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Goal

We want a nice dependently-typed calculus that allows for modular
definitions and proofs and minimizes boilerplate




Alternance of axioms and definitions:
the advent of boilerplate

It's not about expressivity

Axiom car : Type

Definition binary_op := car — car — car

Axiom mult : binary_op

Definition mult_associative : II (x,y,z : car),
(x-y)-z=x (G - 2)

Axiom op_associator : op_associative
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It's not about expressivity

Axiom car : Type

Definition binary_op := car — car — car

Axiom mult : binary_op

Definition mult_associative : II (x,y,z : car),
(x-y)-z=x (G - 2)

Axiom op_associator : op_associative

Definition binary_op (car : Type) := car — car — car
Definition mult_associative (cat : Type)
(mult : binary_op car) : II (x,y,z : car),
x-y)-z=x-(( -2
Axiom car : Type
Axiom mult : binary_op car
Axiom op_associator : op_associative car mult



Alternance of axioms and definitions:

the advent of boilerplate

Too much boilerplate!

Definition defl := ...
Definition def2 (proofl
Definition def3 (proofl

: axioml defl) := ...
: axioml defl)
(proof2 :

axiom2 defl (def2 proofl))



Alternance of axioms and definitions:
the advent of boilerplate

Too much boilerplate!

Definition defl := ...
Definition def2 (proofl : axioml defl) := ...
Definition def3 (proofl : axioml defl)

(proof2 : axiom2 defl (def2 proofl)) := ..

Problem

If n alternations, ©(n®) boilerplate code!



First-class objects, subsuming records
Definition by induction

1 Definition trivial_monoid : Mon :=

2 { car := unit, e := OO, ... }

3 Definition monoid_product (M1 M2 : Mon) : Mon :=
4 { car := Ml.car X M2.car, e := (Ml.e, M2.e),
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First-class objects, subsuming records
Definition by induction

1 Definition trivial_monoid : Mon :=

2 { car := unit, e := OO, ... }

3 Definition monoid_product (M1 M2 : Mon) : Mon :=
4 { car := Ml.car X M2.car, e := (Ml.e, M2.e),

5 Definition monoid_power (M : Mon) (n : mnat) : Mon :

6 car := iter unit (\x. x X M.car) n,
7 e := iter () Oxx. (x, M.car)),

10 Definition monoid_power (M : Mon) (n : nat) : Mon :

1 iter unit_monoid (Ax. monoid_product x M)



First-class objects, subsuming records

Quantification

1 Lemma quantifier_elimination :
2 II (F : ReadClosedField),

3 I (¢ : Formula),

4 L (¢ : ClosedFormula),

s lelr = [9]F



Named abstraction and application

» No a-renaming: Abstraction replaced by empty fields:
Ax1.(xg := t, Axg.(xq := t', x5 := ") becomes
x1:=7,xp:=t,x3:=7, x4 :=t, x5 :=t'



Named abstraction and application

» No a-renaming: Abstraction replaced by empty fields:
Ax1.(xg := t, Axg.(xq := t', x5 := ") becomes
x1:=7,xp:=t,x3:=7, x4 :=t, x5 :=t'

» Reduction:

{(x1 :=7, %0 : =7, x3 := x1 + X2, x4 :="0, X5 := x3 + x1) (x1 := 2, %2 := 3)} .x3

Vi

{x1:=2,%x :=3,x3:= x1 + X2, x4 :=7, x5 1= x3 + X4} .x3
Vi

{Xl =2,x0:=3,x3:=2+3,x4 :=7, X5 := X3 + X4} .X3
Vi

2+3



Definitional singleton, subsuming modules

» Type may need to know the value of a field:
{XType =N,y :=0,270:= reﬂ} DRCRLAID VA I
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Definitional singleton, subsuming modules

» Type may need to know the value of a field:

{XType =N,y :=0,270:= reﬂ} :M

» Remember the value in the type;

{XTyPC 2 \% Z 0,27Y Z reﬂ} : AxPP = N, By, 520

» Typing rules

I'Fy:2xA B I'Fyp:AX* =tB I'Fyp:Ax*:=tB
F'Fepx: A F'Fepx: A l'Fpx=t: A

» Simulates let expressions:

. JAN
let x:= tinu ~ {x:: ty:= u} .y



Field commutations, maybe subsuming sections

If x¢ FV (u)NFV (B) and y & FV (t) N FV (A), then:

A, 3yB C
AP =t AyP:=uC
AP =t 5B C

A = t,yB:: u,p

x4, IIyB, C
XA =78 =70

¥yB x4 C
Ay = u, AX* =t,C
YyB, AxA =1t,C

yB:: u,xA:: t,

IIy8 114, C

yB =24 =7



Field commutations, maybe subsuming sections

If x¢ FV (u)NFV (B) and y & FV (t) N FV (A), then:

A, 3yB C

AP =t AyP:=uC
AP =t 5B C

A = t,yB =u,p
x4, IIyB, C

XA =78 =70

¥yB x4 C
Ay = u, AX* =t,C
YyB, AxA =1t,C

yB:: u,xA:: t,

IIy8 114, C

yB =24 =7

Need more commutations to simulate minimal discharge of

sections



Modularity

» Renaming operator: necessary to combine libraries with
different naming conventions

» Includes:

PtTopSpace := {carType =7, pt@ =7 topP (Plean) .=7 }

Group := {car'¥P® :=?, e ;=7 mult@rcarmar.=7 1
TopGroup := {

include (Group) ,

smart _include (renamepy, . (Group)),

mult_cont:= ...,



Conclusion

» Work in progress: candidate calculus
» Expected properties:
» Conservative over MLTT (with definitional singleton)
» Subsumes modules (minus subtyping) and records (and
hopefully section)
» No code duplication, and minimal boilerplate
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