polarized terms 118
Well-typed terms . 118
Alternative presentations . 123
Well-polarized terms . 124

V.2. Intuitionistic and minimalistic polarized L-calculi: Li
#”𝜏p and Lm #”𝜏p 126

V.2.1. Intuitionistic and minimalistic fragments 126
Fragment definitions . 126
Inoperable rules . 131
Inclusions . 132
Straightforwardly minimalistic type formers 134

V.2.2. A syntax for the minimalistic fragment 136
Characterization of Lm

#”𝜏p via free stack variables 136
Output polarities . 136
A BNF grammar for Lm

#”𝜏p . 137
V.2.3. Properties . 144

Disubstitutions . 144
Reductions . 145

V.3. A polarized 𝜆-calculus with focus equivalent to Lm #”𝜏p: 𝜆 #”𝜏p 147
V.4. Equivalence between 𝜆 #”𝜏p and Lm #”𝜏p . 148
V.5. A polarized 𝜆-calculus: 𝛌 #”𝜏P . 149

VI.Dynamically typed polarized calculi 150
VI.1. Clashes and dynamically typed calculi . 151

242

Contents

VI.2. A dynamically typed polarized 𝜆-calculus: 𝛌𝒫𝒩P 152
VI.3. A dynamically typed polarized 𝜆-calculus with focus: 𝜆𝒫𝒩p 153
VI.4. A dynamically typed polarized intuitionistic L calculus: Li𝒫𝒩p 154
VI.5. A dynamically typed polarized classical L calculus: L𝒫𝒩p 155

C. Solvability in polarized calculi 156
Content . 157
Contribution . 157

Introduction to solvability and operational completeness 158
Goal and content . 158
Caveats . 158
Summary . 158

C.1. A meaning for programs . 158
Programs as maps from inputs to outputs 158
Comparing programs . 161

C.2. A compositional meaning for fragments 162
Fragments and plugging . 162
Program-preserving observational preorder and equivalence . 165
Program preservation: a displeasingly strong syntactic invariant170
Weakening syntactic invariants 171

C.3. Distinguishability, separability and binary operational completeness . 173
C.4. Operational relevance, solvability and unary operational completeness 178

VII.Call-by-name solvability 183
Three notions of observational equivalence induced by three

notions of evaluation 184
Two notions of operational relevance and one notion of solv-

ability . 185
Convergence testing as a means to boostrap meaningful defi-

nitions . 186
The usefulness of L-calculi . 187

VII.1.Reductions and induced notions of evaluation 188
Five reductions . 188
Normal forms . 192
Substitutivity and disubstitutivity 193
Determinism, confluence, and uniqueness of termination be-

havior . 195
Three notions of evaluation . 196
Existence of normal forms and evaluation 198

VII.2.Usefulness of the trivial interpretation of programs 202

243

Contents

VII.3.Instanciating the general definitions . 203
VII.3.1.Parameters . 203

Terms and states . 203
Closedness . 203
Parameters . 204

VII.3.2.A meaning for programs . 205
Main definition . 205
Alternative definitions . 205
Properties . 206

VII.3.3.Observational preorder and equivalence 207
Main definitions . 207
Alternative definitions . 209
Properties . 211

Transitivity . 211
Monotonicity . 212
Soundness of 𝛽-conversion . 213

VII.3.4.Operational relevance and solvability 214
VII.4.Equivalences between definitions . 215

VIII.Call-by-value solvability 216

IX.Polarized solvability 217

Bibliography 218
.1. Properties of disubstitutions . 225
.2. Properties of reductions . 228
.3. Detailed proofs . 229
.4. Extra figures . 234

244

	Introduction
	Motivation
	Background
	Calculi
	λ-calculi and Call-by-push-value
	The ƛµμ̃-calculus
	Polarized sequent calculi

	Solvability in arbitrary programming languages
	Observational equivalence and preorder
	Operational relevance and solvability
	The central role of unsolvability
	Unary operational completeness
	Operational characterization of solvability

	Solvability in λ-calculi
	Call-by-name solvability
	Call-by-value solvability

	Content
	Notations
	Reduction sequences
	Main reductions
	Closure of reductions under contexts

	Table of contents

	Introduction to L calculi
	Content
	Contribution
	Pure call-by-name calculi
	Summary
	Table of contents
	A pure call-by-name λ-calculus
	Syntax
	Contexts
	Substitutions and disubstitutions
	β-reduction
	σ-reductions
	η-expansion

	A pure call-by-name λ-calculus with toplevel focus
	Searching for the next redex
	Simulation
	Refocusing
	Properties of reductions

	A pure call-by-name abstract machine
	The inside-out syntax
	Disubstitutions
	Ambiguity of the ambiant calculus

	Equivalence between λNtypecolor_ and MNtypecolor_
	Inside-out and outside-out descriptions
	Translations
	Substitutions
	Disubstitutions
	Reductions

	Translations between λNtypecolor_ and λNtypecolor_
	Focus insertion and erasure
	Reductions through focus erasure
	Reductions through focus insertion

	A pure call-by-name λ-calculus with focus
	The simple fragment of the naive ntypecolor_ calculus
	Decomposing the strong reduction
	Focus erasure in place of focus movement

	The naive ntypecolor_ calculus
	Stack deferrals
	_syntaxcolorµ as a generalization of _m and
	Underlines as potential places of interaction
	Reducing let-expressions
	Undesirable strong reductions

	The ntypecolor_ calculus
	Explicit command boundaries
	Coercions
	Evaluation contexts
	Disubstitution
	Reductions

	Translations between λNtypecolor_ and ntypecolor_
	A pure call-by-name intuitionistic L calculus
	From the MNtypecolor_ abstract machine to the ntypecolor_ calculus
	Decomposing the strong reduction
	Pattern matching stacks
	Stack variable names
	Binding the stack variable

	The ntypecolor_ calculus
	Let-expressions and μ̃
	Coercions
	Disubstitutions
	Reductions

	Equivalence between ntypecolor_ and ntypecolor_
	A pure call-by-name classical L calculus
	Simply-typed L calculi

	Pure call-by-value calculi
	A pure call-by-value λ-calculus
	A pure call-by-value λ-calculus with focus
	A pure call-by-value intuitionistic L calculus
	A pure call-by-value classical L calculus

	Untyped polarized calculi
	Introduction
	Content
	Contribution
	Pure polarized calculi
	Relative expresiveness of call-by-name and call-by-value
	Embedding call-by-name in call-by-value
	The λVtypecolor_typecolor⇑-calculus
	Embedding λVtypecolor_typecolor⇑ in λVtypecolor_
	Embedding λNtypecolor_ in λVtypecolor_typecolor⇑

	Embedding call-by-value in call-by-name
	The λNtypecolor_typecolor⇓-calculus
	Embedding λNtypecolor_typecolor⇓ in λNtypecolor_typecolor⊗
	Embedding λVtypecolor_ in λNtypecolor_typecolor⇓

	A pure polarized λ-calculus
	A pure polarized λ-calculus with focus
	A pure polarized intuitionistic L-calculus
	A pure polarized classical L-calculus

	Polarized calculi with pairs and sums
	A polarized λ-calculus with pairs and sums
	CBPV^ as a subcalculus of λPtypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓
	CBPV^
	Syntax
	Operational semantics
	Complex values

	Embedding CBPV^ into λPtypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓
	Embedding values and computations
	Differences between CBPV^ and λPtypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓
	Complex values and positive expressions
	Preservation of operational semantics

	A polarized λ-calculus with focus
	A polarized intuitionistic L calculus
	A polarized classical L calculus
	The CBPV abstract machine as a subcalculus of ptypecolor_typecolor&typecolor⇑typecolor⊗typecolor⊕typecolor⇓

	Polarized calculi with arbitrary constructors
	A (classical) polarized L-calculus
	Syntax
	Type formers
	Value and stack constructors
	Syntax

	Reductions
	Definitions
	Normal forms, clashes and waiting commands
	Properties

	Well-typed and well-polarized terms
	Well-typed terms
	Alternative presentations
	Well-polarized terms

	Intuitionistic and minimalistic polarized L-calculi
	Intuitionistic and minimalistic fragments
	Fragment definitions
	Inoperable rules
	Inclusions
	Straightforwardly minimalistic type formers

	A syntax for the minimalistic fragment
	Characterization of p4metavarcolorτ via free stack variables
	Output polarities
	A BNF grammar for p4metavarcolorτ

	Properties
	Disubstitutions
	Reductions

	A polarized λ-calculus with focus equivalent to p4metavarcolorτ
	Equivalence between p4metavarcolorτ and p4metavarcolorτ
	A polarized λ-calculus

	Dynamically typed polarized calculi
	Clashes and dynamically typed calculi
	A dynamically typed polarized λ-calculus
	A dynamically typed polarized λ-calculus with focus
	A dynamically typed polarized intuitionistic L calculus
	A dynamically typed polarized classical L calculus

	Solvability in polarized calculi
	Content
	Contribution
	Introduction to solvability and operational completeness
	Goal and content
	Caveats
	Summary
	A meaning for programs
	Programs as maps from inputs to outputs
	Comparing programs

	A compositional meaning for fragments
	Fragments and plugging
	Program-preserving observational preorder and equivalence
	Program preservation: a displeasingly strong syntactic invariant
	Weakening syntactic invariants

	Distinguishability, separability and binary operational completeness
	Operational relevance, solvability and unary operational completeness

	Call-by-name solvability
	Three notions of observational equivalence induced by three notions of evaluation
	Two notions of operational relevance and one notion of solvability
	Convergence testing as a means to boostrap meaningful definitions
	The usefulness of L-calculi
	Reductions and induced notions of evaluation
	Five reductions
	Normal forms
	Substitutivity and disubstitutivity
	Determinism, confluence, and uniqueness of termination behavior
	Three notions of evaluation
	Existence of normal forms and evaluation

	Usefulness of the trivial interpretation of programs
	Instanciating the general definitions
	Parameters
	Terms and states
	Closedness
	Parameters

	A meaning for programs
	Main definition
	Alternative definitions
	Properties

	Observational preorder and equivalence
	Main definitions
	Alternative definitions
	Properties
	Transitivity
	Monotonicity
	Soundness of β-conversion

	Operational relevance and solvability

	Equivalences between definitions

	Call-by-value solvability
	Polarized solvability
	Bibliography
	Properties of disubstitutions
	Properties of reductions
	Detailed proofs
	Extra figures

